第一届小学“希望杯”全国数学邀请赛
五年级
一、填空题
第 1 试
1.计算 =_______ 。
2.将 1、2、 3、4、5、6 分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画 5 条直线,最多可有 _______ 个交点。 4.气象局对部分旅行景区的某一天的气温预告以下表:
此中,温差最小的景区是 ______ 。 ,温差最大的景区是 ______
5. , 各表示一个两位数,若
和它的反序数
+ = 139,则
=_______与_______
。
6.三位数 差。
的差被 99 除,商等于 _______
的
7.右图是半个正方形,它被分红一个一个小的等腰三角形,图有_______ 个,三角形有 _______ 个。
2 中,正方形
1 / 53
希望杯第18届五年级数学试题及WORD版
8.一次智力测试,主持人亮出四块三角形的牌子:
在第 (4)块牌子中,表示的数是 _______ 。
9.正方形的一条对角线长 13 厘米,这个正方形的面积是平方厘米。
10.六位自然数 1082 □□能被 12 整除,末两位数有种状况。
11.右侧的除法算式中,商数是。
12.比
大,比 小的分数有无量多个,请写出三个:。
13.A、B、 C、D、E 五位同学进行乒乓球循环赛(即每
2 人赛一场),比赛
进行了一段时间后, A 赛了 4 场, B 赛了 3 场, C 赛了 2 场, D 赛了 1 场,这时, E 赛了场。
14.察看 5*2 =5+55=60,7*4 =7+77+777+7777= 8638,推知 9*5 的值是。
15.查找一辆闯事汽车的车牌号(四位数),一位目睹者对数字很敏感,他供给状况说: “第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的 4 倍恰巧比后两位数少 2”。由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字 2,3,5,6,7,9。小光,小亮二人任意往桌上扔放这个木块。规定:当小光扔时,假如向上的一面写的是 偶数,得 1 分。当小亮扔时,假如向上的一面写的是奇数,得 1 分。每人扔 100 次,得分高的可能性最大。
2 / 53
希望杯第18届五年级数学试题及WORD版
17.从 1,2,3,4,5,6,7,8,9。中任意取出两个数字,一个作分子,一个作分母,构成一个分数,所有分数中,最大的是,循环小数有个。
18.以下图的四边形的面积等于。
19.一艘轮船来回于 A、B 码头之间,它在静水中航速不变,当河水流速增添
时,该船来回一次所用时间比河水流速增添前所用时间(填
“多”或“少 ”)。
20.新来的教课楼管理员拿 15 把不一样的钥匙去开 15 个教室的门,但是不知哪一把钥匙开哪一个门,他最多试开次,便可将钥匙与教室门锁配对。
21.一个分数,分子加分母等于 168;分子,分母都减去 6,分数变为 ,本来的分数是。
22.一只甲虫从画有方格的木板上的 A 点出发,沿着一段一段的横线,竖线爬行到 B 点,图( 1)中的路线对应下面的算式
1-2+ 1+2+2-1+ 2+1=6
请在图( 2)顶用粗线画出对应于算式
- 2-1+2+2+2+1+1+1 的路线。
23.新年晚会上,老师让每位同学从一个装有很多玻璃球的口袋中摸两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时,看不到颜色),结果发现总有两个人取的球相同,由此可知,参加取球的起码有人。
24.A、B、 C、D、E 五人参加围棋赛,四位观战者展望了却果。甲说:
“E第
3,A 第 4。”乙说: “A第 3,B 第 1。”丙说: “B第 4,E 第 2。”丁说: “D第 1,
3 / 53
希望杯第18届五年级数学试题及WORD版
C 第 3。 ”实质结果是每人只猜对了一个,参赛定是第 1,
5 人也没有并列名次,所以一
第 2,第 3。
25.以下图是一所小学的科技楼,它有 4 层,正面每层的三个圆形窗户由左向右表示一个三位数,这些三位数是: 837,571,206,439。但是不知道这四 个数和哪一层的窗户对应。请你察看一下,而后画出表示 2003 的四个窗户。
4 / 53
希望杯第18届五年级数学试题及WORD版
第一届小学 “希望杯 ”全国数学邀请赛
五年级
第 2 试
一、填空题
1.计算:
= ________ 。
2.一个四位数,给它加上小数点后比原数小,这个四位数是
________ 。
3.六位数 2003 □□能被 99 整除 ,它的最后两位数是 __________ 。
4.如图,两个正方形的边长分别是 ________平方厘米。
6 厘米和 2 厘米,暗影部分的面积是
5.用 1 元、 5 元、10 元、 50 元、 100 元人民币各一张, 2 元、 20 元人民币各两张,在不找钱的状况下,最多能够支付 _____种不一样的款额。
6.桌面上 4 枚硬币向上的一面都是 “数字 ”,另一面都是 “国徽 ”,假如每次翻转 3 枚硬币,起码 _____次可使向上的一面都是 “国徽 ”。
7.向电脑输入汉字,每个页面最多可输入 1677 个五号字。此刻页面中有 1 个五号字,将它复制后粘贴到该页面,就获取 2 个字;再将这 2 个字复制后 粘贴到该页面,就获取 4 个字。每次复制和粘贴为 1 次操作,要使整修页面 都排满五号字,起码需要 _____次操作。 8.图 2 中的每个小方格都是面积为
1 的正方形,面积为 2 的矩形有 _____个。
5 / 53
希望杯第18届五年级数学试题及WORD版
9.因为潮汐的 期作用,月球自 周期与 地球公 周期恰巧相同, 使得 月球 是以相同的一面 着我 。在地球上最多能看到 50%的月球面 ,从 一 月球照片中最多能看到 _____50%的月球面 。(填“大于 ”、“小于 ”或“等于 ”) 10. 三个武 行擂台 ,每 派 6 名 手,先由两 各出 1 名 手上擂台比武, 者下台,不再登台, 者 同其余 的一位 手比武, 者下
台,和 者不一样 的又一位 手登台 ⋯⋯ 下去。 当有两个 的 手所有被 ,余下的 即 。 最少要 行 _____ 比武。
11.两种 水器若干个,一种容量 12 升水,另一种容量好装 15 升水。 153 升水恰 些 水器,此中 15 升容量的 _____个。
12. 跳水比 中,由 10 位 委 分, 定:最后得分是去掉 1 个最高分和 1 个最低分后的均匀数。 10 位 委 甲、 乙两位 手打出的均匀数是和, 此中 最高分和最低分的均匀数分 昌和,那么最后得分 _____高。 (填“甲”、“乙”或 “一 ”)
13.如 3,每个小方 周 最多有 8 个小方 , 外 没 数字的小方 是未探明的雷区,此中每个小方 最多有一个雷,内部的小方 都没有雷,数字 表示所在小方 周 的雷数。 有 _____个雷。
14. 小光前天登 到数理天地网站,他在首 看到 本网站的 \" ,他 看了投票 果, 投票 人数是
投票率是 68%。当他昨天再次登 数理天地网站 , 升到 72%, 当 的投票 人数起码是 _____ 。
\"您是通 什么方式知道
500 人, “ 志 ” 的 “ 志 ” 的投票率上
15.某次数学、 英 ,所有参加 者的得分都是自然数,最低得分 169,没有人得 193 分、185 分和 177 分,并且起码有数,参加 的起码有 _____ 人。
最高得分 198,
6 人得同一分
6 / 53
希望杯第18届五年级数学试题及WORD版
二、解答
16.甲、乙两地 路 100 千米,列 从甲行 到乙的途中停 6 站 (不包含
甲、乙 ),在每站停 5 分 ,不 在甲、乙两站的停 ,行 全程共用小 。火 加速 10%后,假如停靠 站及停 不 ,行 全程共用多少小
17.某小区呈正方形, 占地 25 万平方米,小区中每座房子的地基也是正方形,占地面 400 平方米,相 房子的 距许多于 28 米,房子之外的面 是 地和道路,道路面 和 地面 的比是 1:5。 : 小区的 地面 占 面 的百分比起码是多少
18.小 和小 划用 50 天假期 法:将 3755 个一 常用 字 一遍。小 每日 73 个 字,小 每日 80 个 字,每日只有一人 ,每人每日 的字各不相同, ,他 正幸亏假期 束 达成 划。他 各 了多少天
19. 甲、乙两位同学玩一种 牌游 , 是: \"两人都拿 10 牌,牌上分 有数字 1、2、⋯⋯、10。两人先交替出牌,每次只出一 ,第三 牌此后的每 牌 都是前两 牌上的数字和的尾数 (尾数 0 作 10),只需有切合要求的牌必定要出,当某一方无法出牌 ,由另一方任意出一 牌,而后按 上面的 出 牌,先出完牌的一方 。
(每个小方格内的 圈中是出牌的序号, 圈外是牌上的数字 )
:甲同学 怎 出牌,才能保 自己必定 , 写出尽可能多的出牌原 ,再按 些原 填好下面的表格。
7 / 53
希望杯第18届五年级数学试题及WORD版
第二届小学 “希望杯 ”全国数学邀
五年
第 1
一、填空
1.×[
2.依据 律填空:,,,,,。
]× 26=。
3.一个数被 7 除,余数是 3, 数的 3 倍 7 除,余数是。 的 数中,比
100 大且比 200 小的 数是。
5.下 的加法算式中,每个 “□”内有一个数字,所有 “□”内的数字之和最大可达到。
6.甲、乙、丙三人 骰子,每人 三次,他 出的点数的 都是 人 出的点数的和由大到小摆列,挨次是甲、乙、丙, 点数 (点数:向上的一面上的数字。骰子的六个面上的点数分 是
24。将每
3 是 出的。 1 至 6)
7.在一个四位数的某位数字的前面添上一个小数点, 再和本来的四位数相减,差是, 本来的四位数是。
8. , , 都是 数,并且 + = 33, + =44, + =66,那么 =,
9.假如 A◆B= =。
,那么 1◆ 2-2◆3-3◆4-⋯-2002◆2003-2003◆ 2004
10.用 1-8 八个自然数中的四个 成四位数,从个位到千位的的数字挨次增大,且任意两个数字的差都不是 1, 的四位数共有个。
8 / 53
希望杯第18届五年级数学试题及WORD版
11.甲、乙、丙三个网站按期更新,甲网站每隔一天更新 1 次,乙网站每隔两天更新 1 次,丙网站每隔三天更新 1 次。在一个礼拜内,三个网站最少更新网站次。
12.以下图有个正方形。
13.如图,每个小格的边长都是 1 个单位长度,一只甲虫在水平方向上每爬行 1 个单位长度需要 5 秒,在竖直方向上每爬行 1 个单位长度需要 6 秒,每拐弯一次需要 1 秒。它从 A 点爬到 B 点,最少需要秒。
14.将长 15 厘米,宽 9 厘米的长方形的长和宽都分红三等份,长方形内任意一点与分点及极点连结,如图 3,则暗影部分的面积是平方厘米。
15.沿图中的虚线折叠,能够围成一个长方体,它的体积是立方厘米。
16.小永的三门功课的成绩, 假如不算语文, 均匀分是 98 分;假如不算数学,均匀分是 93 分;假如不算英语,均匀分是 91 分。小永三门功课的均匀成绩是分。
9 / 53
希望杯第18届五年级数学试题及WORD版
17.A、B、C、D 四支球队进行循环赛(即每两队赛 1 场),比赛进行一段时间后, A 赛了 3 场, B 赛了 2 场, C赛了 1 场,这时, D 赛了场。
18.一只皮箱的密码是一个三位数。 小光说:“它是 954。”小明说:“它是 358。”小亮说: “它是 214。 ”小强说: “你们每人都只猜对了地点不一样的一个数字。
这只皮箱的密码是。
19.一次校友聚会有 50 人参加,在参加聚会的同学中,每个女生认识的男生人数各不相同,并且恰巧构成一串通续的自然数,最多的全认识,最少的也认识 15 人。此次聚会是个女生参加。
20.2003 年 10 月 28 日, “神舟 ”五号载人飞船发射试验队队长许达哲流露:我国将在 2004 年下半年发射 “神舟 ”六号载人飞船,共 3 人乘 “神六 ”游览太空 7 天。假如 “神六 ”与“神五 ”都是均匀 90 分钟绕地球飞翔一圈, 那么 “神六 ”将绕地球飞翔圈。
21.列车经过 300 米长的地道用 15 秒,经过 180 米长的桥梁用 12 秒,列车的车身长是米。
22.一家三口人,爸爸比妈妈大 3 岁,此刻他们一家人的年纪之和是 10 年前全家人的年纪之和是 51 岁,女儿今年纪。
80 岁,
23.书店以每本元的价钱购进某种图书,每本售价元,卖到还剩了回收所有成本外,还赢利 504 元。这个书店购进该种图书籍。
10 本时,除
24.班长计划用班费买一些日志本作为娱乐活动的奖品,假如买每元的日志本,将节余元;假如买每本元的相同数目的日志本,将缺乏元。那么班长计划买今日志本。
10 / 53
希望杯第18届五年级数学试题及WORD版
第二届小学 “希望杯 ”全国数学邀
五年
第 2
一、填空 1.
。
“□”内有一个数字, 三个加数中最大的
2.右 是三个数的加法算式,每个 是__________。
3.在一列数 2、2、4、8、2、⋯⋯中,从第 3 个数开始,每个数都是它前面两 个数的乘 的个位数字。 按 个 律, 列数中的第 2004 个数是 __________。
4.若四位数
能被 15 整除,
代表的数字是。
5.
、 、 都是 数,假如
=342,那么
□□= □×(
=。
6.假如
□=
, □+1), ⋯⋯,那么
1□□□=。
7.甲、乙、丙三个网站按期更新,甲网站每隔一天更新 1 次;乙网站每隔两天更新 1 次,丙网站每隔三天更新 1 次。在一个礼拜内,三个网站最多更新__________次。
8. “六一 ”小孩 ,几位同学一同去郊野爬山。男同学都背着 色的旅行包,女同学都背着黄色的旅行包。此中一位男同学 ,我看到 色旅行包个数是黄色旅行包个 数的倍。另一位女同学却 ,我看到的 色旅行包个数是黄色旅行包个数的 2 倍。假如 两位同学 的都 ,那么女同学的人数是 __________。
9.王老 昨天按 序先后收到 A、B、C、D、E 共 5 封 子 件,假如他每次都是第一答复最新收到的一封 子 件,那么在以下 序
① ABECD ② BAECD ③ CEDBA
11 / 53
希望杯第18届五年级数学试题及WORD版
④ DCABE ⑤ ECBAD
中,王老 可能答复的 件 序是
__________(填序号)
10. 中的暗影部分是由 4 个小正方形 成的 “ L ”形,在 中的方格网内,最多能够搁置 的 “L ”形(能够旋 、翻 , 形之 不行有重合部分)的个数是 __________。
11.如 ,正方形每条 上的三个点 1、2、3(端点除外)都是 条 的四平分点, 暗影部分的面 是正方形面 的 __________。
12. 如 3,是一片 收割 的稻田,每个小正方形的 是 1 米,A、B、 C 三点周 的暗影部分是 形的水洼。 一只小 来 去, 四 食, 它最先逗留在 0 号 位, 了一会儿,它 水洼, 到对于 A 点 称的 1 号位;不
久,它又 到对于 B 点 称的 2 号位;接着,它 到对于 C 点 称的 3 号位,再 到对于 A 点 称的 4 号位, ⋯⋯,这样 ,向来 称地 下去。由此推测, 2004 号位和 0 号位之 的距离是 _______米。
13. 中的( A)、( B)、( C)是三 形状不一样的 皮,将每 皮沿虚 弯折后 接成一个无盖的 方体 桶。此中,装水最多的 桶是由 皮
是由 皮 接的。
________
12 / 53
希望杯第18届五年级数学试题及WORD版
14.某年 4 月所有礼拜六的日期数之和是 期数是 _______。
54,这年 4 月的第一个礼拜六的日
15.盒子里放有编号为 1 至 10 的十个球,小明先后三次从盒取出九个球。 假如从第二次开始,每次取出的球的编号之和都是前一次的 2 倍,那么未取出的球的编号是 _______。 二、解答题
16.暑期时期,小强每日都坚持游泳,并对所游的距离作了记录。假如他在
暑期的最后一天游 670 米,则均匀每日游 495 米;假如最后一天游 778 米, 则均匀每日游 498 米;假如他想均匀每日游 500 米,那么最后一天应游多少 米
17.A、B 两地相距 2400 米,甲从 A 地、乙从 B 地同时出发,在 A、B 间来回长跑。甲每分钟跑 300 米,乙每分钟跑 240 米,在 30 分钟后停止运动。甲、乙两人在第几次相遇时距 A 地近来近来距离是多少米
18. 如图,用若干个体积相同的小正方体聚积成一个大正方体,要使大正方体的对角线(正方体八个极点中距离最远的两个极点的连线)穿过的小正方体都是黑色的,其 余小正方体都是白色的,并保证大正方体每条边上有偶数
个小正方体。当聚积达成后,白色正方体的体积占整体积的 %,那么一共用了多少个黑色的小正 方体
19. 图中每个小正方形的边长都是 4 厘米,四条实线围成的是一个梯形。有
一盒长度都是 4 厘米的火柴,分别取出此中的 4 根和 5 根,如图( A)和图(B),
13 / 53
希望杯第18届五年级数学试题及WORD版
都能够将 梯形分红面积相等的两部分。此刻请你分别取出 6、7、8、9、10根火柴,在( C)、( D)、( E)、( F)、( G)图中沿虚线搁置(火柴之间不可以重 叠),将梯形分红面积相等的两部分(用实线表示这些火柴)。
14 / 53
希望杯第18届五年级数学试题及WORD版
第三届小学 “希望杯 ”全国数学邀请赛
五年级 第 1试
一、填空题
1.数 x 比“ 112的六分之一 ”小 ,则 x= _____。
2.计算: 0.3+
=_____(结果写成分数 )。
3.设 a=
,b= ,则在 a 与 b 中,较大的数是 ______。
4.在 , , 中,最小的数是 ______。
5.某校五年级一班参加兴趣小组的人数统计图以下图,由图可知:该班共有_____人参加兴趣小组, _____小组的人数最多。
6.以下图是 3×3的正方形方格, ∠1 与∠2 对比,较大的是 _____。
7.小明和小新在同一街道,小明家在学校东600 米处,小新家在学校西 米处,那么小新家距离小明家 _____米。
8.用五张数字卡片: 0, 2,4,6,8 能构成 ______个不一样的三位数。(
能看作 9)
15 / 53
2006 不
希望杯第18届五年级数学试题及WORD版
9.一盘草莓约 20 个左右,几位小朋友分。若每人分 每人分 4 个,则差 3 个。这盘草莓有 ______个。
3 个,则余下 2 个;若
10.计算: 7. 816×1.45+3.14×2. 184+ 1.69×7.816=_____。
11.买 2 条毛巾, 3 块肥皂,要付 18 元;买)。3 条毛巾, 2 块肥皂,要付 19 元
(毛巾,肥皂,都分别是同一品种的 那么买 1 条毛巾, 1 块肥皂要付 _____
元。
12.在等式
即可 )。
=
中,( )内的两个不一样自然数能够是
___和____ (填一组
13.在六位数 3□ 2 □ 的1三□个方框里分别填入数字,使得该数能
被
15 整除,
这样的六位数中最小的是
______.
14.在一袋大米包装袋上标着净重 克。
,那么这袋大米净重最少是 ______千
15.下表中上一行的一个字与下一行对应的一个字作为一组, 如第一组是 (数,我),第二组是 (学,们 )。
那么第 2005 组是_____。
16.如图,由边长为
1 的小三角形拼成,此中边长为 4 的三角形有 _____个。
17.用 125 个边长为 1 厘米的正方体能够拼成一个边长为要使拼成的立方体的边长变为 6 厘米,则需要增添边长为______个。
5 厘米的正方体,
1 厘米的正方体
18.假如一个边长为 2 厘米的正方体的体积增添 则边长增添 ______厘米。
208 立方厘米后还是正方形,
16 / 53
希望杯第18届五年级数学试题及WORD版
19.“希望 ”的英文是 “ HOPE,”如 4,H 和 E 是由一些同 大小的正方形方格 成, O 和 P 是由一些方格和半 成,假如每个小方格的面 是 1, “ HOPE所”在的地区的面 是。
20.如 所示暗影部分的面 是 平方厘米。
66 平方厘米, 中正方形的面 是 _____
21.在 2005 年 3 月份的月 上,小明 某一列上的五个日期的数字之和 85,那么 列上的第一个日期是 _____号。
22.小明的两个口袋中各有 6 卡片,每 卡片上分 写着 1,2,3,⋯⋯,6。 定 6 不可以当 9 用,从 两个口袋中各取出一 卡片来 算上面所写两数的 乘 ,那么,此中能被 6 整除的不一样乘 有 _____个。 23.上学的路上,小明听到两个人在 各自的年 ,只听一人 “当我的年 是你 在的年 ,你才 4 。 ”另一人 “当我的年 是你 在的年 ,你将 61 ,⋯⋯”他 两人中,年 小的 在 _____ 。
24.甲、乙两个 玩具 同 从 道的两头相 而行,甲 每秒行 5 厘米,乙 第一秒行 1 厘米,第二秒行 2 厘米,第三秒行 3 厘米, ⋯⋯, 两 相遇 ,走的行程相同。 道 _____厘米。
17 / 53
希望杯第18届五年级数学试题及WORD版
第三届小学 “希望杯 ”全国数学邀
五年
第2
一、填空 (每小 6 分,共 90 分)
× 390+× 41+× 2= 。
2. 算:+ =_______( 果写成分数 )。
3.一个数的四分之一减去 5, 果等于 5, 个数等于 _____。
4. 算口 ÷△, 果是:商 10,余数 ▲ 。假如 ▲的最大 是 6,那么 △ 的最小 是 _____。
5.在 ,⋯⋯ 一列数中的第 8 个数是 ____。
6.假如 定
7.如 所示的三角形
,那么 =_____。
ABC的三条 AB、BC、AC 中,最 的 ______
8. 中的 “我 希望杯 ”有______种不一样的 法。
9.比 中的两个暗影部分 I 和Ⅱ 的面 ,它 的大小关系 ______
18 / 53
希望杯第18届五年级数学试题及WORD版
10.已知两个自然数的积是 180,差不大于 5,则这两个自然数的和是 _____。
11.孙悟空会七十二变, 猪八戒只会此中的一半。 假如他们同时登台表演 71 次, 则变化相同的最多有 _____次。 12.买三盏台灯和一个插座需付 那么买一盏台灯和一个插座需付
300 元;买一盏台灯和三个插座需付 200 元。 _____元。
300 米处,小
13.小明、小华和小新三人的家在同一街道,小明家在小华家西
新家和小明家相距 400 米,则小华家在小新家西 _____米处。
14.某种品牌的电脑每台售价 5400 元,若降价 205 后销售,仍可赢利 120 元, 则该品牌电脑的进价为每台 _____元。 15.以下图,长方形 AEGH与正方形 BFGH的面积比为 3:2,则正方形 ABCD 的面积是正方形 BFGH的面积的 ______ 倍(结果写成小数 )
二、解答题 (每题 10 分,共 40 分) 要求:写出计算过程。
16.在某次测试中, 小明、小方和小华三人的均匀成绩为 85 分,已知小明和小方的均匀成绩为 88 分,小明和小华的均匀成绩为 86 分。求:
(1)小方和小华的均匀成绩;
(2)他们三人中的最高成绩。
17.将一块边长为 12 厘米的出缺损的正方形铁皮 (如图 5)剪成一块无缺损的正
方形铁皮,求剪成的正方形铁皮的面积的最大值。
19 / 53
希望杯第18届五年级数学试题及WORD版
18.《中华人民共和国个人所得税法》中的个人所得税税率表 (薪资、薪金所得合用 )以下:
级数 1 2
全月应纳税所得额 不超出 500 元的部分
税率% 5
超出 500 元至 2000 元的部 10 分 超出 2000 元至 5000 元的 部分
15
3
表中 “全月应纳税所得额 ’’是指从薪资、薪金收入中减去 800 元后的余额。
已知王老师某个月应缴纳此项税款 280 元,求王老师这个月的薪资、薪金收入。
19.光明村计划修一条公路,由甲、乙两个工程队共同承包,甲工程队先修完
公路的虿 1 后,乙工程队再接着修完余下的公路,共用 40 天达成。已知乙工程队每日比甲工程队多修 8 千米,后 20 天比前 20 天多修了 120 千米。求乙工程队共修路多少天
20 / 53
希望杯第18届五年级数学试题及WORD版
第四届小学 “希望杯 ”全国数学邀请赛
五年级 第 1 试
以下每 5 分,共 120 分
1.2006++++994+++=_________. 2.2006× 2008×
..
1
2006
1
2007
2007 2008
=_________.
3. =____________.( 果写成分数形式 )
4. 定 :A*B=3A+2B, 如 4*5=3 × 4+2× 5,那么 ,B*A=_________. 5.假如 a=
2005 2006
,b=
2006 2007
,那么 a,b 中 大的数是 __________.
+2+3+⋯+2006 被 7 除,余数是 ___________. 7.□、○分 代表两个数
,并且□ -○ =10,
W W d
,那么□ =__________.
d
W d 2
18° C,冷藏室比冷 室的温度高
8.某品牌的家用 冰箱的冷 室的温度是零下 度是 ________° C. 9.假如某商品 价
22° C, 冷藏室的温
20%, 售量将减少
1
6
,那么 价后的 售金 和 价前的 售金 对比 ,
_________.(填“ 得大了” 、“ 得小了”或“没有 化” ) 10.小明和小 各有玻璃 球若干个。 小明 小 : “我若 你 小 :“我若 你 2 个,我的 球数目将是你的 球数目的三分之一。 ________个。
11.和 15 的两个非零自然数共有
_______ 。
2 个,我 的玻璃 球将一 多。
”小明和小 共有玻璃 球
”
12 .大小两个数的和是,将 小数的小数点向右移 两位恰巧是大数, 大数减小数等于 ____________。
13 .用 10 根火柴棒首尾 次 接成一个三角形,能接成不一样的三角形有
a: b: c=__________。 14 .如 1,三个 形的周 相等,
__________个。
15 . 由 27 个棱 1 的小正方体 成一个棱 3 的大正方体,若自上而下去掉中 的 3 个 小正方体,如 2 所示, 剩下的几何体的表面 是 __________.
16.将 6 个灯泡排成一行 ,用○和●表示灯亮的灯不亮 , 3 是 一行灯的五种状况,分 表示五个数字: 1,2, 3,4,5。那么○●●○●○表示的数 是_____________.
17.在一次数学 中,包含小明在内的 6 名同学的均匀分 70 分,此中小明得了 96 分, 小明之外的另 5 位同学的均匀分 ___________ 分。
21 / 53
希望杯第18届五年级数学试题及WORD版
18.如图 4,飞镖靶分红 5 个部分,从外到内得分挨次是 1, 3, 5, 7, 9。某人掷了 4 支飞镖,全 部击中圆靶,且 4 次得分不全相等。他起码得 ________分,最多得 _______分。 19.小红为班里买了 33 个笔录本。 班长发现购物单上没有注明单价, 总
9□ .□ 3 元,班长问小红用了多少钱,小红只 金额的笔迹模糊,只看到
记得不超出 95 元,她实质用了 ______元。 20.甲乙两地相距 1500 米,有两人分别从甲、乙两地同时相向出发, 10
20%,仍从甲、乙两地同时相向出发, 分钟后相遇。假如两人各自加速
则出发后 _________秒相遇。 21.一位工人要将一批货物运上山, 运到的货物比这批货物的
3
假定运了 5 次,每次的搬运量相同,
多一些,比
少一些。按这样的运法,他运
4
3
5
完这批货物最少共要运 ________次 ,最多共要运 ________次。
22.有一位探险家,计划用 6 天的时间徒步横穿荒漠,假如搬运工人和探险家每人最多只好携带
_________名工人。 个人四天所需的食品和水,那么这个探险家起码要聘用 23.甲乙两地相距 12 千米,上午
1
10: 45 一位乘客乘出租车从甲地出发前去乙在,途中,乘客问司
机距乙地还有多远,司机看了计程表后告诉乘客:已走行程的
1
加上未走行程的 2 倍,恰巧等于已
3
走的行程,又知出租车的速度是 30 千米 / 小时,那么此刻的时间是 ________.
24.一批工人到甲、乙两个工地工作,甲工地的工作量是乙工地工作量的
的人数是乙工地人数的
3 倍,下午这批工人中的
5
12
1 倍,上午在甲工地工作
2
1
在乙工地工作。一天下来,甲工地的工作已完
成,乙工地的工作还需 4 名工人再做一天。这批工人有 _________人。
22 / 53
希望杯第18届五年级数学试题及WORD版
第四届小学 “希望杯 ”全国数学邀请赛
五年级 第 2 试
一、填空题。 (每题 4 分,共 60 分。 )
1.×- 8÷+×+÷= ________。
2.一个数的
1
等于
8
的 6 倍,则这个数是 ________。
5 15
的小数点后第 2006 位上的数字是 ________。
3.循环小数
4.“△”是一种新运算,规定: a△b=a×c+b×d(此中 c,d 为常数 ),如 5△7=5×c + 7× d。假如 1△ 2= 5,1△3=7,那么 6△1000 的计算结果是 ________。
5.设 a=a=
101
,b=
102
101
,c=
100
,d= ,则 a,b,c,d 这四个数中,最大的是 ________,
102 103
101102
最小的是 ________。
6.一筐萝卜连筐共重 20 千克,卖了四分之一的萝卜后,连筐重千克,则这个筐重
________千克。
7.从 2, 3, 5, 7, 11 这五个数中,任取两个不一样的数分别看作一个分数的分子与分母,这样的分数有 ________个,此中的真分数有 ________个。
8.假如 a,b 均为质数,且 3a+ 7b=41,则 a+ b= ________。
9.数一数,图 1 中有 ________个三角形。
10.如图 2,三个图形的周长相等,则 a∶ b∶ c=________。
23 / 53
希望杯第18届五年级数学试题及WORD版
11.如图 3,点 D、 E、 F 在线段 CG上,已知 CD=2 厘米, DE= 8 厘米, EF=20 厘米,FG=4 厘米, AB 将整个图形分红上下两部分,下面部分面积是 67 平方厘米,上面部分面积是 166 平方厘米,则三角形 ADG的面积是 ________平方厘米。
12.甲、乙两人同时从 A 地出 E 前去 B 地,甲每分钟走 80 米,乙每分钟走 60 米。甲抵达 B 地后,歇息了半个小时,而后返回 A 地,甲走开 B 地 15 分钟后与正向 B 地行走的乙相遇。 A、B 两地相距 ________米。
13.磁悬浮列车的能耗很低。它的每个座位的均匀能耗是汽车的 70%,而汽车每个座位的均匀能耗是飞机的 10/21 ,则飞机每个座位的均匀能耗是磁悬浮列车每个座位的均匀能耗的 ________倍。
14.有红球和绿球若干个,假如按每组 1 个红球 2 个绿球分组,绿球恰巧够用,但剩
5 个红球;假如自每组 3 个红球 5 个绿球分组,红球恰巧够用,但剩 5 个绿球,则红球 和绿球共有 ________个。 15. A、 B、 c、 D 四位同学看演出,他们同坐一排且相邻,座号从东到西挨次是 1 号、
D说:B坐 2 号、 3 号、4 号。散场后他们碰到小明,小明问:你们分别坐在几号座位。
在 c 的旁边, A 坐在 B 的西边。这时 B 说: D 全说错了,我坐在 3 号座位。假定 B 的说法正确,那么 4 号座位上坐的是 ________。
二、解答题。 (每题 10 分,共 40 分。 )要求:写出计算过程。
16.假定有一种计算器,它由 A、B、c、D 四种装置构成,将一个数输入一种装置后会自动输出另一个数。各装置的运算程序以下: 装置 A:将输人的数加上 6 以后输出; 装置 B:将输入的数除以 2 以后输出; 装置 c:将输入的数减去 5 以后输出; 装置 D:将输入的数乘以 3 以后输出。
这些装置能够连结,如在装置 A 后连结装置 B,就记作: A→B。比如:输入 1 后,经过 A→ B,输出。
(1)若经过 A→ B→C→D,输出 120,则输入的数是多少 (2)若经过 B→ D→A→C,输出 13,则输入的数是多少
17.如图 4 所示,长方形 ABCD的长为 25,宽为 15。四对平行线截长方形各边所得的线段的长已在图上标出,且横向的两组平行线都与 BC平行。求暗影部分的面积。
24 / 53
希望杯第18届五年级数学试题及WORD版
18.在如图 5 所示的圆圈中各填人一个自然数,使每条线段两头的两个数的差都不可以被 3 整除。请问这样的填法存在吗如存在,请给出一种填法;如不存在,请说明原因。
19.40 名学生参加义务植树活动,任务是:挖树坑,运树苗。这 40 名学生可分为甲、 乙、丙三类,每类学生的劳动效率以下页表中所示。假如他们的任务是:挖树坑 30 个, 运树苗不限,那么应怎样安排人员才能既达成挖树坑的任务,又使树苗运得最多
第五届小学 “希望杯 ”全国数学邀请赛
五年级 第 1 试
2007 年 3 月 18 日
上午 8: 30 至 10:00
的小朋友 , 迎你参加第五届小学“希望杯”全国数学邀 !你将 入一个新 、风趣、有挑 性的数字天地,将会留个一个 忘的 ,好,我 开始前 吧!⋯⋯
以下每 6 分,共 120 分
25 / 53
希望杯第18届五年级数学试题及WORD版
1.2007÷ 2007
2008
2007
=
。
2.对不为 0 的自然数 a,b,c 规定新运算“☆” :☆ (a,b,c)= 3.判断:“小明同学把一张电影票夹在数学书的51 页至 52 或“错误”)
a
a b c
b c 则☆ (1,2,3)=
页之间”这句话是
。
(填“正确”
4.已知 a,b,c 是三个连续自然数,此中 a 是偶数。
依据图 1 中的信息判断,小红和小明两人的说法中正确的选项是
3。
5.某个自然数除以 2 余 1,除以 3 余 2,除以 4 余 1,除以 5 也余 1,则这个数最小是
6.当 p 和 p
+5 都是质数时,
p5
。
7.以下四个图形是由四个简单图形
。 +5=
A、 B、 C、 D(线段和正方形)组合(记为 * )而成。
则图①—④中表示的是 。(填序号)
8.下面四幅图形中不是轴对称图形的是
。(填序号)
(注:假如一个图形沿一条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形。)
9.小华用相同的若干个小正方体摆成一个立体(如图是图①~③中的 。(填序号)
2)。从上体上面看这个立方体,看到的图形
个。 10 .图 3 中内部有暗影 的正方形共有
BCGF是正方形,线
FH 长 18 厘米,线段 11 .图 4 中的暗影部分 段
的周长是 厘米。 12 .图 5 中的熊猫图案的暗影部分的面积是
AC 长 24 厘米,则长方形 ADHE
平方厘米。(注:暗影部分均由半圆和正方形组
26 / 53
希望杯第18届五年级数学试题及WORD版
成,图中一个小正方形的面积是
1 平方厘米,
取)
图 3 图 4 图 5
13.小红看一本故事书,第一天看了这本书的一半又 10 页,次日看了余下的一半又 天看了 10 页正漂亮完。这本故事书共有 页。
10 页,第三
14.在一副扑克牌中(去掉大、小王) ,最少取 张牌就能够保证此中有 3 张牌的点数相同。 15.如图 6,摩托车里程表显示的数字表示摩托车已经行驶了 24944 千米,经过两小时后,里程表 上显示的数字 从左到右 与从右到左 的读数相同,若摩托车的实速不超出 90 千米,则摩托车在这两 个小时内的均匀速度是 千米/时。
表显示:(24944)
图 6
500 只瓷碗到商铺,货主规定:运到一只完满的瓷碗得运费 16 .一名搬运工从批发部搬运
破一只瓷碗陪 9 角,结果他领到的运费元,则在运输中搬运工打破了 只瓷碗。
3 角,打
17.李经理的司机每日清晨 7 点 30 分抵达李经理家接他去企业。有一天李经理 7 点从家里出发去
5 分钟。则李经理搭车的 企业,路上碰到从企业准时来接他的车,再搭车去企业,结果比平时早到
速度是步行速度的 倍。(假定车速、 步行速度保持不变, 汽车掉头与上下车时间忽视不计) 18 .将三盆相同的红花和四盆相同的黄花摆放成一排,要求三盆红花互不相邻,共有 同的放法。
种不
1
希.在算式 “ + 1 望 + 1 杯
= 1”中,不一样的汉字表示不一样的自然则“希+望+杯” = 。 19 数,
4 米 /、6 米/ 分、 5 米/分。假如甲、乙、从 A 20 .A、 B 两地相距 203 米,甲、乙、丙的速度分别是
地,丙从 B 地同时出发相向而行,那么,在 分钟或 分钟后,丙与乙的距离是丙与甲 距离的 2 倍。
第五届小学 “希望杯 ”全国数学邀请赛
五年级 第 2 试
一、填空题 (每题 5 分,共 60 分。 )
1.将一块正方形纸片沿对角线折叠一次,而后在获取的三角形的三个角上各挖去一个圆洞,再睁开正方形纸片,获取图中的 ______。 (填序号 )
27 / 53
希望杯第18届五年级数学试题及WORD版
2.++×++ 10)-+++ 10)×+= ______。
3.对于非零自然数 a,b ,c,规定符号 的含义: (a,b,c)= ,那么 = ______。
4.以下左图所示的 4 根火柴棒形成象形汉字“口”,平移火柴棒后,左图能变为的象形汉字是右 图中的 ______。 (填序号 )
5.小芳在看一本图画书,她说:
由她所说.可知这本书共有 ______页。
6.某商场每个月计划销售 900 台电脑,在 5 月 1 日至 7 日黄金周期同,商场睁开促销活动。但 5 月 的销售计划增添了 30%.已知黄金周中均匀每日销售了 54 台,则该商场在 5 月的后 24 天均匀每日 起码销售 ______台才能达成本月销售计划。
7.如图,正方形硬纸片 ABCD的每边长 20 厘米,点 E、 F 分别是 AB、BC 的中点,现沿图 (a)中的 虚线剪开,拼成图 (b)所示的一座“小别墅”,则图 (b)中暗影部分的面积是 ______平方厘米。
8.在一次动物运动会的 60 米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的均匀用时为
5 分钟。小鸭在这项比赛顶用时
4
分钟,而小熊、小狗、小兔和小鸭四人的均匀用时为 ______分钟。
28 / 53
希望杯第18届五年级数学试题及WORD版
9.在一个长 345 米、宽 240 米的长方形草坪周围等距离地裁一些松树,要求四个极点和每边中点 都正好栽一棵松树,则最少要买松树苗 ______棵。
10.小强练习掷铅球,投了 5 次,去掉一个最好成绩和一个最差成绩,则均匀成绩为 9.73 米,去 掉一个最好成绩,则均匀成绩为 9.51 米,去掉一个最差成绩,则均匀成绩为 9.77 米。小强最好成 绩与最差成绩相差 ______米。
11.在以下图的○内填入不一样的数, 则三个极点上的三个数的和是
______。
使得三条边上的三个数的和都足
12,若 A、B、C 的和为 18,
12.甲、乙两车同时从 A、 B 两地相对开出,两车第一次在距 续行驶,各自达到 B、 A 两地后,马上沿原路返回,第二次在距 间的距离是 ______ 千米。
二、解答题 (本大题共 4 小题,每题
A 地 32 千米处相遇,相遇后两车继
A 地 千米处相遇,则 A、 B 两地
15 分,共 60 分。 ) 要求:写出计算过程。
13.一个容器内注满了水。将大、中、小三个铁球这样操作: 第一次,沉入小球;
第二次,取出小球,沉入中球;
第三次,取出中球,沉入大球。
已知第一次溢出的水量是第二次的 体积比。
3 倍,第三次溢出的水量是第一次的 2 倍。求小、中、大三球的
14.2006 年夏季.我国某地域遭受了严重干旱,为认识决村民饮水问题,在山下的一眼泉水 旁修了一个蓄水池,每小时有 40 立方米泉水注人池中。第一周开动 5 台抽水机小时就把一池水抽 完,接着第二周开动
8 台抽水机小时就把一池水抽完。后出处于旱情严重,开动
13 台抽水机同时
供水,请问几小时能够把这池水抽完
15.甲、乙、丙三人打牌。第一局,甲输给了乙和丙,使得乙、丙手中的点数都翻了一番。第二局,甲和乙赢了,进而甲、乙手中的点数翻了一番。最后一局,甲、丙获胜,两人手中的点数翻了一番。这样,甲、乙、一再人每人都是二赢一输,并且每人手中的点数完整相等,但是甲发现自己输了 100 点。
请问:开始时,甲手上有多少点 (每局三人的点数总和保持不变 )
29 / 53
希望杯第18届五年级数学试题及WORD版
16. 科所向 民介绍丰产 是元/千克。
I 号和丰产Ⅱ号两种新式良种稻谷。在田 管理和土 相同的状况下,
Ⅱ号稻谷 位面 的 量比 I 号稻谷低 20%,但Ⅱ号稻谷的米 好,价钱比 I 号稻谷高。已知 I 号稻谷的收 价
(1)当 Ⅱ号稻谷的收 价是多少 ,在田 管理、土 和面 相同的两 田里分 栽种 Ⅱ号稻谷的利润相同
(2)昨年王伯伯在土 和面 相同的两 田里分 栽种
I 号、Ⅱ号稻谷,且 行了相同的田 管理。
I 号、
收 后,王伯伯把稻谷所有 。 ,Ⅱ号稻谷的收 价 元/千克, I 号稻谷的收
价不 , 王伯伯 Ⅱ号稻谷比 I 号稻谷多收人 1040 元。求王伯伯昨年 的稻谷共有多少千克
第六届小学 “希望杯 ”全国数学邀请赛
五年级 第1试
以下每 6 分,共 120 分。
1、
1 2
14 104 1004 28 208 2008
。
2、若 定 a b a b a ,那么( 1 2) 3=
。
3、在小数上加两个循 点 ,能获取的最小的循 小数是 。 (注: 公元 2007 年 10 月 24 日北京 18 05 分,我国第一 月球探 星
征三号甲”运 火箭在西昌 星 射中心升空, 写此 是 了 念 个 得中国人民 傲的 刻。)
“嫦娥一号” 由“
4、有一列数: 1,3, 9, 25,69, 1,517,⋯此中第一个数是 1,第二个数是 3,从第三个数起,
30 / 53
希望杯第18届五年级数学试题及WORD版
每个数恰巧是前面两个数之和的 是 。
2 倍再加上
1 ,那么这列数中的第
2008 个数除以 6,获取的余数
5、三天捕鱼,两天晒网,依据这样的方式,在 6、某学生算六个数的均匀数,最后一步应除以 1800 ,那么,正确答案是 。
100 天内捕鱼的天数是 6,但是他将“
。
”错写成“ ”,于是得错误答案
7、三位数 abc 比三位数 cba 小 99,若 a, b,c 相互不一样,则 abc 最大是 8、两袋水果共有 20 个,从第 1 袋取出 中原有水果 个。
。
7 个水果放入第 2 袋,两袋中的水果个数相同,则第
1 个袋
9、以下图是 2008 年 3 月的月历,图顶用一个方框框住的四个 的数码之和是 5+6+1+2+1+3=18,则在所有可能被框住的四个 中,数码之和最大是 。
1
日 期
2
3 4
5 6
7
8 日 期
9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
10、如图 3,正方形 ABCD的边长是 12 厘米, E 点在 CD上, AE 于 O,OB 长 9 厘米,则 AE 长 厘米。
BO ⊥
A
O D
B
E
图 3
C
11、图 4 中每 方厘米的格点
个小正方形边长都是 1 厘米,则在图中最多能够画出头积是 三角形(极点在图中交错点上的三角形) 个。
3 平
图 4
12、某次数学比赛有 10 道试题,若小 依据图 5 中两人的对话可知小宇答对
宇得 70 分,
题。
13 、从 1— 9 这 9 个数码中取出 3 是 3 的倍数,则不一样取法有
14 、一个口袋里分别有红、黄、黑球 个。
个,
使它们的和
种。
6 个同色,则起码要取小球
4, 7, 8 个,为使取出的球中有
3, 4, 5,7, 9, 13 块,小华拿走 2 包,小明拿走 3 包。已知小 15 、桌子上放着 6 包糖,分别装糖
2 倍,那么剩下的那包中的糖有 明拿走的糖的块数是小华的 块。
31 / 53
希望杯第18届五年级数学试题及WORD版
16 、前年,父 年 是儿子年 的 4 倍;后年,父 年 是儿子年 的 3 倍,父 今年
个 子,汽 模型每个有
个。
。
17、某玩具店新 机和汽 模型共 30 个,此中 机模型每个有3
110 个 子。 新 的 机模型有 个 子, 些玩具模型共有
4
140 千米,客 和 同 从北京出 向天津。客 每小 行 18 、北京、天津相距
50 千米,客 抵达天津后逗留 15 分 ,又以原速度返回北京。 两 初次相遇的地址 每小 行
距离北京 千米。( 果保存整数) 19 、有七 卡片: 中卡片旋
9
1
1
70 千米,
2
6
399
9从中任取
3 可摆列成三位数。 若其
后可看作 排成的偶数有 个。
12 小 ,乙 独达成需 15 20 、一 工程,甲 独达成需 小 。甲乙合做
1 小 ,⋯⋯,甲、乙这样交替下去, 达成 工程共用 小 ,再由乙 独做
1 小 后,同甲 独做
小 。
1
第六届小学 “希望杯 ”全国数学邀请赛
五年级 第 2 试
一、填空 (每小 1、( 1
5 分,共 60 分)
3 +2 3 +8 )÷(1 2008 1004 251
3
)= 1 +2 1 +8
2008 1004 251
1
2、奥运祥瑞物中的 5 个“福娃”取“北京 迎您”的 音: 、京京、 、迎迎、妮妮。
5 个不一样的“福娃” ,那么,有 假如在盒子中从左向右放 种不一样的放法。
3、有一列数: 1, 1,3,8, 22,60,1,448⋯⋯此中的前三个数是 1,1, 3,从第四个数起,
2 倍。那么, 列数中的第 10 个数是 每个数都是 个数前面两个数之和的
32 / 53
希望杯第18届五年级数学试题及WORD版
4、有一排椅子有 27 个座位,为了使后去的人任意坐在哪个地点都有人与他相邻,则起码要先 坐 人。 5、一个拧紧瓶盖的瓶子里装着一些水(如图 是 立方厘米;( 取)
1),由图中的数据可推知瓶子的容积
6、某小区有一块如图 2 所示的梯形空地,依据图中的数据计算,空地的面积 是 平方米。
7、如图 3,棱长分别为 1 厘米, 2 厘米, 3 厘米, 5 厘米的四个正方体紧贴在一同,则所获取 的多面体的表面积是 平方厘米。
8、五年级一班共有 36 人,每人参加一个兴趣小组,共有 A,B,C,D,E五个小组,若参加 A 组的有 15 人,参加 B 组的仅次于 A 组,参加 C 组、D 组的人数相同。 参加 E 组的人数最少, 只有 4 人, 那么,参加 B 组的有 人。 9、菜地里的西红柿获取丰产,摘了所有的 又装满 6 筐,则共收得西红柿
2
时,装满了 3 筐还多 16 千克。摘完其余部分后,
5
千克。
10、工程队修一条公路,原计划每日修 720 米,实质每日比原计划多修 达成任务。这条路全长 千米。
80 米。因此提早 3 天
11、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提升了
1 1
6
,结果提早一个
9
半小时抵达;返回时,按原计划的速度行驶
280 千米后,将车速提升
千米。
,于是提早 1 小时 40
分抵达北京。北京、上海两市间的行程是
12、两个完整相同长方体的长、宽、高分别是 5厘米、4 厘米、 3 厘米,把它们拼在一同可组 成一个新长方体,在这些长方体中,表面积最小的是 平方厘米。 二、解答题(本大题共
4 小题,每题
15 分,共 60 分)要求:写出计算过程
13、着名的哥德猜想: “任意一个大于 4 的偶数都能够表示为两个质数的和” 12= 5+7,等。那么自然数 100 能够写成多少种两个不一样质数和的形式请分别写出来 和 100= 97+3 算作同一种形式)
。如 6=3+3,
( 100=3+97
33 / 53
希望杯第18届五年级数学试题及WORD版
14、如图 4( a),ABCD是一个长方形, 此中暗影部分是由一副面积为 100 平方厘米的七巧板 (图 4( b))拼成。那么,长方形 ABCD的面积是多少平方厘米
15、号码分别为 2005、 2006 、2007、 2008 的 4 名运动员进行乒乓球赛,规定每 数是他们号码的和被 4 除所得的余数。那么 2008 号运动员比赛了多少场
2 人比赛的场
16、有一个蓄水池装了 9 根相同的水管,此中一根是进水管,其余 8 根是出水管。开始时,进水管以均匀的速度不一样地向蓄水池灌水。此后,想翻开出水管,使池内的水所有排光。假如同
时翻开 8 根出水管,则 3 小时可排尽池内的水;假如仅翻开 5 根出水管,则需 6 小时才能排尽池内的水。若要在小时内排尽池内的水,那么应该同时翻开多少根出水管
第七届小学 “希望杯 ”全国数学邀请赛
五年级
第 1 试
以下每题 1、计算:
6 分,共 120 分
...
= 。(结果写成分数形式 )
2、计算: 100÷× 3÷
5
1 =
6
15
4
。
3、如图,从起点走到终点,要求取出每个站点上的旗帜,并且每个站点只同意经过一次,有 种不一样的走法。
34 / 53
希望杯第18届五年级数学试题及WORD版
4、三个数: 23,51,72,各除以大于 1 的同一个自然数,获取同一个余数,则这个除数是 。
5、有 2 克,5 克,20 克的砝码各 1 个,只用砝码和一架已经调理均衡了的天平,能称出 种不一样的质量。
6、下表是某商品的销售计划,请在空格内填入适合的数字。
××商品销售计划
进价(元 / 件)销售方式
售价(元 / 件)利润率( %)利润(元 / 件)
原价 九折
1800
20
7、中心对称图形是:绕某一点旋转 180°后能和本来的图形重合的图形,轴对称图形是:沿着一条直线对折后两部分完整重合的图形,图 的 4 个图形中,既是中心对称图形又是的轴对称图形的有 个。
35 / 53
希望杯第18届五年级数学试题及WORD版
8,如图,小明做减法时看错了减数,这个减数应该是
。
9、已知
A=1+
1 1 1 1 1 1 1 2
3 4 5 6 7 8
,则 A 的整数部分是 ___________。
10、小羽和小曼分别住在一座山双侧的山脚下,一天,小羽在上午 9:
00 从家里出发到小曼家做客,小羽在小曼家玩了 2 个半小时后回家,到家时是下午 14: 00,若小羽上山每小时走 2 里地,下山每小时走 3 里地,则小羽家和小曼家之间的山路长 里。 11、今年,小军和小勇的年纪的比是 3:5,两年后,两人的年纪的比 是 2:3,那么,小军今年 岁,小勇今年 岁。
12、一只蚂蚁 “侦探兵 ”在洞外发现了食品, 它马上回到蚁穴通知伙伴,假定一只蚂蚁在 1 分钟内能够把信息传达给 4 个伙伴,那么,不超出 分钟,蚁穴里的所有 2000 只蚂蚁都知道了这个信息,(结果取整数)
13、如图 4,李明和王亮以不一样的方式赛跑,最后获胜的是 。
36 / 53
希望杯第18届五年级数学试题及WORD版
14、用若干个棱长为 1 的小正方体铁块焊接成的几何体,从正面,侧面,上面看到的视图均以下图, 那么这个几何体起码由 个小正方体铁块焊接而成。
15、若长方体的三个侧面的面积分别是
6,8,12,则长方体的体积是 。
16、如图,鼹鼠和老鼠分别从长 157 米的小道两头 A,B 开始向另一端挖洞,老鼠对鼹鼠说: “你挖好后,我再挖。 ”这样一来,因为老鼠原 来要挖的一些洞恰巧也是鼹鼠要挖的洞,所以老鼠能够少挖 个洞。
17、如图是 1 班和 2 班的男生和女生的人数统计图,已知两个班的人数都许多于 30,也不多于 40,则 1 班有 名学生, 2 班有 名学生。
37 / 53
希望杯第18届五年级数学试题及WORD版
18、工厂生产一批产品, 原计划 15 天达成, 实质生产时改良了生产工
10 件,结果 艺,每日生产产品的数目比原计划每日生产产品数目的多提早 4 天达成了生产任务,则这批产品有 件。
19、一辆汽车以不变的速度内行驶,司机看了三次里程表,如图
示,由此可知汽车每小时行驶 千米。
8 所
20、如图 9,三角形 BAC的面积是 1,E 是 AC 的中点,点 D 在 BC上,且 BD:DC=1:2,AD 与 BE交于点 F,则四边形 DEFC的面积等于 。
38 / 53
希望杯第18届五年级数学试题及WORD版
第七届小学 “希望杯 ”全国数学邀请赛
五年级 第 2 试
一、填空 (每小
2008
? ?
2007 2009 2008
1.四个数 2007 , 2008 ,2008 , 2009 ,此中最大的数是
5 分,共 60 分)
,最小的数是
。
2.若
分 是
+ 2.814 , 循 小数
和 。
? ?
A 的每个循 有
位数字, 循 的首位数字和末位数字
。
67 倍,交 个三位数的个位数字和百
倍。
3.100 之内的自然数中。所有是 3 的倍数的数的均匀数是 4.一个十位数字是 0 的三位数,等于它的各位数字之和的
位数字,获取的新三位数是它的各位数字之和的
5.如 1, 圈内分 填有 1,2,⋯⋯, 7 是 ,那么,中 7 个数。假如。 6 个三角形的 点 圈内的数字的和
圈内填入的数是
1
所示, 4 霓虹灯安装在大正方形的 4 个小正方形框里, 6.如 2
了 3 秒,左右的等互 案,⋯⋯,重复 的 化 律。 画出
案。
3 秒后,上下的灯互 案,又
1 分 霓虹灯的摆列
3秒后
又 3秒
.......1 分 后
00:00
00:03 2
00:06 01:00
7. 五( 1)班共有学生 40 人,此中,既会 滑又会游泳的学生有
3:2。那么,五(
12 人,只会 滑与只会游泳的人数之比是 泳的有 人。
8 人, 两 运 都不会的学生有
人,会游
1)班会 滑的而又
8. 两个 子中分 装有好多同 的 牛花和月季花,从中 出 6 串 成花 ( 3 是此中的一种状况) ,能够获取不一样的花 (通 旋 和翻 能重合的算同一栽花 )
种。
9. 如 4,李明和王亮从同一跑道的起点同 同向出 , 果李明比
王亮晚到 点秒。 跑道 米。
39 / 53
希望杯第18届五年级数学试题及WORD版
图 4
10. 用若干个棱长为 1 的小正方体铁框架焊接成的几何体,从正面、侧面、上面
5 所示。那么这个几何体起码是 看到的视图均如图 个小正方体铁框架
焊接而成。 11. 用{x}表示数 x 的小数部分, [x]表示 x 的整数部分。如 {}=, []=2 。 若 a+[b]=,
{a}+b=,则 a= , b=。
图5
12.往常,汽车经销商对所销售汽车的报价中已经计入了,即报价等于纯车价与之和。
花费者在购买汽车后还需要缴纳购买税。和购买税都是依据纯车价来计算的。依据以上信息达成下表。
汽车报价(元)
率
纯车价(元)
购买税率
二、
98280
解答题(每题
购买税(元)
17% 5%
15 分,共 60 分)每题都要写出计算过程。
13.如图 6,在一张方格纸上画若干个 1× 2 的暗影方块 ,可留下必定数目的 1×1 的空方
块□。要求: 1×2 的暗影方块的暗影部分不重叠, 1× 1 的空方块不相连。
请依据图( a)、图( b)的示例,在图( c)、图( d)、图( e)的方格纸上画一个或更多个 1× 2
的暗影方块,使各图留下的
1× 1 的空方块的数目最多。
示例: 最多立留下 2个 1×1的空方块
( a)
示例:最多立留下
2个 1 ×1 的空方块
( b )
最多立留下____ 个 1×1的空方 块
( c )
最多立留下____ 个 1×1的 空方 块
( d )
图 6
最多立留下____ 个 1×1的空方 块
( e )
14.甲、乙两车间生产同一种部件,若按 4: 1 向甲乙车间分派生产任务,这两个车间能同时达成任
务。实质生产时,乙车间每日生产 15 个部件,因为甲车间抽调一部分工人去达成此外的任务,实质每日生产 50 个部件。若干天后,乙车间达成了任务,甲车间还剩一部分未达成,这时,甲
40 / 53
希望杯第18届五年级数学试题及WORD版
乙两车间合作, 2 天后所有达成。问:这批部件有多少个
15.如图 7,梯形 ABCD 与正方形 DEFC拼在一同, AF 与 DE 交于点 G。已知 BC=CD=4,三角形 AGD
的面积是三角形 DGF 面积的 2 倍。 ( 1)求梯形 ABCD的面积;
( 2)比较三角形 GEF和三角形 AGD 的面积大小。
A
E
D
G
B
C
F
图 7
16.如图 8,甲、乙两艘快艇不停来回于 A、 B 两港之间。若甲、乙同时从抵达以下地址若能,请计算它们何时抵达该地址;若不可以,请说明原因。(1)A 港; (2)B 港;
( 3)在两港之间且距离 B 港 30 千米的大桥。
41 / 53
A 港出发,它们可否同时
希望杯第18届五年级数学试题及WORD版
第八届小学 “希望杯 ”全国数学邀请赛
五年级 第 1 试
1、计算 ×+ ×=(
)
2、已知 ÷÷= ÷□,此中 □表示的数是(
)。
3、计算:
4、有三个自然数 a,b,c,已知 b 除以 a,得商 3 余 3; c 除以 a,得商 9 余 11。则 c
除以 b,获取的余数是(
)。
5、已知 300= 2× 2× 3×,5×5则300 一共有( )不一样的约数。
6、在 99 个连续的自然数中,最大的数是最小的数的倍,那么这
99 个自然数的均匀数
是( )。
7、要往码头运 28 个相同大小的集装箱,每个集装箱的质量是载重 6 吨的卡车运送这些集装箱, 卡车车厢的大小最多能够容纳车起码需来回( )趟。
1560 千克。现安排一辆
5 个集装箱,则这辆卡
8、小晴要做一道菜: “香葱炒蛋 ”,需 7 道工序,时间以下:
洗葱,切葱 花
打蛋
搅拌蛋液 和葱花 1 分钟
洗锅
烧热锅
烧热油
烧菜 2 分钟
1 分钟 半分钟 半分钟 半分钟 半分钟
小晴做好这道菜起码需要( )分钟。
9、一项特别的工作一定昼夜有人看守,假如安排
8 人轮番值班,当值人员为 3 人,那
么,均匀每人每日工作( )小时。
42 / 53
希望杯第18届五年级数学试题及WORD版
10、甲、乙两商铺中某商品的订价相同。甲商铺按订价 售 种商品, 售 是 7200 元;乙商铺按订价的八折 售,比甲商铺多售出 15 件, 售 与甲商铺相同。 甲商铺售出( )件 种商品。
11、夜里下了一 大雪,清晨,小 和爸爸一同步 花园里一条 形小道的 度,他
从同一点同向行走。 小 每步 54 厘米,爸爸每步 72 厘米,两人各走完一圈后又都回到出 点, 雪地上只留下 60 个脚迹。那么 条小道 ( )米。
12、一艘客 在静水中的航行速度是
26 千米 / ,来回于 A、B 两港之 ,河水的流速
是 6 千米 / 。假如客 在河中来回 4 趟公用 13 小 ,那么 A、B 两港之 相距( )千米。(客 掉 不 )
13、大猴采到一些桃子,分 一群小猴吃。假如此中两只小猴各分得
4 个桃,其余每只
小猴各分得 2 个桃, 最后剩 4 个桃;假如此中一只小猴分得 6 个桃,其余每只小猴各分得 4 个桃,那么 差 12 个桃。大猴共采到( )个桃, 群小猴共有( )只。
14、如 1,将从 2 开始的偶数从小到大摆列成一个 方向的直角螺旋,
4,6,10,
14,20, 26,34,⋯⋯ 挨次出 在螺旋的拐角 。
2010( )(填 “会”或“不会 ”)出 在螺旋的拐角 。
15、甲、乙、丙三个桶内各装了一些油。先将甲桶内
1/3 的油倒入乙桶,再将乙桶内
1/5 的油倒入丙桶, 三个桶内的油一 多。假如最先丙桶内有油 48 千克,那么最先甲桶内有油( )千克,乙桶内有油( )千克。
43 / 53
希望杯第18届五年级数学试题及WORD版
16、甲、乙两车从相距 330 千米的 A、B 两城相向而行,甲车先从 A 城出发,过一段时间后,乙车才从 B 城出发,并且甲车的速度是乙车的速度的 5/6 。当两车相遇时,甲车比乙车多行驶了 30 千米,则甲车开出( )千米,乙车才出发。
17、□,○,△分别表示三个小木块,它们的质量各不相同,可能是
1 克、 2 克、 3 克、
4 克或 5 克。依据图 2 可判断, □的质量是 ( )克,○的质量是( )克,△的质量是( )克。
图 3
18、如图 3,四个完整相同的正方体木块并排放在一同,木块的
6 个面上涂有 6 种不一样
的颜色,则与涂蓝色的面相对的那一面上是(
)色。
19、用九个如图 4 甲所示的小长方体拼成一个如图乙所示的大长方形, 已知小长方形的体积是 750 立方厘米,则大长方体的表面积是( )平方厘米。
20、如图 5,边长为 12 厘米的正方形中有一块暗影部分,暗影部分的面积是(
)平方
厘米。
图4 图5
44 / 53
希望杯第18届五年级数学试题及WORD版
第八届小学 “希望杯 ”全国数学邀请赛
五年级 第 2 试
1.计算: 587 ÷× 19×÷× =( )
2.在下面的两个小数的小数部分的数字的上方分别加上表示循环节的一个或两个点,使不等
式建立。 0. 285 < 2/7<
3.在长 500 米,宽 300 米的长方形广场的外头,每隔
米摆放一盆花,并且广场四个极点处的花盆不动,则需要增添( 有( )盆花不用搬动。
2.5 米摆放一盆花,此刻要改为每隔
)盆花,在从头摆放花盆时,共
2
4.如图,一只蚂蚱站在 1 号地点上,第 1 次跳 1 步,站在 2 号地点上;第 2 次跳 2 步,站在 4
号地点上; 第 3 次跳 3 步,站在 1 号地点上、、、、、第 n 次跳 n 步。当蚂蚱沿顺时针方向跳 100 次时, 抵达( )号地点上。
5.五一班男生的均匀身高是 149 厘米,女生的均匀身高是
147 厘米,则该班男生人数是女生人数的( )倍
144 厘米,全班同学的均匀身高是
6.泊车场上停有轿车和卡车,轿车辆数是卡车辆数的倍,过了一会儿,
来了 6 辆卡车,这时泊车场轿车的辆数是卡车辆数的倍,那么,泊车场本来停有(
3 辆轿车开走了,又开
)辆车。
7.有若干张面值分别为元、元和元的邮票,面值共 60 元,此中面值为元的邮票张数是面值为
元邮票张数的 4 倍,那么,面值为元的邮票有( )张。
8.假如一个自然数的各位数字中有偶数个偶数,则称之为 “希望数 ”,如: 26,201, 533 望是希
) 数, 8, 36,208 不是希望数,那么,把所有的希望数从小到大摆列,第 2010 个希望数是(
9.小明骑车到 A、B、C 三个景点去旅行,假如从
果从 B 地出发经过 C 地到 A 地,共行 13 千米;假如从 距离最短的两个景点间相距(
)千米。
A 地出发经过C地出发经过
千米;如 B 地到 C 地,共行 10
A 地到 B 地,共行 11 千米, 则
10.一个长方体,假如长减少 2 厘米,宽和高不变,体积减少 48 立方厘米;假如宽增添 3 厘
4 厘米,长和宽不变,体积增添 352 立方厘米。 米,长和高不变,体积增添 99 立方厘米;高增添
原长方体的表面积是 ( )平方厘米
11.如图,一个正方体木块放在桌面上,每个面内都画有若干个点,相对的两个面内的点数和
都是 13,京京看到前、左、上三个面内的点数和是 16,庆庆看到上、右、后三个面内的点数和是 24,那么贴着桌面的那个面内的点数是
( )
45 / 53
希望杯第18届五年级数学试题及WORD版
12.以下图算式,除数是( ),商是( )
二、解答题(每题 15 分,共 60 分)每题都要写出计算过程。
13.先看示例,而后回答以下问题 示例:
问:将数 1, 2 各二个分别填入 2×2表格中,使各行、各行及两条对角线上的两个数互不相同, 请问,有没有知足条件的填数方法,请在 “没有 ”和 “有 ”中勾选适合的答案。若选 “有 ”,请给出一种填数方法。
答:( √)没有
; ( )有
如:
请你回答:
( 1)将数 1,2, 3 各二个分别填入
3×3表格中,使各行、各行及两条对角线上的三个数互不相
同,请问,有没有知足条件的填数方法,请在 一种填数方法。
答:( )没有 ;( )有
( 2)将数 1,2, 3, 4 各二个分别填入
请
“没有 ”和 “有 ”中勾选适合的答案。若选
“有 ”,请给出
4×4表格中,使各行、各行及两条对角线上的四个数互
“没有 ”和 “有 ”中勾选适合的答案。若选
“有 ”,
不相同,请问,有没有知足条件的填数方法,请在 给出一种填数方法。
答:( )没有 ;( )有
14.甲乙两地相距 360 千米,一辆卡车载有 6 箱药品,从甲地驶往乙地,同时一辆摩托车从乙
地出发,与卡车相向而行,卡车的速度是 40 千米 / 小时,摩托车的速度是 80 千米 / 小时。摩托车与 卡车相遇后,从卡车上卸掉 2 箱药品运回乙地,又随即掉头、 、、、、摩托车每次与卡车相遇,都从卡 车上卸掉 2 箱药品运回乙地,那么将所有的 6 箱药品运到乙地,起码需要多长时间这时摩托车一共 行驶了多长行程(不考虑装卸药品的时间)
的 15.如图, E 是平行四边形 ABCD的 CD 边上的一点, BD 与 AE 订交于点 F,已知三角形 AFD
面积是 6,三角形 DEF的面积4,求四边形 BCEF的面积 是
46 / 53
希望杯第18届五年级数学试题及WORD版
16.如图,用一个 “ T形”框在 2010 年 8 月的日历上能够框出 5 个数,图中两个
“ T形”框中的 个数的和分别是 31 和 102。假如用 “T形”框在以下图中框出的这 5 个数中 最大数和最小数。
47 / 53
5
5 个数的和是
,分别求出
101希望杯第18届五年级数学试题及WORD版
151 参照答案
73/23 ; ;10 ; 张家界,九寨沟 ;22 ;a,c;10 42 ;
; 略; 两 ; 111105 ; 4698;小亮 ; 8 ; 144 ;多 ; 105; 71/97 ; 426 ;;8; 13
571, 439, 206,837 略 ; 26 ; B、E、C ;房子四排窗户由高到低分别表示的数字是:
152 参照答案
8;2226; 76;30; 210; 4; 11;31; >,<;12; 3 或 7;乙; 16; 575; 32;; %; 35; 出牌的原则是:○ 1 先由乙出牌;○ 2 保证每次无法接牌的都是乙。答案略,解法不唯一
51 参照答案
(1) 2( 2) ( 3)2 (4) 167 ( 5) 2004 ( 6)丙 (7) 2004 ( 8) 13 ( 9) 1/2004 ( 10) 5( 11) 6 (12) 20( 13) 53 ( 14) ( 15) 60(16) 94 (17) 2 (18) 918 ( 19)18 ( 20) 112 ( 21) 300 ( 22) 9 ( 23) 100 (24) 7
252 参照答案
5;819; 6; 5;7;42; 9; 6; 3;6; 3/8;0; B;3; 6; 850; 800; 32; 答案略,解法不唯一
351 参照答案
(1) 18( 2)19/30(3)a ( 4) 3/11 (5)60 ( 6)∠1 ( 7)800 ( 8)48( 9) 17( 10)
( 13) 302010 ( 14) (15) 维 ,杯( 16) 6 ( 17) 91 (12) 1/10=1/11+1/110
4 ( 19) 46+л (20) (21) 3 (22) 6 ( 23) 23 (24) 90
( 11)
( 18)
352 参照答案
48 / 53
希望杯第18届五年级数学试题及WORD版
1) 2005( 2)49/150 ( 3) 40 (4) 7 ( 5) 8/23 (6)3/5
(11) 71 (12) 125 (13) 100 ( 14) 4200 27
3500 ( 19)15
( 7)BC (8)16( 9) 相等( 10)
(15) ( 16) 81 ,93( 17) ( 18)
451 参照答案
3333;2;23/40; 3B+2A;b;3;50;4;没有变化; 16;7;;2;4:3:2;;37;;6,
34;; 500; 7,9; 2; 11:03;36
452 参照答案
出牌 (1)16( 2)16 ( 3) 4( 4) 2006(5)a , c(6)( 7)20 10(8)7(9) 10( 10)
20:25:24(11)128(12) 15600 (13)3( 14)125(15) D( 16)84 ,8 (17)155( 18)不存在( 19)甲 2 乙 15 丙 10,260
551 参照答案
( 1)2008/2009(2)1/21 (3)错误 ( 4)小红 (5)41(6)37 (7)④(8)③④ (9)
③( 10) 26 (11) 84(12)(13) 100 ( 14)27(15) 54(16)11 ( 17)11 ( 18) 10( 19)11 (20)21,29
552 参照答案
( 1)③( 2) (3)7/10 ( 4)③ (5)102(6)33 (7)100( 8) 8( 9) 156( 10)
( 11) 9(12) 80 (13) 3:4:10 (14)( 15) 260(16) ,相同 ,11700
651 参照答案
( 1)2(2)4 ( 3)循环节是 007 (4)1 (5)60(6)50 (7)879(8)17 (9) 34 ( 10)16 (11) 10(12) 8 (13) 30 (14)15 或 6( 15) 5( 16)34 ( 17) 10(18) 124( 19)38 ( 20)
652 参照答案
2011/2009;120; 3344; 9;; 200;194; 7;160;; 1260;148; 6;; 6; 6
751 参照答案
49 / 53
希望杯第18届五年级数学试题及WORD版
( 1) /300 (2)380 (3)4 (4) 7 (5)13( 6) 300,1620,8%, 120(7)3
个(8)
(9) 3 (10)3 (11) 6 , 10(12) 5 (13) 王亮 (14) 4
( 15) 24( 16) 10 (17) 32 , 40 (18) 165 (19) 45 ( 20) 5/12
752 参照答案
(1)2008/2007,2007/2008 (2)6 , 0 , 9 ( 3) (4) 34 ( 5)2(6)略(7)20 ,
16(8)13 ( 9) 208 (10)9 (11)
, (12) 84000 , 4200 ( 13) 0 , 26
(14) 975(15) 32 , 相等 (16) ① 67.5a(a=1,2,3⋯)② 18+67.5a(a=0,1,2,3⋯)
③+67.5a(a=0,1,2,3⋯ )
851 参照答案
68;;; 2; 18;53;10; 5;9;60;; 40;;不会; 95;48; 55;5;3;1;黄; 2250;
852 参照答案
1.原式 =587÷×÷× 19× =10×× 19× =
2. 2/7=....
所以 (285 是循 ) <2/7< 5 (85 是循 ), 或 85 ( 5 是循 ) <27< 5(85 是循 )
3. 周 是 (500+300) × 2=1600米所以要增添 1600÷2-1600÷=160盆
在 2 米和 2.5 米的公倍数米 的不用挪 , [2,]=10 每 10 米有 1 盆花不用挪 , 共
1600÷10=160盆不用挪
4. 蚱一共跳了 1+2+3+、、、、 +100=5050 步,每 6 步一次循 5050÷ 6=841、、、 4,所以此 蚱相当于跳了
4 步,抵达 5 号地点。
50 / 53
,
希望杯第18届五年级数学试题及WORD版
5.设男生 x 人 ,女生 y 人
由题意可列出方程 149x+144y=147 × (x+y)
解得 2x=3y 即 x÷y=3÷2=
6.设本来卡车 x 辆,那么轿车辆
由题可列出方程 =(x+6) ×
解得 x=14
所以 ,本来共有 14×=63辆
7.设元的邮票有 x 张,那么元的邮票就有 4x 张 ,再设元的邮票有 y 张,获取不定方程 +× 4x+=60
也就是 37x+12y=600,因为 600 是 12 的倍数, 12y 必定是 12 的倍数,所以 37x 必定是 12 的倍数,即 x 应为 12 的倍数,也只好是 12,进而 y=13。
8. 0---19 中,有 10 个“希望数 ”
20---39 中,有 10 个“希望数 ”
即挨次每 20 个连续自然数中就有 10 个 “希望数 ”
所以,第 2010 个“希望数 ”是 4019
9. AB+BC=10 BC+AC=13 AC+BC=11
以上三式相加,得 AB+BC+AC=17
我们就能够分别算出 AB、BC、AC 三段的长度,此中 AB 最短,是 4
10. 长方体的体积 =长 ×宽×高
在其余两个量不变的状况下, 长减少 2 厘米,相当于减少 2 个宽 ×高,体积减少 48 立方厘米,即宽 ×高=24,
同理能够推出:长 ×高=99÷ 3=33,
51 / 53
希望杯第18届五年级数学试题及WORD版
长 ×宽 =352÷4=88
长方体的表面积 =(长 ×宽+长×高+宽×高) × 2=290平方厘米
11. 上+左+前=16
上+右+后=24
可知 2 上 +左 +右 +前 +后=16+24=40
因为 左 +右 =前 +后 =13
所以 上=7
那么,下面的点数是 13-7=6
12. 认真察看,商中的 6 乘以除数是一个两位数,而竖式中减去这个两位数,差又是一位数,能够推出除数是 15 或 16,试试下,很简单清除 15
所以除数是 16,商是。
13. (1)没有。注意到将第一行填满后中心数无法填。(2)有。如右图
1 4 2 3 3 2 4 1 4 1 3 2 2 3 1 4
14. 第一次相遇用时 360÷ (40+80) =3 小时,摩托车返回仍需 3 小时;第
二次相遇用时 360-40×6 ÷(40+80) =1 小时,摩托车返回用 1 小时;
第三次相遇用时( 360-40×8)÷(40+80) =1/3 小时,摩托车返回用 1/3 小时。
至此 6 箱药所有运完,共用时 8 又 2/3 小时,摩托车行驶了 8 又 2/3 ×80=693又 1/3 千米。
15. 三角形 AFD的面积是 6,DFE的面积是 4,两三角形的高相同,所以 AF 和 EF的长度比是 3: 2。
三角形 ADE与三角形 DEB是同底等高,面积相等,那么三角形 BEF的面积等于 AFD的面积,等于 6。进而三角形 ABF的面积是 6÷2×3=9。
52 / 53
希望杯第18届五年级数学试题及WORD版
三角形 ABD的面积是 6+9=15,所以三角形 BCD的面积也是 15,四边形 BCEF面积是15-4=11。
16. “字T”框能够有 4 种摆法,分状况议论,只有 1 种知足题意,最小数是 15,最大数是 30
53 / 53
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务