六年级下册数学书第六单元的扩展文笔记
一、整数部分:
十进制计数法:一(个)、十、百、千、万……都叫做计数单位。其中“一”是计数的基本单位。10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数法。
1、整数的读法:
从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。
整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。 2、四舍五入法:
求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。 3、小数部分:
把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。如2/10记作0.2,5/100记作0.05。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.23是两位小数,5.012是三位小数。
小数的读法:整数部分整数读,小数点读点,小数部分顺序读。 小数的写法:数点写在个位右下角。
小数的性质:小数末尾添0去0大小不变。
小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。 小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。
分数和百分数:
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“1”平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。
2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的
“%”来表示号。百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。
3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。 4、成数:几成就是十分之几。 二、分数的种类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
三、分数和除法的关系及分数的基本性质
1、除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。 四、约分和通分
1、分子、分母是互质数的分数,叫做最简分数。 2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。 3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 五、倒 数
1、乘积是1的两个数互为倒数。 2、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 3、1的倒数是1,0没有倒数 分数的大小比较
1、分母相同的分数,分子大的那个分数就大。 2、分子相同的分数,分母小的那个分数就大。
3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
4、如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
百分数与折数、成数的互化:
例如:三折就是30%,七五折就是75%。 纳税和利息
税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率.由银行规定按年或按月计算。 利息的计算公式:利息=本金×利率×时间 六、百分数与分数的区别主要有以下三点: 1、意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。 2、应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用。 3、书写形式不同.百分数通常不写成分数形式,而采用百分号“%”来表示.百分数的分子可以是自然数,也可以是小数.而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
七、数的整除 1、整除的意义
整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)
除尽的意义:甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。 约数和倍数
2、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。
3、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
4、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。
八、奇数和偶数
1、能被2整除的数叫偶数.例如:0、2、4、6、8、10……注:0也是偶数
2、不能被2整除的数叫基数.例如:1、3、5、7、9…… 整除的特征
1、能被2整除的数的特征:个位上是0、2、4、6、8。 2、能被5整除的数的特征:个位上是0或5。
3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。 质数和合数
1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。 2、一个数除了1和它本身外,还有别的约数,这个数叫做合数.。 3、1既不是质数,也不是合数。
4、自然数按约数的个数可分为:质数、合数 5、自然数按能否被2整除分为:奇数、偶数 分解质因数 1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数.例如:18=3×3×2,3和2叫做18的质因数。
2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数.通常用短除法来分解质因数。 3、几个数公有的因数叫做这几个数的公因数.其中最大的一个叫这几个数的最大公因数.公因数只有1的两个数,叫做互质数.几个数公有的倍数叫做这几个数的公倍数.其中最大的一个叫这几个数的最大公倍数。
4、特殊情况下几个数的最大公约数和最小公倍数.(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。 九、奇数和偶数的运算性质
1、相邻两个自然数之和是奇数,之积是偶数。
2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,
奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数 整数、小学、分数四则混合运算 十、四则运算的法则 1、加法
a、整数和小数:相同数位对齐,从低位加起,满十进一 b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加 。
2、减法:
a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减 b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减 。3、乘法:
a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同
b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简 。 4、除法:
a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数 。 运算定律
加法交换律 a+b=b+a
结合律 (a+b)+c=a+(b+c) 减法性质 a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法交换律 a×b=b×a
结合律 (a×b)×c=a×(b×c) 分配律 (a+b)×c=a×c+b×c 除法性质 a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c
商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m) 积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。 一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。
商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。 利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数。
如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。 十一、简易方程
用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。
十二、用字母表示数的注意事项 1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略。
2、当1和任何字母相乘时,“ 1” 省略不写。 3、数字和字母相乘时,将数字写在字母前面。 含有字母的式子及求值
求含有字母的式子的值或利用公式求值,应注意书写格式 等式与方程
表示相等关系的式子叫等式。 含有未知数的等式叫方程。
判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程。 方程的解和解方程
使方程左右两边相等的未知数的值,叫方程的解。 求方程的解的过程叫解方程。
在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。 十三、解方程的方法
1、直接运用四则运算中各部分之间的关系去解。如x-6=12 加数+加数=和一个加数=和-另一个加数
被减数-减数=差减数=被减数-差 被减数=差+减数 被乘数×乘数=积一个因数=积÷另一个因数
被除数÷除数=商除数=被除数÷商被除数=除数×商
2、先把含有未知数x的项看作一个数,然后再解.如2x+25=41 先把2x看作一个数,然后再解。
3、按四则运算顺序先计算,使方程变形,然后再解.如2×4-x=4。 要先求出2×4的积,使方程变形为8-x=4,然后再解。 4、利用运算定律或性质,使方程变形,然后再解. 十四、比和比例应用题
在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。 解题策略
按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答 正、反比例应用题的解题策略
1、审题,找出题中相关联的两个量 2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系. 3、设未知数,列比例式 4、解比例式 5、检验,写答语 十五、量的计算
事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量.用来作为计量标准的量叫做计量单位。 数+单位名称=名数
只带有一个单位名称的叫做单名数。
带有两个或两个以上单位名称的叫做复名数
高级单位的数如把米改成厘米 低级单位的数如把厘米改成米 只带有一个单位名称的数叫做单名数.
带有两个或两个以上单位名称的叫做复名数。 高级单位与低级单位是相对的。 常用计算公式表
(1)长方形面积=长×宽,计算公式s=ab
(2)正方形面积=边长×边长,计算公式s=a×a (3)长方形周长=(长+宽)×2,计算公式s=(a+b)×2 (4)正方形周长=边长×4,计算公式s=4a (5)平形四边形面积=底×高,计算公式s=ah (6)三角形面积=底×高÷2,计算公式s=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式v=abh
(9)圆的面积=圆周率×半径平方,计算公式s=лr2 (10)正方体体积=棱长×棱长×棱长,计算公式v=a3
(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh (12)圆柱的体积=底面积×高,计算公式v=s h
1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天 闰年年份是4的倍数,整百年份须是400的倍数。 平年一年365天,闰年一年366天。
公元1年—100年是第一世纪,公元1901—2000是第二十世纪。 平面图形的认识和计算 十六、三角形
1、三角形是由三条线段围成的图形.它具有稳定性。从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。一个三角形有三条高。
2、三角形的内角和是180度
3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形 4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形
十七、四边形
1、四边形是由四条线段围成的图形。 2、任意四边形的内角和是360度。 3、只有一组对边平行的四边形叫梯形。
4、两组对边分别平行的四边形叫平行四边形,它容易变形.长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。 十八、圆
圆是平面上的一种曲线图形.同圆或等圆的直径都相等,直径等于半径的2倍.圆有无数条对称轴.圆心确定圆的位置,半径确定圆的大小。 扇形 由圆心角的两条半径和它所对的弧围成的图形.扇形是轴对称图形。