第六课时 实数
LYX
1、平方根
①算术平方根:一般地,如果一个正数x的平方等于a ,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为    ,读作“根号a”,a叫做被开方数。 规定:0的算术平方根是0.
结论:对于所有正数而言,被开方数越大,对应的算术平方根也越大。
②平方根:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。这就是说,如果x2=a ,那么x叫做a的平方根。求一个数a的平方根的运算,叫做开平方。 结论:
⑴正数的平方根有两个,他们互为相反数,其中正的平方根就是这个数的算术平方根。⑵因为02=0,并且任何一个不为0的数的平方都不等于0,所以0的平方根也是0.
⑶正数的平方是正数,0的平方是0,负数的平方也是正数,即任何一个数的平方都不会是负数,所以负数没有平方根。
★总结:⑴一个正数有两个平方根,它们互为相反数;
⑵零有一个平方根,它是零本身; ⑶负数没有平方根。
由于平方与开平方互为逆运算,因此可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根。 ★一个数的平方根的表示方法:
例1、检验下面各题中前面的数是不是后面的数的平方根。 (1)±12  ,  144                      (2)±0.2 ,  0.04 (3)102    ,104                                 (4)14  ,256 例2、0.01的平方根是(   )
(A)0.1    (B)±0.1      (C)0.0001   (D)±0.0001 例3、∵  (0.3)2 = 0.09       ∴    (   )
(A)0.09 是 0.3的平方根.    (B)0.09是0.3的3倍.
(C)0.3 是0.09 的平方根.    (D)0.3不是0.09的平方根. 例4、判断下列说法是否正确:
(1)-9的平方根是-3;                       (2)49的平方根是7  ;                (3)(-2)2的平方根是±2  ;                (4)1 的平方根是 1  ;                (5)-1 是 1的平方根;                       (6)7的平方根是±49.                (7)若X2 = 16     则X = 4            例5、
(1)9的算术平方根是        (2)   的算术平方根是
LYX
(3)0.01的算术平方根是
(4)算术平方根等于它本身的是
例6、若一个数的平方根与它算术平方根的值相同,则这个数是(    ) A.1        B.0       C.0或1       D.  1、0或-1
2、立方根
①定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。这就是说,如果x3=a,那么x叫做a的立方根。求一个数的立方根的运算,叫做开立方。正如开平方与平方互为逆运算一样,开立方与立方也互为逆运算。我们可以根据这种关系求一个数的立方根。
②若x是a的立方根,则说明x3=a,其中a的立方根记为,                   ,读作“三次根号a”,其中a是被开方数,3是根指数。3a中的根指数3不能省略。(说明:算术平方根的符号a,实际上省略了    中的根指数2.因此a也可读作“二次根号a”。) 注意:a的取值范围是全体实数!!(即a可以是正数,也可以是负数,还可以为0. ③立方根的特征:
⑴任何一个数 a 都只有一个立方根;
⑵正数的立方根是正数;负数的立方根是负数;0的立方根是0; ⑶互为相反数的数的立方根也互为相反数。 ★归纳平方根和立方根的异同点:
相同点: ①0的平方根、立方根都有一个是0          ②平方根、立方根都是开方的结果。 不同点:①定义不同        ②个数不同
③表示方法不同    ④被开方数的取值范围不同
★立方和开立方是互逆运算:   平方和开平方是互逆运算:
★思考:立方根是它本身的数是______.平方根是它本身的数是__     .算术平方根是它本身的数是______.
例1、求下列各数的立方根:
LYX
例2、已知A5a27是27的立方根,求a值?
例3、5是6ba9的立方根,求a,b值?
例4、下列语句对吗?
(1)0.0027的立方根是0.03  (2)0.009的平方根是0.3
(3)一个数的立方根等于这个数的立方,那么这个数为1,0,-1. ⑷任何有理数都有立方根,它不是正数就是负数 ⑸非负数的立方根还是非负数
⑹一个数的平方根与其立方根相同,则这个数是1 例5、分别求下列各式的值:
★解这类题时,当被开方数是负数时,一般先利用立方根的性质              当被开方数很复杂时,必须先进行整理后再求值。            例6、填空:
(1)1的平方根是____;立方根为____;算术平方根为__.  (2)平方根是它本身的数是____    . (3)立方根是其本身的数是____    .
(4)算术平方根是其本身的数是___      _  .
⑸将一个立方体的体积扩大到原来的8倍,则它的棱长扩大到原来的_____倍。
★例7、观察下面的运算,请你找出其中的规律:
31____,  31000____,  30.001____。
规律是:
LYX
进行化简;   ①被开方数每扩大           倍,其结果就扩大       倍; ②被开方数每缩小           倍,其结果就缩小       倍。 反之也成立。
用你发现的规律填空:33①  已知,2166,则3216000____,0.216____ 33②  已知,133111,则31.331____,1331000___例8、估计68的立方根的大小在(  )
A、2与3之间 B、3与4之间 C、4与5之间 D、5与6之间 例9、       的整数部分是(           ),小数部分是(         )              的整数部分是(           ),小数部分是(          ) 例10、比较大小:3、4、
3、实数
①有理数的小数形式:任何一个有理数都能写成有限小数或无限循环小数的形式;反过来任何有限小数或无限循环小数也都是有理数; ②无理数的引入:通过平方根和立方根的学习,我们知道很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数。例如   、     、    、   等都是无理数,π=3.14159265……也是无理数。像有理数一样,无理数也有正负之分。例如  、  、  、π是正无理数,    、     、—π是负无理数。 ③实数:有理数和无理数统称为实数。 ④实数的分类:
⑤实数与数轴上的点是一一对应的:
⑴每一个有理数都可以用数轴上的点表示; ⑵每一个无理数都可以用数轴上的点表示;
⑥有理数关于相反数和绝对值的意义同样适合于实数
⑴相反数:数a的相反数是-a,这里a表示任意一个实数。
⑵绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.即设a表示一个实数,则
LYX
⑦实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数以及0可以进行开平方运算,任何一个实数可以进行开立方计算。在进行实数的运算时,有理数的运算法则以及运算性质等同样适用。
例1、下列各数中,哪些是有理数,哪些是无理数?
例2、判断:
⑴实数不是有理数就是无理数。(     ) ⑵无理数都是无限不循环小数。(     ) ⑶无理数都是无限小数。(     ) ⑷带根号的数都是无理数。(     ) ⑸无理数一定都带根号。(     )
⑹两个无理数之积不一定是无理数。(     ) ⑺两个无理数之和一定是无理数。(     )
例3、填空:2的相反数是     ;    相反数是       ;0的相反数是         ;
例4、(1)求
3的绝对值;
(2)已知一个数的绝对值是3,这个数。 例5、
5325的值是(      )
A .5    B.-1
C. 525   D. 255
例6、下列各数中,互为相反数的是(      )
例7、设
3对应数轴上的点是A, 5对应数轴上的点是B,那么A、B间的距离
是             。
例8、在数轴上与原点的距离是 26的点所表示的数是                 。 例9、把下列各数分别填在相应的集合中:
,  12, 3.14, 33, 1.732, 0,
34,
有理数{                     …} 无理数{                     …}
LYX