StableNeural-Network-BasedAdaptiveControl
forSampled-DataNonlinearSystems
FuchunSun,Member,IEEE,ZengqiSun,SeniorMember,IEEE,andPeng-YungWoo,Member,IEEE
Abstract—Foraclassofmultiinput–multioutput(MIMO)sampled-datanonlinearsystemswithunknowndynamicnonlinearities,astableneural-network(NN)-basedadaptivecontrolapproachwhichisanintegrationofanNNapproachandtheadaptiveimplementationofthevariablestructurecontrolwithasector,isdeveloped.Thesampled-datanonlinearsystemisassumedtobecontrollableanditsstatevectorisavailableformeasurement.Thevariablestrucurecontrolwithasectorservestwopurposes.OneistoforcethesystemstatetobewithinthestateregioninwhichtheNN’sareusedwhenthesystemgoesoutofneuralcontrol;andtheotheristoprovideanadditionalcontroluntilthesystemtrackingerrormetriciscontrolledinsidethesectorwithinthenetworkapproximationregion.TheproofofacompletestabilityandatrackingerrorconvergenceisgivenandthesettingofthesectorandtheNNparametersisdiscussed.Itisdemonstratedthattheasymptoticerrorofthesystemcanbemadedependentonlyoninherentnetworkapproximationerrorsandthefrequencyrangeofunmodeleddynamics.Simulationstudiesofatwo-linkmanipulatorshowtheeffectivenessoftheproposedcontrolapproach.
IndexTerms—Adaptivecontrol,neuralnetworks,sampled-datanonlinearsystems,variablestructurecontrol.
I.INTRODUCTION
HEinherentparallelismcombinedwiththeabilitytolearnmakesneuralnetworks(NN’s)apowerfulreal-timecontroltool.TheearlyapplicationofNN’sintheidentificationandcontrolofanonlinearsystemisusuallyrealizedthroughgradientmethodlearningbasedonstaticordynamicbackprop-agation[1],[2].Adrawbackofgradient-basedmethodsisthedifficultyencounteredinassuringthestability,robustness,andperformancepropertiesoftheoverallsystem,especiallywhenthecontrollerparametersareadaptedon-line[2],[16].Inanattempttoovercomesomeoftheseproblems,stableNN-basedon-lineadaptivecontrolbothincontinuousanddiscrete-timefornonlinearsystemshasbeenrecentlyinvestigatedbymanyresearches[3]–[24].DependingonthetypesofNN’susedinthecontrolscheme,theseresearchescanbefurtherdividedintotwocategories.OneisbasedonthemultilayerNN’s[3]–[15],andtheotherisbasedonthelinearlyparameterizedNN’s[19]–[24]whichincludealargeclassofNN’ssuchasradialbasisfunction(RBF)-likenetwork,thecerebellar
ManuscriptreceivedOctober10,1996;revisedAugust17,1997andJune10,1998.ThisworkwassupportedbytheNationalScienceFoundationofChinaunderGrant69685002.
F.C.SunandZ.Q.SunarewiththeDepartmentofComputerScienceandTechnology,StateKeyLaboratoryofIntelligentTechnologyandSystems,TsinghuaUniversity,Beijing100084,China.
P.Y.WooiswiththeDepartmentofElectricalEngineering,NorthernIllinoisUniversity,Dekalb,IL60115USA.
PublisherItemIdentifierS1045-9227(98)06828-3.
T
modelarticulationcontroller(CMAC),thebasis(B)-splinenetwork,thewaveletnetwork,andacertainclassoffuzzylogicnetworks.Insomecircumstances,multilayerNN’scanalsoberegardedaslinearlyparameterizedNN’siftheNNweightsarenearthedesiredweights[16].Especially,iftheNNweightsandactivationfunctionsareassumedtobefixedexceptforthoseintheoutputlayerbeinglinearfunctions,multilayerNN’sbecamethelinearlyparameterizedNN’s[3].ThebasiclimitationinapplyingmultilayerNN’stononlin-earsystemcontrolisthattheunknownparametersgothroughnonlinearactivationfunctionssuchthattheadjustableweightsappearnonaffinelywithrespecttothenonlinearitiesoftheNNstructure.TherearenotmanyanalyticalresultsconcerningthestabilitypropertiesofsuchnetworksinproblemsdealingwithlearningindynamicenvironmentuntilrecentworkbyLewisetal.[3]–[4],[12],Chenetal.[5]–[8],Rovithakis[13]andSadegh[14]–[15],especiallytheworkbyJagannathanonmultilayerdiscrete-timeNNcontrollerwithguaranteedperformance[9]–[11].
ThestableNN-basedadaptivecontrolusinglinearlypa-rameterizedNN’swasoriginallyformulatedbyPolycarpouetal.[16]andSanneretal.[19]forcontinuoustimenonlinearsystems.Theirworkinstigatesfurtherresearchesinthisarea[17]–[18],[20]–[23].ByusinglinearlyparameterizedNN’s,linearityoftheparametersholds.ThereforetherigorousresultsofadaptivecontrolbecomeapplicabletotheNNweighttuning,andstableclosed-loopsystemareeventuallyachieved.Usually,Lyapunovstabilitytheory[16]–[23]orpassivetheory[3]isemployedtodesignaclosed-loopcontrolsystemoftheglobalstability.Atypicaleffortinthisrespectistocombinedirect,indirectadaptivemethodswithvariablestructuretoobtainimprovedperformance[19]–[23].However,mostoftheaccomplishmentsinthisareaareforcontinuous-timesystems,andthevariablestructurecontrolemployedintheirNN-basedadaptivecontrolschemesisstatic,i.e.,thevariablestructurecontrolisonlyaswitching-typeoneorasaturation-typeonerelatedtothesystemtrackingerrormetricorasisoftentermed,aswitchingfunctioninvariablestructurecontrol(VSC)theory.ThispaperisconcernedwiththestableNN-basedadaptivecontrolusingtheRBFnetworksforaclassofunknownsampled-datanonlinearsystems.Ofcourse,theresultsob-tainedinthispaperaredirectlyapplicabletoothertypesofthelinearlyparameterizedNN’s.ThecontrolschemeconsideredhereistheintegrationofanNNapproachandtheadaptiveimplementationofthevariablestructurecontrolwithasector[24].Thesector,definedbythestatetrackingerrorsofthesystemandNNbasisfunctions,isareachableregion
1045–9227/98$10.00©1998IEEE
SUNetal.:STABLENEURAL-NETWORK-BASEDADAPTIVECONTROLofattractionaroundtheswitchinghyperplane.ThevariablestructurecontrolwithasectorisconstructedasthemodulationofNNbasisfunctionsandstatetrackingerrorsofthesystemsuchthatitsmagnitudewilldecreasedynamicallyalongwiththeapproachofthesystemtrackingerrormetrictothesectoruntilzerowhenthetrackingerrormetricofthesystemisdriveninsidethesector.Thatis,thevariablestructurecontrolwithasectorisessentiallyadynamicone,whichdistinguishesthepaperfromotherworkbasedonthestaticvariablestructurecontrolwithonlyaswitching-typeoneorasaturation-typeone.Assuch,thevariablestructurecontrolwithasectorservestwopurposes:oneistoprovidetheglobalstabilityoftheclosed-loopsystemwhenthesystemgoesoutoftheneuralcontrol,andtheotheristoimprovethetrackingperformanceofthesystemwithintheNNapproximationregion.Whilethesystemtrackingerrormetriciscontrolledinsidethesector,theNN-basedadaptivecontrolisassuredtobestable.Ontheotherhand,forfeedbacklinearization,howtouseNN’stoapproximatethegeneralcontrollerstructure
isalsoaproblemconsideredbyChen
[5]–[8]andJagannathan[9]–[11],etc.Tosolvetheproblem,differenttechniquesexistintheliteraturethatassurelocalandglobalstabilitywithanadditionalknowledge.UnlikeChenandJagannathan,theapproachusedhereistoestimateinsteadof,whichavoidsmanycomplications.ThispaperoffersrigorousproofsofperformanceintermsoftrackingerrorstabilityandboundedNNweights.ThesettingofthesectorandNNparametersisdiscussed.Simulationstudiesofatwo-linkmanipulatorareusedtoillustratethefeaturesoftheproposedcontrolapproach.
Therestofthispaperisorganizedasfollows.InSectionII,ageneralformulationoftheproblemofdesigninganadaptivecontrollerusingNN’sforunknownmultiinput/multiputput(MIMO)sampled-datanonlinearsystemsisgiven.Asta-bleNN-basedadaptivecontrolstrategyforunknownMIMOsampled-datanonlinearsystemsisformulatedinSectionIII,whereacompletecontrolstructureandthelearningalgorithmforthefreeNNparametersarepresented,andthecompleteproofofstabilityandtrackingerrorconvergenceisofferedinAppendixA.InSectionIV,thesettingofthesectorandNNparametersisgiven.SectionVisdevotedtoanapplicationexample.Finally,SectionVIconcludesthepaper.
II.SYSTEMDESCRIPTION
ConsiderthefollowingMIMOcontinuous-timenonlinearsystem:
(1)
where
independent
coordinates.isthecontrolgainmatrix.
Bothof
andarenonlinearfunctionsofthesystem
statevector.
957
(2)
where
and
(3)
with
where
denotestheLiederivativeof
alongthevectorfield
and[26].
Indiscrete-timesystems,thetrackingerrormetricisdefined
as
958IEEETRANSACTIONSONNEURALNETWORKS,VOL.9,NO.5,SEPTEMBER1998
wherethsubsystemcorrespondingtotheindependent
coordinate
thsubsystem.Bycomparing(7)with(5)and(6),amatchingrelationisobtainedas
(8)
From(3)and(5),itfollowsthat
matrixand
matrixwithzerodiagonalelements.Substituting(10)into(9)gives
(12a)
and
(12b)
Undertheassumptionthatthesystemnonlinearfunctions
(14)
where
thsubsystemis
(15)
where
,wherecouldbeassmallaspossibleby
carefullychoosingNNparameters.
SUNetal.:STABLENEURAL-NETWORK-BASEDADAPTIVECONTROL959
Fig.1.Neural-adaptivecontrolstructure.
whichactasafeedforwardcontroller,areusedtoapproximatetheunknownnonlinearfunctions
withastheknown
upper-boundonthemodelreconstructionerror,whichisusedtoenhancesystemrobustnessagainsttheNNapproximationerror.Themagnitudeoftheslidingcontroleffortistheboundlimitvalueoftheapproximationerror,whichcanbedesignedassmallaspossiblebycarefullychoosingtheNNstructure.
inthefigureandInaddition,thevariable
(21)
where
.Thisoperationisusedinthe“time
delaycontrol”conceptofYoucef-Toumi[29]forsuchdynamicsystemas(1)andin[25]fortheperturbationestimation.Itisshownthatifallthecomponentsinthedynamicsshowslowervariationswithrespecttothesamplinginverval,thisoperationisvalid.Inaddition,anapproximationerrorcausedbythisoperationwillbeincludedinthemodelreconstructionerrorandwillalsobecompensatedbythevariablestructurecontrolwithasector.
Substituting(17)into(11)yields
(22)
Define
(23)
Equation(23)canbewritteninadecoupledformas
(24)
960IEEETRANSACTIONSONNEURALNETWORKS,VOL.9,NO.5,SEPTEMBER1998
where
andthen
(25b)
(26)
wherethefirstthreetermsarethevariablestracturecontrol
components,thelasttermistheslidingcontrol.
isthesignfunction,and
andareswitchingtypecoefficientswhichwill
bedeterminedby(30).
Substituting(26)into(24)yields
(28)
thenthetrackingerrormetricofthesystemwillenterthesectordefinedasbelow
(30)
where
(31)
holds.Where
withasmallvalueof
(32)
thentheNN-basedadaptivecontrolinsidethesectorisstable.
SUNetal.:STABLENEURAL-NETWORK-BASEDADAPTIVECONTROLProof:SeeAppendixA.Remark3:
1)NotefromTheorem1thatthesystemtrackingperfor-manceiscloselyrelatedtothesizeofthesecor.ForanNNwithmorehiddenunits,theboundingconstant
andtheparamters
in(12a),(31)becomes
(34)
whichmeansthatiftheincrement
(35)
with
5)IntheproofofTheorem1(seeAppendixA),
isrequiredtobeaverysmallquantity,
whichimpliestherequirementoftheboundontheNNapproximationerrorcanbealleviatedif
961
thentheconclusionof
Theorem1stillholds.
Proof:If
duringtheNNadaptivelearning.If
theparameters
(37)
where
representtheminimalandmaximalboundsonuncertaintyofparameters,respectively.Whenthesystemtrackingerror
metricisdrivedtoapproachthesector,
isusuallyinasmallmagnitudesuchthatitcanbeassumedthat
withasmallvalueof.Referingto[24],
asimilarsufficientconditionfortheexistenceofthesector,whenthetrackingerrormetricofthesystemapproachesthesector,isgivenfrom(36),(27),and(30)as
[28],and
parameter
962IEEETRANSACTIONSONNEURALNETWORKS,VOL.9,NO.5,SEPTEMBER1998
Thederivationofformula(38)isinAppendixB.Besides,
andareusuallychosenas
andmustsatisfy
-dimensionallatticewiththecenterofabasisfunctionoccuringateverypointonthelattice.Underthisassumption,thenumberofbasisfunctionsdependsexponentiallyoninputdimensions.Thereforeitisnotsuitableforhighdimension.Inpracticalapplicationsthreemethodsareusuallyusedtoselectthestructureparametersofbasisfunctions.Thefirstapproachusesunsupervisedcompetitiveclusteringalgorithmforpositioningthecenters[30],[31].Thesecondapproachsimplytakesthecentresofthebasisfunctionsasnonlinearparametersandtrainsthemusingthenonlineargradientdescentmethod[32],[33].Inthethirdmethod,theinputdataaresetasthecentersofthebasisfunctions.Asmallsubsetofallthepossiblebasisfunctionsisselectedthroughaniterativeorthogonalleast-squaresalgorithm[34].Inthispaper,theunsupervisedcompetitiveclusteringalgorithmand
andothercentersbelongingto
itstopologicalneighborhood
denotestheintegerpartoftheargument,and
3)Updatewidithsby
closestcentersofthecenter
(kg
SUNetal.:STABLENEURAL-NETWORK-BASEDADAPTIVECONTROL963
(a)(b)
Fig.2.Jointangletrackingerrorsintheneural-network-basedadaptivecontrol.(a)Withoutasector.(b)Withasector.
(a)
Fig.3.Controlmoments.(a)Withoutasector.(b)Withasector.
(b)
m.With16levelsforeachinput
variable,thereare256divisionstopositointhecentersofbasisfunctionsaccordingtotheorthogonaldesign.Thus256basisfunctionsarerequiredtoapproximatethenonlinearfunction
Theinitiallearningratesforfurtherupdatingthecentersofthebasisfunctionsarechosenas
-nearestneighborheuristics
Fig.2presentstheangletrackingerrorsduringthefirst40secondsofoperation.Fig.2(a)isobtainedbytheNN-basedadaptivecontrolwithoutasector,whileFig.2(b)withasector.Itcanbeseenthattheintroductionofthevariablestructurecontrolwithasectorimprovestheconvergenceofthetrackingerror.Fig.3(a)and3(b)showsthecorrespondingcontroltorquesforthejointsintheNN-basedadaptivecontrolwithoutasector,andwithasector,respectively.Fig.4depictsthevariablestructurecontrolterm,thatisdefinedin(26),duringthefirst40sofoperation.ItisseenthatastheNN’slearn,themagnitudeofthevariablestructurecontrolterm
9IEEETRANSACTIONSONNEURALNETWORKS,VOL.9,NO.5,SEPTEMBER1998
Fig.4.Thevariablestructurecontroltermduringthefirst40s.
Fig.5.Thevariablestructurecontroltermduringthelast10s.
decreasesgraduallywhilethesystemtrackingerrormetricapproachestothesector,whichmeansthatthefeedforwardcompensationcontrolterm
(A.2)
SUNetal.:STABLENEURAL-NETWORK-BASEDADAPTIVECONTROL965
(a)(b)
Fig.6.Jointangletrackingerrorsintheneural-network-basedadaptivecontrol.(a)Withoutasector.(b)Withasector.
First,theoutsideofthesectorisconsidered,because
(A.3)
and(27)gives
966IEEETRANSACTIONSONNEURALNETWORKS,VOL.9,NO.5,SEPTEMBER1998
Ifitisassumedthat
(A.11)
andfrom(27),wehave
(A.13)
Duetothefactthattheonlynonzeroeigenvalueoftherecursivefunctionis
hasasmallvalueenoughtoassure
thenegativedefintenessof
SUNetal.:STABLENEURAL-NETWORK-BASEDADAPTIVECONTROLItisnotedfrom(18)and(25b)that
respectively.Itfollowsfrom(30)that
967
(A.22)
Bysubstituting(A.22)into(A.21),weobtain
968IEEETRANSACTIONSONNEURALNETWORKS,VOL.9,NO.5,SEPTEMBER1998
[8]F.C.ChenandH.K.Khalil,“Adaptivecontrolofaclassofnonlinear
discrete-timesystemsusingneuralnetworks,”IEEETrans.Automat.Contr.,vol.40,pp.791–801,1995.
[9]S.JagannathanandF.L.Lewis,“Multilayerdiscrete-timeneural-net
controllerwithguaranteedperformance,”IEEETrans.NeuralNetworks,vol.7,pp.107–130,1996.
[10]S.Jagannathan,F.L.Lewis,andO.Pastravanu,“Discrete-timemodel
referenceadaptivecontrolofnonlineardynamicalsystemsusingneuralnetworks,”Int.J.Contr.,vol.,no.2,pp.217–239,1996.
[11]S.JagannathanandF.L.Lewis,“Neuralnetworkcontrollerdesignand
theeffortofneuralnetworksizeonspeedoflearning,”Int.J.Intell.Contr.Syst.,vol.1,no.1,pp.119–132,1996.
[12]A.YesildirekandF.L.Lewis,“Feedbacklinearizationusingneural
networks,”Automatica,vol.31,no.11,pp.1659–16,1995.
[13]G.A.RovithakisandM.A.Christodoulou,“Adaptivecontrolof
unknownplantsusingdynamicalneuralnetworks,”IEEETrans.Syst,Man,Cybern.,vol.24,pp.400–412,1994.
[14]N.Sadegh,“Nonlinearidentificationandcontrolvianeuralnetworks,”in
Contr.Syst.withInexactDynamicsModels,ASMEWinterAnnu.Meet.,DSC-vol.33,1991,pp.46-56.
[15]
,“Aperceptronnetworkforfunctionalidentificationandcon-trolofnonlinearsystems,”IEEETrans.NeuralNetworks,vol.4,pp.982–988,1993.
[16]M.M.PolycarpouandP.S.Ioannou,“Identificationandcontrolof
nonlinearusingneuralnetworkmodels:Designandstabilityanalysis,”UniversityofSouthernCalifornia,LosAngeles,EE-Rep.91-09-01,1991.
[17]
,“Neuralnetworksason-lineapproximatorsofnonlinearsys-tems,”inProc.IEEEConf.DecisionContr.,Tucson,Dec.1992,pp.7–12.
[18]M.M.Polycarpou,“Stableadaptiveneuralcontrolschemefornonlinear
systems,”IEEETrans.Automat.Contr.,vo1.41,pp.447–451,1996.[19]R.M.SannerandJ.J.E.Slotine,“Stableadaptivecontrolandrecursive
identificationusingradialgaussiannetworks,”inProc.IEEEConf.DecisionContr.,Brighton,U.K.,1991.
[20]
,“Gaussiannetworksfordirectadaptivecontrol,”IEEETrans.NeuralNetworks,vol.3,no.5,pp.837–863,1992.[21],“Stableadaptivecontrolofrobotmanipulatorsusing‘neural’
networks,”NeuralComput.,vol.7,no.3,pp.753–790,1995.
[22]
,“Structurallydynamicwaveletnetworksfortheadaptivecontrolofuncertainroboticsystems,”inProc.34thIEEEConf.DecisionContr.,NewOrleans,LA,Dec.1995,pp.2460–2467.
[23]E.Tzirkel-HancockandF.Fallside,“Stablecontrolofnonlinearsystems
usingneuralnetworks,”Int.J.RobustandNonlinearContr.,vol.2,pp.63–86,1992.
[24]K.Furuta,“VSStypeself-tuningcontrol,”IEEETrans.Ind.Electron.,
vol.40,pp.37–44,1993.
[25]H.ElmaliandN.Olgac,“Slidingmodecontrolwithperturbation
estimation(SMCPE):Anewapproach,”Int.J.Contr.,vol.56,no.4,pp.923–941,1992.
[26]S.MonacoandD.Normand-Cyrot,“Onthesamplingofalinearanalytic
controlsystem,”Proc.24thIEEEConf.DecisionContr.,FtLauderdale,Florida,1985,pp.1457–1462.
[27]F.C.SunandZ.Q.Sun,“Thediscrete-timecontrollerdesignbasedon
slidingmodeformanipulators,”inProc.Int.Conf.Contr.,Edinburgh,U.K.,1991,pp.1123–1128.
[28]J.J.E.Slotine,“Slidingmodecontrollerdesignfornonlinearsystems,”
Int.J.Contr.,vol.40,no.2,pp.421–434,1984.
[29]K.Youcef-ToumiandO.Ito,“Atimedelaycontrollerforsystemswith
unknowndynamics,”J.DynamicSyst.,Measurement,Contr.,vol.112,no.2,pp.133–142,1990.
[30]S.Chen,S.A.Billings,andP.M.Grant,“Recursivehybridalgorithm
fornonlinearsystemidentificationusingradialbasisfunctionnetworks,”Int.J.Contr.,vol.55,no.5,pp.1050–1070,1992.
[31]T.Kohonen,Self-OrganizingMaps.Berlin,Germany:Springer-Verlag,
1995.
[32]E.HartmanandD.Keeler,“Predictingthefuture:Advantagesof
semilocalunits,”NeuralComput.,vol.3,no.4,pp.566–578,1991.
[33]E.BassandK.Y.Lee,“Robustcontrolofnonlinearsystemsusingnorm-boundedneuralnetworks,”IEEEWorldCongr.Comput.Intell.(NeuralNetworksPart),1994,pp.2524–2529.
[34]S.Chenetal.,“PracticalidentificationofNARMAXmodelsusingradial
basisfunctions,”Int.J.Contr.,vol.52,no.6,pp.1327–1350,1990.[35]T.OjalaandP.Vuorimaa,“ModifiedKohonenslearninglawsforRBF
network,”Proc.Int.Conf.NeuralNetsandGA,1995,pp.356–359.[36]T.P.Leung,Q.J.Zhou,andC.Y.Su,“Anadaptivevariablestructure
modelfollowingcontroldesignforrobotmanipulators,”IEEETrans.Automat.Contr.,vol.36,pp.347–352,1991.
FuchunSun(S’94–M’98)wasborninJiansuProvince,China,in19.HereceivedtheB.S.andM.S.degreesfromNavalAeronauticalEngineeringAcademy,Yantai,P.R.China,in1986and19,respectively,andthePh.D.degreefromtheDepartmentofComputerScienceandTechnology,TsinghuaUniversity,Beijing,China,in1998.
HeiscurrentlyengagedinpostdoctoralresearchintheDepartmentofAutomation,TsinghuaUniversity,Beijing.Hisresearchinterestsincludeintelligentcontrol,neuralnetworks,fuzzysystems,
variablestructurecontrol,nonlinearsystems,androbotics.
ZengqiSun(SM’93)receivedtheB.S.degreefromtheDepartmentofAutomaticControl,TsinghuUni-versity,China,in1966andthePh.D.degreeincontrolengineeringfromtheChalmasUniversityofTechnology,Sweden,in1981.
HeiscurrentlyProfessorandtheViceChairoftheDepartmentofComputerScienceandTechnol-ogy,TsinghuaUniversity,China.Heistheauthororcoauthorofmorethan100papersandeightbooksoncontrolandrobotics.Hiscurrentresearchinterestsincludeintelligentcontrol,robotics,fuzzy
systems,neuralnetworks,andevolutioncomputing.
Dr.SunisalsoacouncilmemberoftheChineseAssociationofAutomation,anexecutivememberofIEEEBeijingSection,andthevicechairoftheBeijingChapter,IEEEControlSystemSociety.
Peng-YungWoo(M’)wasborninShing-hai,China.HereceivedtheB.S.degreeinphysics/electricalengineeringfromFudanUni-versity,Shanghai,China,in1982andtheM.S.degreeinelectricalengineeringfromDrexelUniversity,Philadelphia,PA,in1993.In1988,hereceivedthePh.D.degreeinsystemengineeringfromtheUniversityofPennsylvania,Philadelphia,forresearchoncoordinationamongroboticmanipulators.
HeiscurrentlyatenuredAssociateProfessorin
theDepartmentofElectricalEngineeringofNorthernIllinoisUniversity.Hisresearchinterestsincluderobotics,intelligentcontrol,digitalsignalprocessing,fuzzysystems,neuralsystems,andotherrelatedfields.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务