您好,欢迎来到九壹网。
搜索
您的当前位置:首页发酵工程复习题

发酵工程复习题

来源:九壹网


本征动力学:即没有在生物反应器中各种形式的传递过程等工程因素影响时的微

生物反应的固有反应速率。

宏观动力学:但是实际发酵过程是在生物反应器中进行,因此,从实用意义出发,

人们重视一定反应器内检测到的反应速率即总反应速率及其影响因素,这就是宏观动力学研究。

工业化菌种的要求:能够利用廉价的原料,简单的培养基,大量高效地合成产物;有关合成产物的途径尽可能地简单,或者说菌种改造可操作性要强;遗传性能要相对稳定;不易感染它种微生物或噬菌体;产生菌及其产物的毒性必须考虑(在分类学上最好与致病菌无关);生产特性要符合工艺要求。

菌株选育、分子改造目的:防止菌种退化;解决生产实际问题;提高生产能力;提高产品质量;开发新产品。方法:基因突变;基因重组;基因的直接进化。

回复突变:高产菌株在传代的过程中,由于自然突变导致高产性状的丢失,生产性能下降,这种情况我们称为回复突变

诱变育种:用各种物理、化学的因素人工诱发基因突变进行的筛选,称为诱变育种。诱变剂:能够提高生物体突变频率的物质称为诱变剂。

结构类似物:在化学和空间结构上和代谢的中间物(终产物)相似,因而在代谢调节方面可以代替代谢中间物(终产物)的功能,但细胞不能以其作为自身的营养物质。

发酵培养基的要求:培养基能够满足产物最经济的合成。 发酵后所形成的副产物尽可能的少。培养基的原料应因地制宜,价格低廉;且性能稳定,资源丰富,便于采购运输,适合大规模储藏,能保证生产上的供应。 所选用的培养基应能满足总体工艺的要求,如不应该影响通气、提取、纯化及废物处理等。

发酵培养基按其用途可分为孢子(斜面)培养基、种子培养基和发酵培养基三种

工业上常用的糖类组要有葡萄糖;糖蜜;淀粉、糊精。

无机氮源被菌体作为氮源利用后,培养液中就留下了酸性或碱性物质,这种经微生物生理作用(代谢)后能形成酸性物质的无机氮源叫生理酸性物质,如硫酸胺,若菌体代谢后能产生碱性物质的则此种无机氮源称为生理碱性物质,如钠。

青霉素发酵中,铁离子的浓度要小于20μg/ml

生长因子:从广义上讲,凡是微生物生长不可缺少的微量的有机物质,如氨基酸、嘌呤、嘧啶、维生素等均称生长因子。

前体指某些化合物加入到发酵培养基中,能直接彼微生物在生物合成过程中合成到产物物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入

前体而有较大的提高。

前体使用时普遍采用流加的方法。流加有利于提高前提的转化率。前体相对价格较高,添加过多,容易引起挥发和氧化。

产物促进剂:所谓产物促进剂是指那些非细胞生长所必须的营养物,又非前体,但加入后却能提高产量的添加剂。

对于发酵工厂来说,水源质量的主要考虑参数包括pH值、溶解氧、可溶性固体、污染程度以及矿物质组成和含量。

理论转化率是指理想状态下根据微生物的代谢途径进行物料衡算,所得出的转化率的大小。实际转化率是指实际发酵过程中转化率的大小

培养基设计的步骤:根据前人的经验和培养基成分确定时一些必须考虑的问题,初步确定可能的培养基成分;通过单因子实验最终确定出最为适宜的培养基成分;当培养基成分确定后,剩下的问题就是各成分最适的浓度,由于培养基成分很多,为减少实验次数常采用一些合理的实验设计方法。

种子扩培的目的:接种量的需要;菌种的驯化;缩短发酵时间、保证生产水平。

谷氨酸生产的种子过程:制备斜面菌种;一级种子培养;二级种子培养

接种量=移入种子的体积/接种后培养液的体积

维持消耗 :指维持细胞最低活性所需消耗的能量,一般来讲,单位重量的细胞在单位时间内用于维持消耗所需的基质的量是一个常数。

氧饱和度=发酵液中氧的浓度/临界溶氧溶度 , 所以对于微生物生长,只要控制发酵过程中氧饱和度>1.

通过在发酵液中引入一种新的液相,以减少气液传氧阻力,从而提高传氧效率。这种液相一般具有比水更高的溶氧能力,且与发酵液互不相溶,称为氧载体oxygen-vector)。

发酵过程的种类:分批培养;补料分批培养;半连续培养;连续培养

发酵过程工艺控制目标是得到最大的比生产速率和最大的生产率。

发酵过程的种类,优缺点? 1、 分批发酵

简单的过程,培养基中接入菌种以后,没有物料的加入和取出,除了空气的通入和排气。整个过程中菌的浓度、营养成分的浓度和产物浓度等参数都随时间变化。优点 操作简单,周期短,染菌机会少,生产过程和产品质量容易掌握

缺点 产率低,不适于测定动力学数据 2、补料分批培养

在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。

在此过程中只有料液的加入没有料液的取出,所以发酵结束时发酵液体积比发酵开始时有所增加。在工厂的实际生产中采用这种方法很多。 优点 在这样一种系统中可以维持低的基质浓度,避免快速利用碳源的阻遏效应;可以通过补料控制达到最佳的生长和产物合成条件;还可以利用计算机控制合理的补料速率,稳定最佳生产工艺。

缺点 由于没有物料取出,产物的积累最终导致比生产速率的下降。由于有物料的加入增加了染菌机会 3、半连续培养

在补料分批培养的基础上间歇放掉部分发酵液(带放)称为半连续培养。某些品种采取这种方式,如四环素发酵

优点 放掉部分发酵液,再补入部分料液,使代谢有害物得以稀释有利于产物合成,提高了总产量。

缺点 代谢产生的前体物被稀释,提取的总体积增大 4、连续培养

发酵过程中一边补入新鲜料液一边放出等量的发酵液,使发酵罐内的体积维持恒定。

达到稳态后,整个过程中菌的浓度,产物浓度,性基质浓度都是恒定的。 优点 控制稀释速率可以使发酵过程最优化。发酵周期长,得到高的产量。由于μ=D,通过改变稀释速率可以比较容易的研究菌生长的动力学

缺点 菌种不稳定的话,长期连续培养会引起菌种退化,降低产量。长时间补料染菌机会大大增加。

菌种本身的代谢特点 生长速率、呼吸强度、营养要求(酶系统)、代谢速率 菌代谢与环境的相关性 温度、pH、渗透压、离子强度、溶氧浓度、剪切力等

发酵过程的控制具有不确定性和复杂性。

发酵过程工艺控制的研究的层次: 初级层次的研究:

一般在摇瓶规模进行试验。主要考察目的菌株生长和代谢的一般条件,如培养基的组成、最适温度、最适pH等要求。 摇瓶研究的优点是工作量大,可以一次试验几十种甚至几百种条件,对于菌种培养条件的优化有较高的效率。 代谢及工程参数层次研究:

一般在小型反应器规模进行试验。在摇瓶试验的基础上,考察溶氧、搅拌等摇瓶上无法考察的参数,以及在反应器中微生物对各种营养成分的利用速率、生长速率、产物合成速率及其它一些发酵过程参数的变化,找出过程控制的最佳条件和方式。由于罐发酵中全程参数的是连续的,所以得到的代谢情况比较可信。

微生物培养过程的参数检测:NH4+的测量;CO2的测量;排气氧、排气CO2和

呼吸熵;酶电极

发酵过程pH变化的原因 : 1、基质代谢 : (1)糖代谢 特别是快速利用的糖,分解成小分子酸、醇,使pH下降。糖缺乏,pH上升,是补料的标志之一(2)氮代谢 当氨基酸中的-NH2被利用后pH会下降;尿素被分解成NH3,pH上升,NH3利用后pH下降,当碳源不足时氮源当碳源利用pH上升.(3)生理酸碱性物质利用后pH会上升或下降

2、产物形成 : 某些产物本身呈酸性或碱性,使发酵液pH变化。如有机酸类产生使pH下降,红霉素、洁霉素、螺旋霉素等抗生素呈碱性,使pH上升。3、菌体自溶,pH上升,发酵后期,pH上升。

2、pH对发酵的影响; (1)pH影响酶的活性。当pH值抑制菌体某些酶的活性时使菌的新陈代谢受阻(2)pH值影响微生物细胞膜所带电荷的改变,从而改变细胞膜的透性,影响微生物对营养物质的吸收及代谢物的排泄,因此影响新陈代谢的进行(3)pH值影响培养基某些成分和中间代谢物的解离,从而影响微生物对这些物质的利用(4)pH影响代谢方向, pH不同,往往引起菌体代谢过程不同,使代谢产物的质量和比例发生改变。例如黑曲霉在pH2~3时发酵产生柠檬酸,在pH近中性时,则产生草酸。谷氨酸发酵,在中性和微碱性条件下积累谷氨酸,在酸性条件下则容易形成谷氨酰胺和N-乙酰谷氨酰胺

液晶状态是指某些有机物在发生固相到液相转变时的过渡状态称为液晶态。

人们采用二种方案来研究酶在低温条件下的结构完整性和催化功能:(1)通过自然或诱导突变,将特定残基发生改变的蛋白与其天然结构进行对比;(2)对比同属嗜热、嗜温及嗜冷菌的蛋白结构, 通过对嗜冷酶的蛋白质模型和x一射线衍射分析表明,嗜冷酶分子间的作用力减弱,与溶剂的作用加强,酶结构的柔韧性增加,使酶在低温下容易被底物诱导产生催化作用

最适温度的选择? 1、根据菌种及生长阶段选择: 微生物种类不同,所具有的酶系及其性质不同,所要求的温度范围也不同。如黑曲霉生长温度为370C,谷氨酸产生菌棒状杆菌的生长温度为30~320C,青霉菌生长温度为300C; 根据生长阶段选择: 在发酵前期由于菌量少,发酵目的是要尽快达到大量的菌体,取稍高的温度,促使菌的呼吸与代谢,使菌生长迅速;

在中期菌量已达到合成产物的最适量,发酵需要延长中期,从而提高产量,因此中期温度要稍低一些,可以推迟衰老。因为在稍低温度下氨基酸合成蛋白质和核酸的正常途径关闭得比较严密有利于产物合成。

发酵后期,产物合成能力降低,延长发酵周期没有必要,就又提高温度,刺激产物合成到放罐。如四环素生长阶段280C,合成期260C后期再升温;黑曲霉生长370C,产糖化酶32~340C。但也有的菌种产物形成比生长温度高。如谷氨酸产生菌生长30~320C,产酸34~370C。最适温度选择要根据菌种与发酵阶段做试验.

2、根据培养条件选择: 温度选择还要根据培养条件综合考虑,灵活选择。通气条件差时可适当降低温度,使菌呼吸速率降低些,溶氧浓度也可髙些。培养基稀薄时,温度也该低些。因为温度高营养利用快,会使菌过早自溶。

3、根据菌生长情况

菌生长快,维持在较高温度时间要短些;菌生长慢,维持较高温度时间可长些。培养条件适宜,如营养丰富,通气能满足,那么前期温度可髙些,以利于菌的生长。

总的来说,温度的选择根据菌种生长阶段及培养条件综合考虑。要通过反复实践来定出最适温度。

所谓发酵热就是发酵过程中释放出来的净热量。什么叫净热量呢?在发酵过程中产生菌分解基质产生热量,机械搅拌产生热量,而罐壁散热、水分蒸发、空气排气带走热量。这各种产生的热量和各种散失的热量的代数和就叫做净热量。

在发酵过程中,菌体不断利用培养基中的营养物质,将其分解氧化而产生的能量,其中一部分用于合成高能化合物(如ATP)提供细胞合成和代谢产物合成需要的能量,其余一部分以热的形式散发出来,这散发出来的热就叫生物热。

染菌的影响: 发酵过程污染杂菌,会严重的影响生产,是发酵工业的致命伤。 造成大量原材料的浪费,在经济上造成巨大损失 扰乱生产秩序,破坏生产计划。 遇到连续染菌,特别在找不到染菌原因往往会影响人们的情绪和生产积极性。 影响产品外观及内在质量

不同时间染菌对发酵的影响及处理办法?

污染时间是指用无菌检测方法确准的污染时间,不是杂菌窜入培养液的时间。 (1)种子培养期染菌:由于接种量较小,生产菌生长一开始不占优势,而且培养液中几乎没有抗生素(产物)或只有很少抗生素(产物)。因而它防御杂菌能力低,容易污染杂菌。如在此阶段染菌,应将培养液全部废弃。 (2)发酵前期染菌:发酵前期最易染菌,且危害最大。

原因 发酵前期菌量不是很多,与杂菌没有竞争优势;且还未合成产物(抗生素)或产生很少,抵御杂菌能力弱。

在这个时期要特别警惕以制止染菌的发生。

染菌措施 可以用降低培养温度,调整补料量,用酸碱调pH值,缩短培养周期等措施予以补救。如果前期染菌,且培养基养料消耗不多,可以重新灭菌,补加一些营养,重新接种再用。

(3)发酵中期染菌 :发酵中期染菌会严重干扰产生菌的代谢。杂菌大量产酸,培养液pH下降;糖、氮消耗快,发酵液发粘,菌丝自溶,产物分泌减少或停止,有时甚至会使已产生的产物分解。有时也会使发酵液发臭,产生大量泡沫。 措施 降温培养,减少补料,密切注意代谢变化情况。如果发酵单位到达一定水平可以提前放罐,或者抗生素生产中可以将高单位的发酵液输送一部分到染菌罐,抑制杂菌。

(4)发酵后期染菌:发酵后期发酵液内已积累大量的产物,特别是抗生素,对杂菌有一定的抑制或杀灭能力。因此如果染菌不多,对生产影响不大。如果染菌严重,又破坏性较大,可以提前放罐。

泡沫的定义:一般来说:泡沫是气体在液体中的粗分散体,属于气液非均相体系

美国道康宁公司对泡沫这样定义:体积密度接近气体,而不接近液体的“气/液”分散体。

发酵过程泡沫产生的原因:(1)通气搅拌的强烈程度:通气大、搅拌强烈可使泡沫增多,因此在发酵前期由于培养基营养成分消耗少,培养基成分丰富,易起泡。应先开小通气量,再逐步加大。搅拌转速也如此。也可在基础料中加入消泡剂。(2)培养基配比与原料组成

:培养基营养丰富,黏度大,产生泡沫多而持久,前期难开搅拌。(3)菌种、种子质量和接种量:菌种质量好,生长速度快,可溶性氮源较快被利用,泡沫产生几率也就少。菌种生长慢的可以加大接种量(4)灭菌质量:培养基灭菌质量不好,糖氮被破坏,抑制微生物生长,使种子菌丝自溶,产生大量泡沫,加消泡剂也无效。

起泡的危害:1、降低生产能力:在发酵罐中,为了容纳泡沫,防止溢出而降低装量2、引起原料浪费:如果设备容积不能留有容纳泡沫的余地,气泡会引起原料流失,造成浪费。

3、影响菌的呼吸:如果气泡稳定,不破碎,那么随着微生物的呼吸,气泡中充满二氧化碳,而且又不能与空气中氧进行交换,这样就影响了菌的呼吸。4、引起染菌:由于泡沫增多而引起逃液,于是在排气管中粘上培养基,就会长菌。随着时间延长,杂菌会长入发酵罐而造成染菌。大量泡沫由罐顶进一步渗到轴封,轴封处的润滑油可起点消泡作用,从轴封处落下的泡沫往往引起杂菌污染。

泡沫体系的三阶段变化:气泡大小分布的变化;气泡液膜变薄;泡沫破灭

影响泡沫稳定性的因素:1、泡径大小:对任何泡沫体系稍加观察都会发现:大泡易于破灭,寿命较长的的都是小泡。泡越小,合并成大气泡的历程就越长,而且小气泡的泡膜中所含液量相对比较大,所以较能经受液体流失所造成的稳定性的损失。

另一方面,气泡只有上升到液面才能够在破灭之后减少泡沫体积。 气泡越小,上升速度越慢。溶液中溶解状态或胶束状态的表面活性剂,在气泡上升的过程中,吸附到气液界面上,形成定向吸附层。小气泡上升慢,给表面活性剂的吸附提供充足的时间,增加了稳定性。 2、溶液所含助泡物的类型和浓度:(1)降低表面张力 :降低表面张力会降低相邻气泡间的压差。压差小,小泡并入大泡的速度就慢,泡沫的稳定性就好。(2)增加泡沫弹性: 助泡的表面活性剂,吸附在气液界面上,使表面层的组分与液相组分产生差别,因而使泡沫液具有可以伸缩的称为“吉布斯弹性”的性质,对于泡沫稳定性来说表面活性剂使液膜具有“吉布斯弹性”比降低表面张力更重要。

(3)助泡剂浓度:溶液中助泡剂浓度增加,气液界面上的吸附量就增加,液膜弹性随之增加,泡沫稳定性增高,直至到达助泡物的临界胶束浓度为止。到达临界胶束浓度后,气液界面上的定向排列“饱和”,弹性不会再增加,增加胶束浓度只会增大、增多胶束。

2、破泡剂与抑泡剂的区别及关系:(1)消泡剂可分为破泡剂和抑泡剂:破泡剂

是加到已形成的泡沫中,使泡沫破灭的添加剂。如低级醇、天然油脂。一般来说,破泡剂都是其分子的亲液端与起泡液亲和性较强,在起泡液中分散较快的物质。这类消泡剂随着时间的延续,迅速降低效率,并且当温度上升时,因溶解度增加,消泡效率会下降;抑泡剂是发泡前预先添加而阻止发泡的添加剂。聚醚及有机硅等属于抑泡剂。一般是分子与气泡液亲和性很弱的难溶或不溶的液体

(2)作用机理上的区别:破泡剂的破泡机理大致有二种。第一,吸附助泡剂,加入电解质,瓦解双电层,及使助泡物被增溶等机理,这样就破坏助泡物的稳泡作用。在这些过程中消泡剂发挥一次消泡作用就被消耗。同时消耗掉相应的助泡物。第二,低级醇等溶解性较大的消泡剂,加到气泡液中局部降低表面张力,发挥破泡作用,同时本身不断破为碎块,陆续溶解而失去破泡作用。破泡过程中,破泡剂不断失效、消耗,而助泡剂却不受影响抑泡机理:一般认为抑泡剂分子在气液界面上优先被吸附,它比助泡剂的表面活性更强,更易吸附到泡膜上,但是由于本身不赋予泡膜弹性,所以不具备稳泡作用。这样当液体中产生泡沫时,抑泡剂首先占据泡膜,抑制了助泡剂的作用,抑制了气泡。

(3)破泡剂与抑泡剂的相互关系: 溶解度大的破泡剂,消泡作用只发挥一次;溶解度小的破泡剂,消泡作用可持续一段时间。如果溶解度进一步降低,即成为抑泡剂。另一方面,破泡剂大量使用,比有抑泡作用,抑泡剂大量使用也比有破泡作用。

动物细胞培养的特性:动物细胞培养是指在合适的培养条件下,动物细胞离体生长和增殖,并保持其特性和功能的技术,这些细胞不再形成组织。1 细胞生长缓慢,易污染,培养需用抗生素2 细胞大,无细胞壁,机械强度低,环境适应性差3 需氧少,不耐受强力通风与搅拌4 群体生长效应,贴壁生长(锚地依赖性)5 培养过程产品分布细胞内外,成本高 6 原代培养细胞一般繁殖50代即退化死亡

贴壁依赖性来自动物实体组织的大多数细胞需要贴壁单层生长。只要它们没有转化为非贴壁依赖性的必须贴伏在合适的固体介质上并铺展,才能生长。 非贴壁依赖性细胞无需贴附到固体介质上就能生存和生长的细胞。来自血液、淋巴系统的细胞和大多数肿瘤细胞常为非贴壁依赖性的,它们形态呈圆形。

微生物的特性

 有些微生物能在厌氧的条件下生长

 有些微生物能够利用简单的有机物和无机物满足自身的生长  有些微生物能进行复杂的代谢  有些微生物能利用较复杂的化合物  有些微生物能在极端的环境下生长

菌落的选出

从产物角度出发: 在培养时以产物的形成有目的的设计培养基,利用简单、快速的鉴定方法,如抗生素

从形态的角度: 菌落的外观形态,是微生物的一个重要表征。如多糖产生菌在适

当的培养基上生长,从具有粘液性的菌落外观上就可以初步识别。

培养基按其组成物质的纯度、状态、用途可分为三大类型 按纯度 :

合成培养基 : 原料其化学成分明确、稳定 :

 适合于研究菌种基本代谢和过程的物质变化规律  培养基营养单一,价格较高,不适合用于大规模工业 生产

天然培养基: 采用天然原料

 原料来源丰富(大多为农副产品)、价格低廉、适于工业 化生产

 原料质量等方面不加控制会影响生产稳定性 按状态

固体培养基 :适合于菌种和孢子的培养和保存,也广泛应用于有子实体的真菌类,如香菇、白木耳等的生产

半固体培养基:即在配好的液体培养基中加入少量的琼脂,一般用量为0.5%~0.8% ,主要用于微生物的鉴定

液体培养基:80%~90%是水,其中配有可溶性的或不溶性 的营养成分,是发酵工业大规模使用的培养基。 按用途(从发酵生产应用考虑)

培养基按其用途可分为孢子(斜面)培养基、种子培养基和发酵培养基三种

种子扩大培养是指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质量的纯种过程。这些纯种培养物称为种子。

种子制备的技术概要:

实验室阶段:不用种子罐,所用的设备为培养箱、摇床等实验室常见设备,在工厂这些培养过程一般都在菌种室完成,因此现象地将这些培养过程称为实验室阶段的种子培养。

生产车间阶段:种子培养在种子罐里面进行,一般在工程归为发酵车间管理,因此形象地称这些培养过程为生产车间阶段。

培养基选择的原则: 培养基的选择应该是有利于菌体的生长,对孢子培养基应该是有利于孢子的生长。在原料方面,实验室种子培养阶段,规模一般比较小,因此为了保证培养基的质量,培养基的原料一般都比较精细。

初级代谢产物:微生物合成的主要供给细胞生长的一类物质。如氨基酸、核苷酸等等,这些物质称为初级代谢产物。

次级代谢产物:还有一类产物,对细胞的代谢功能没有明显的影响,一般是在稳定期形成,如抗生素等,这一类化合物称为次级代谢产物。

溶氧(DO)是需氧微生物生长所必需。在发酵过程中有多方面的因素,而溶氧往往是最易成为控制因素。

发酵过程中溶氧浓度监控的意义 1、考察工艺控制是否满足要求 2、其它异常情况的表征

染菌、噬菌体、设备和操作故障 3、间接控制的措施

从环境中分离目的微生物时,为何一定要进行富集富集? 让目的微生物在种群中占优势,使筛选变得可能。,筛选降解污染物的微生物可以根据你所要降解的物质的种类,在存在这种物质的环境中取土壤或者水从中筛菌。因为要能降解这种物质首先应该要能耐受它,而在存在这种物质的环境中生长的菌能耐受的可能性更大。接下来逐渐提高这种物质在培养基中的含量做定向筛菌,确定到某株高耐受的菌,就可以定量的检测这菌是否可以降解该物质。

什么是一类发酵?二类发酵?三类发酵?

一类发酵:产物形成与底物利用直接相关,为生长联系型,又称简单发酵型,产物直接由碳源代谢而来,产物生成速度的变化与微生物对碳源利用速度的变化是平行的,产物生成与微生物的生长也是平行的。在这些发酵过程中,菌体的生长、基质的消耗、产物的生成三个速度都有一个高峰,三高峰几乎同时出现。 二类发酵:产物形成与底物利用间接相关,为部分生长联系型,又称中间发酵型,产物不是碳源的直接氧化产物,而是菌体代谢的主流产物。它的特点是在发酵的第一时期碳源大量消耗用于菌体的迅速增长而产物的形成很少或全无,第二时期碳源大量消耗用于产物的高速合成及菌体的生长。

三类发酵:产物形成与底物利用不相关,为非生长联系型,又称复杂发酵型,产物的生成在菌体生长和基质消耗完以后才开始,与菌体生长不相关,与基质消耗无直接关系,所形成的产物为次级代谢产物。

培养基优化在发酵优化控制中的作用与地位? 发酵优化控制分两个阶段: 第一阶段控制菌体的生长,目的是使长好的菌体能处在最佳的产物合成状态。培养基优化应该保证菌体快速生长,有利于产物合成和分泌的酶系开启,而不利于产物合成酶系的关闭,处于最佳的产物合成状态,并且副产物合成和分泌的酶系尽可能的少开启第二阶段控控制产物的合成。该阶段,培养基优化应使产物合成能较长时间保持在最大合成速度。副产物的的合成速率尽可能小。

结合具体的产品理解种子质量控制的方法,以及认识种子质量对发酵的影响? 影响斜面种子质量的因素:(1)原材料质量,水质,培养基pH.(2)灭菌条件,(3)接种量,(4)温度,通风、(5)培养时间(6)有害气体或挥发物(7) 冷藏条件 种子质量好:1. 缩短发酵时间、保证生产水平. 2. 无杂菌污染. 3移种至发酵

后,能够迅速生长.4.泡末产生少. 5.产物生成速率大. 6.副产物合成少. 7.对下游分离纯化有利 ;

什么是Monod方程其使用条件如何?各参数的意义与求解?

当培养基中不存在抑制细胞生长的物质时,细胞的生长速率与基质浓度关系(Monod方程式)如下: μ=μmax S/(Ks+ S)

μ:菌体的生长比速. S:性基质浓度. Ks:半饱和常数. μmax: 最大比生长速度

Monod方程的参数求解(双倒数法):将Monod方程取倒数可得: 1/μ=1/μmax+ Ks/μmax S或S/μ= S/μmax+ Ks/μmax 这样通过测定不同性基质浓度下,微生物的比生长速度,就可以通过回归分析计算出Monod方程的两个参数。

为何氧容易成为好氧发酵的性因素? 氧是需氧微生物生长所必需的。氧往往容易成为控制因素,是因为氧在水中的溶解度很低,培养基因含有大量的有机和无机物质,氧的溶解度比水中还要更低。在对数生长期即使发酵液中的氧浓度达到饱和,若此时终止供氧,发酵液中的溶氧可在几分钟内全部耗尽,使溶氧成为控制因素。

什么是正突变?什么是负突变?什么是结构类似物? 生产上所不希望看到的,表现为菌株的衰退和生产质量的下降,这种突变成为负突变。

生产上希望看到的,对生产有利,这种突变成为正突变。

结构类似物:在化学和空间结构上和代谢的中间物(终产物)相似,因而在代谢调节方面可以代替代谢中间物(终产物)的功能,但细胞不能以其作为自身的营养物质。

诱变育种是指用物理、化学因素诱导植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株,进而培育成新的品种或种质的育种方法。诱变剂有两大类:物理诱变剂和化学诱变剂。

常用的物理诱变剂有紫外线、x射线、γ射线(如Co60等)、等离子、快中子、α射线、β射线、超声波等。常用的化学诱变剂有碱基类似物、烷化剂、羟胺、吖定类化合物等。

什么是基因的重组?什么是基因的直接进化?二者有何区别? 基因的重组:是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程

基因的直接进化:在分子水平上,对目标基因直接处理,然后通过高通量的筛选方法,提高目标蛋白的性能。基因的直接进化,可使已有基因获得新的特性,可获得自然界中不存在的基因,可解决许多新的理论和应用问题

用的碳源有哪些?常用的糖类有哪些,各自有何特点? 碳源:糖类(淀粉、葡萄糖、蔗糖等)、油脂(动、植物油)、有机酸(琥珀酸、柠檬酸、乳酸、乙酸等)和低碳醇(甲醇、乙醇等)。

葡萄糖,所有的微生物都能利用葡萄糖,但是会引起葡萄糖效应

糖蜜,是制糖生产时的结晶母液,它是制糖工业的副产物。主要含有蔗糖,总糖可达50%~75%。一般糖蜜分甘蔗糖蜜和甜菜糖蜜葡萄糖蜜。除糖份外,含有较多的杂质,其中有些是有用的,但是许多都会对发酵产生不利的影响,需要进行预处理。

淀粉、糊精,缺点:难利用、发酵液比较稠、一般>2.0%时加入一定的α-淀粉酶。成分比较复杂,有直链淀粉和支链淀粉等等。优点:来源广泛、价格低,可以解除葡萄糖效应。

常用的无机氮源和有机氮源有哪些?有机氮源在发酵培养基中的作用?

常用的有机氮源有花生饼粉、黄豆饼粉、酵母粉、蛋白胨等;常用的无机氮源有氨水、铵盐和盐。

有机氮源在发酵培养基中的作用有:除提供氮源外,有些有机氮源还提供大量的无机盐及生长因子。诱导某些酶的产生。

结合具体的产品理解种子质量控制的方法,以及认识种子质量对发酵的影响? 影响斜面种子质量的因素:(1)原材料质量,水质,培养基pH.(2)灭菌条件,(3)接种量,(4)温度,通风、(5)培养时间(6)有害气体或挥发物(7) 冷藏条件 种子质量好:1. 缩短发酵时间、保证生产水平. 2. 无杂菌污染. 3移种至发酵后,能够迅速生长.4.泡末产生少. 5.产物生成速率大. 6.副产物合成少. 7.对下游分离纯化有利

接种、倒种、双种?

接种:接入种子罐后直接移种到发酵罐。双种:两个种子罐种子接种到一个发酵罐中。倒种:一部分种子来源于种子罐,一部分来源于发酵罐。

什么是菌体的生长比速?产物的形成比速?基质的消耗比速?维持消耗? 菌体的比生长速率:单位重量的菌体瞬时增量

μ=(dx/dt)/x;单位为1/h,其中x—菌体浓度(g/L ) 产物的形成比速:单位时间内单位菌体形成产物(菌体)的量 π=(dp/dt)/x,;单位为1/h,其中p—产物浓度(g/L ) 基质的比消耗速率:单位时间内单位菌体消耗基质的量

=(ds/dt)/x;单位为1/h,其中s—底物浓度(g/L )

什么是连续培养?什么是连续培养的稀释率?

由于新鲜培养基不断补充,所以不会发生营养物的枯竭,另一方面,发酵液不断取出,发酵罐内的微生物始终处于旺盛的指数生长期,罐内细胞浓度X、比生长速率μ、以及t, pH等都保持恒定。

稀释率(D):补料速度与反应器体积的比值(h-1)

临界溶氧浓度、氧饱和度的概念?

临界氧浓度:CCr临界氧浓度:指不影响菌的呼吸所允许的最低氧浓度。 氧饱和度:发酵液中氧的浓度/临界溶氧溶度

饱和溶氧浓度:在一定温度和压力下,空气中的氧在水中的溶解度。

影响微生物需氧的因素有哪些?

细胞浓度直接影响培养液的摄氧率,在分批发酵中摄氧率变化很大,不同生长阶段需氧不同,对数生长后期达最大值。培养基的成分和浓度显著影响微生物的摄氧率,碳源种类对细胞的需氧量有很大影响,一般葡萄糖的利用速度比其他的糖要快。

如何调节通气搅拌发酵罐的供氧水平?

一般认为,发酵初期较大的通风和搅拌而产生过大的剪切力,对菌体的生长有时会产生不利的影响,所以有时发酵初期采用小通风,停搅拌,不但有利于降低能耗,而且在工艺上也是必须的。但是通气增大的时间一定要把握好。

发酵过程糖代谢、氮代谢有什么规律,为什么?

糖代谢:特别是快速利用的糖,分解成小分子酸、醇,使pH下降。糖缺乏,pH上升,是补料的标志之一氮代谢:氨基酸被利用后产生NH3 ,pH会上升;尿素被分解成NH3,pH上升。

微生物生长和产物合成与糖代谢有密切关系。糖的消耗反映产生菌的生长繁殖情况,反映产物合成的活力。菌体生长旺盛糖耗一定快,残糖也就降低得快通过糖含量的测定,可以控制菌体生长速率,可控制补糖来调节pH,促进产物合成,不致于盲目补糖,造成发酵不正常。

氮利用快慢可分析出菌体生长情况,含氮产物合成情况。但是氮源太多会促使菌体大量生长。有些产物合成受到过量铵离子的抑制,因此必须控制适量的氮。通过氨基氮和氨氮的分析可控制发酵过程,适时采取补氨措施。发酵后期氨基氮回升,这时就要放罐,否则影响提取过程。

发酵过程为什么要补料?补些什么?

在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。在这样一种系统中可以维持低的基质浓度,避免快速利用碳源的阻遏效应;可以通过补料控制达到最佳的生长和产物合成条件;还可以利用计算机控制合理的补料速率,稳定最佳生产工艺。

补料过多或过少对发酵有什么影响?

投料过多造成菌体细胞大量生长,无法稳定的产生发酵产物,导致菌体生产力下降,同时改变发酵液流变学性质。如果补料过少,则使菌体过早进入衰退期,引起菌体衰老和自,同样使生产力下降。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务