Methods),weestimatethattheprobabilityofpopulatingunboundtranslationalstatesuponns(N–H)decay,andhenceproducingmoleculartranslation,is6£1025.Consideringbothfactors(prob-abilityofns(N–H)excitationandprobabilityofdecaytotrans-lation),thesmallmagnitudeoftheyieldmeasuredforpathwayM1isfullyconsistentwithamode-selectivemechanismofinducingmoleculartranslation,whichprevailsatlowertunnellingcurrents.Whenweraisetheexcitationrateinordertobalancethestretch-to-translationdecayratewithanadditionalexcitationofthestretchmode,theenergyaccumulatedinthemoleculeislargeenoughtoactivateanadditionaldecaypathwayproducingmoleculardesorption,whichismediatedbytheumbrellamode(N.L.andJ.I.P.,manuscriptinpreparation).
Moleculardesorptionmediatedbytheds(N–H3)mode,M2,dominateswhenwereducetheelectronenergytoexcluden(N–H)excitations.Thispathwayisdescribedbythreeexcitationsoftheumbrellamodeovertonesinaladder-climbingfashion(Fig.4b).Theammoniagainssufficientvibrationalenergytoovercomethe600-meVadsorptionwell.Theumbrellamodefeaturesasmallercouplingwithtranslationalstatesthanthatfoundforthens(N–H)mode.Moreover,ourcalculationsshowthatds(N–H3)vibrationalstatesabove360meVmaywellpopulatealong-livedtransitionstateconnectedwiththecompleteinversionofthemolecule,whichleadstodesorptionafteranadditionalexcitation.Inthisprocesstheumbrellamodeitselfbecomesthevibrationalstatealongthereactioncoordinate(Fig.4b),aswaspreviouslydeducedfromultravioletandinfraredphotodesorptionexperiments19,20.
Itwouldbeinterestingtoextendthismethodologytomorecomplexprocesses,searchingforstrategiesofcontrollingandenhancingreactivityatsurfacesthatmaybeappliedatthemacro-scopicscale.ThecontrolledenvironmentfurnishedbytheSTMallowsthedetectionofreactionmechanismsinthelimitofverylowyieldandverylowpowerirradiation.Insuchsingle-moleculestudies,weexpectthatmode-selectivestrategieswillbecomeimportantinthediscoveryofreactionpathwaysthatareinaccessiblebyclassical‘thermal’chemistry.A
9.Ho,W.Inducingandviewingbondselectedchemistrywithtunnelingelectrons.Acc.Chem.Res.31,
567–573(1998).
10.Eigler,D.M.,Lutz,C.P.&Rudge,W.E.Anatomicswitchrealizedwiththescanningtunnelling
microscope.Nature352,600–603(1991).
11.Stipe,B.C.,Rezai,M.A.&Ho,W.Couplingofvibrationalexcitationtotherotationalmotionofa
singleadsorbedmolecule.Phys.Rev.Lett.81,1263–1266(1998).
12.Komeda,T.,Kim,Y.,Kawai,M.,Persson,B.N.J.&Ueba,H.Lateralhoppingofmoleculesinducedby
excitationofinternalvibrationmode.Science295,2055–2058(2002).
13.Bartels,L.etal.Atomicscalechemistry:DesorptionofammoniafromCu(111)inducedbytunneling
electrons.Chem.Phys.Lett.313,544–552(1999).
14.Avouris,Ph.Manipulationofmatterattheatomicandmolecularlevel.Acc.Chem.Res.28,95–102
(1995).
15.Stipe,B.C.etal.Single-moleculedissociationbytunnelingelectrons.Phys.Rev.Lett.78,4410–4413
(1997).
16.Hla,S.W.,Bartels,L.,Meyer,G.&Rieder,K.H.Inducingallstepsofachemicalreactionwiththe
scanningtunnelingmicroscopetip:Towardssinglemoleculeengineering.Phys.Rev.Lett.85,2777–2780(2000).
17.Kim,Y.,Komeda,T.&Kawai,M.Single-moleculereactionandcharacterizationbyvibrational
excitation.Phys.Rev.Lett.,126104(2002).
18.Rust,H.-P.,Buisset,J.,Schweizer,E.K.&Cramer,L.Highprecisionmechanicalapproachmechanism
foralowtemperaturescanningtunnelingmicroscope.Rev.Sci.Instrum.68,129–132(1997).
19.Hertel,T.,Wolf,M.&Ertl,G.UVphotostimulateddesorptionofammoniafromCu(111).J.Chem.
Phys.102,3414–3430(1995).
20.Hussla,I.etal.Infrared-laser-inducedphotodesorptionofNH3andND3adsorbedonsingle-crystal
Cu(100)andAgfilm.Phys.Rev.B32,34–3501(1985).
21.Prybyla,J.A.,Heinz,T.F.,Misewich,J.A.,Loy,M.M.T.&Glownia,J.H.Desorptioninducedby
femtosecondlaserpulses.Phys.Rev.Lett.,1537–1540(1990).
22.Salam,G.P.,Persson,M.&Palmer,R.E.Possibilityofcoherentmultipleexcitationinatomtransfer
withascanningtunnelingmicroscope.Phys.Rev.B49,10655–10662(1994).
23.Lorente,N.&Persson,M.Theoryofsinglemoleculevibrationalspectroscopyandmicroscopy.Phys.
Rev.Lett.85,2997–3000(2000).
24.Lorente,N.&Persson,M.Theoreticalaspectsoftunneling-current-inducedbondexcitationand
breakingatsurfaces.FaradayDiscuss.117,277–290(2000).
AcknowledgementsJ.I.P.acknowledgesresearchcontracts‘MarieCurie’(EU)and‘Ramony
´a).N.L.acknowledgessupportfromACIJeunesCajal’(MinisteriodeCienciayTecnologı
Chercheurs,andtheCNRSprogramme‘Nano-ObjetIndividuel’.Allcalculationswereperformed
´rieur(CINES)andtheCentredeattheCentred’InformatiqueNationaldel’EnseignementSupe
´ne´es(CALMIP).CalculMidi-Pyre
CompetinginterestsstatementTheauthorsdeclarethattheyhavenocompetingfinancial
interests.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoJ.I.P.(pascual@icmab.es).
Methods
Toestimatethepotentialbarriersfortranslationanddesorption,weperformedtotal-energycalculationsusingplanewavesandpseudopotentialsinthegeneralizedgradientapproximationofdensityfunctionaltheory.Usingthemethodofrefs23and24,wealsoestimatedchemisorbedammoniafrequencies,theprobabilityofexcitationofeachmodeandtheirlifetime.Thenumericalresultsfortherelevantmodesofthisworkare:thesymmetricandoneantisymmetricstretchmode,ns(N–H)andn1a(N–H),at408meVand422meV(294meVand311meVforND3),bothwithaprobabilityPn¼6£1024ofbeingexcitedperimpingingelectronandalifetimeof4psand8ps,respectively;theumbrellamode,ds(N–H3),at139meV(104meVforND3),40£1024and25ps;thescissorsmodes,da(N–H3),degenerateat200meV(145meVforND3),2£1024and11ps.
Thedecayprobability,Pm,ofasinglens(N–H)excitationdecayingintotheunboundhinderedtranslationlevelspluselectron–holeexcitationisestimatedasthefractionwm.30/w.wm.30isthesumofdampingratesintostatesmabovethebarrierfor
translation,andwisthedampingrateofthens(N–H)mode,viaexcitationofelectron–holepairsandhinderedtranslationalstates.AnupperlimitofthetranslationyieldisthenYR¼Pn£Pm¼3£1028moleculesperelectron.
Received20December2002;accepted8April2003;doi:10.1038/nature019.
1.Jortner,J.,Levine,R.D.&Pullman,B.(eds)ModeSelectiveChemistry(KluwerAcademic,Dordrecht,1991).
2.Dai,H.L.&Ho,W.(eds)LaserSpectroscopyandPhotochemistryonMetalSurfaces(WorldScientific,Singapore,1995).
3.Higgings,J.,Conjusteau,A.,Scoles,G.&Bernasek,S.L.Stateselectivevibrational(2n3)activationofthechemisorptionofmethaneonPt(111).JChem.Phys.114,5277–5283(2001).
4.Potter,E.D.,Herek,J.L.,Pedersen,S.,Liu,Q.&Zewail,A.H.Femtosecondlasercontrolofachemicalreaction.Nature355,66–68(1992).
5.Sinha,A.,Hsiao,M.C.&Crim,F.F.Controllingbimolecularreactions:Modeandbondselectedreactionofwaterwithhydrogenatoms.J.Chem.Phys.94,4928–4935(1991).
6.Bronikowski,M.J.,Simpson,W.R.,Girard,B.&Zare,R.N.Bond-specificchemistry:OD:OHproductratiosforthereactionsHþHOD(100)andHþHOD(001).J.Chem.Phys.95,87–88(1991).
7.Hansma,P.K.(ed.)TunnellingSpectroscopy:Capabilities,Applications,andNewTechniques(Plenum,NewYork,1982).
8.Stipe,B.C.,Rezaei,M.A.&Ho,W.Single-moleculevibrationalspectroscopyandmicroscopy.Science280,1732–1735(1998).
..............................................................
Impactofurbanizationandland-usechangeonclimate
EugeniaKalnay&MingCai
UniversityofMaryland,CollegePark,Maryland20770-2425,USA
.............................................................................................................................................................................
Themostimportantanthropogenicinfluencesonclimatearetheemissionofgreenhousegases1andchangesinlanduse,suchasurbanizationandagriculture2.Butithasbeendifficulttosepar-atethesetwoinfluencesbecausebothtendtoincreasethedailymeansurfacetemperature3,4.Theimpactofurbanizationhasbeenestimatedbycomparingobservationsincitieswiththoseinsurroundingruralareas,buttheresultsdiffersignificantlydependingonwhetherpopulationdata5orsatellitemeasure-mentsofnightlight6–8areusedtoclassifyurbanandruralareas7,8.HereweusethedifferencebetweentrendsinobservedsurfacetemperaturesinthecontinentalUnitedStatesandthecorrespondingtrendsinareconstructionofsurfacetemperaturesdeterminedfromareanalysisofglobalweatheroverthepast50years,whichisinsensitivetosurfaceobservations,toestimatetheimpactofland-usechangesonsurfacewarming.Ourresultssuggestthathalfoftheobserveddecreaseindiurnaltemperaturerangeisduetourbanandotherland-usechanges.Moreover,ourestimateof0.278Cmeansurfacewarmingpercenturydueto
NATURE|VOL423|29MAY2003|www.nature.com/nature
528©2003 Nature PublishingGroup
letterstonature
land-usechangesisatleasttwiceashighaspreviousestimatesbasedonurbanizationalone7,8.
TwomethodsusedintheUStoclassifymeteorologicalstationsintourbanandruralto‘correct’theobservedsurfacetemperaturetrendsforurbanizationeffectsarebasedonpopulationdata5andsatellitemeasurementsofnight-light6–8,respectively,andthecorre-spondingestimatesoftheimpactofurbanizationdifferinmagni-tude(0.06and0.158Cpercentury)7,8.Thefindingthatatmospherictemperaturesasmeasuredbysatellitesandweatherballoonshavesmallerwarmingtrendsthansurfaceobservationshasbeenthesubjectofmuchdiscussion9centredmostlyonthequalityofthedata,butitcouldbepartiallyexplainedbyapredominanceofland-useeffectsovergreenhousewarmingnearthesurface.
WeestimatedtheimpactofurbanizationandotherlandusesonclimatechangebycomparingtrendsobservedbysurfacestationswithsurfacetemperaturesderivedfromtheNCEP-NCAR50-yearReanalysis(NNR)10.IntheNNR(astatisticalcombinationof6-hourforecastsandobservations),surfaceobservationsoftempera-ture,moistureandwindoverlandarenotused11.However,atmosphericverticalsoundingsofwindandtemperature(rawin-sondesandsatellitesoundings)stronglyinfluencetheNNR,andsurfacetemperaturesareestimatedfromtheatmosphericvalues.Asaresult,theNNRshouldnotbesensitivetourbanizationorland-useeffects,althoughitwillshowclimatechangestotheextentthattheyaffecttheobservationsabovethesurface.
AsindicatedbyFig.1andmanyotherstudies,theNNRcaptureswellsurfacetemperaturevariationscausedbyatmosphericstorms,advectionofwarm/coldair,andvariationsinthefrequencyortrackofmajorstorms.Incontrasttotheactualsurfaceobservations,wefindnostatisticallysignificantdifferenceintheNNRestimationofurbanandruralstationtrends(seeMethods).Theseargumentssuggestthatwecouldattributethedifferencesbetweenmonthlyorannuallyaveragedsurface-temperaturetrendsderivedfromobser-vationsandfromtheNNRprimarilytourbanizationandotherchangesinlanduse.
Wecomparethedailymaximumandminimumtemperaturesof1,982surfacestationslocatedbelow500minthe48contiguousUnitedStates,andthedailysurfacemaximumandminimumtemperaturesona2.58gaussiangridfromtheNNRinterpolatedtothestationlocations,bothfortheperiod1950–1999.Wecomputetemperatureanomalieswithrespecttothe50-yearmeanannualcycleforeachsiteandeachdataset.Trendsarecomputedaschangesindecadalaveragesintheanomaliestoreducerandomerrors.TheNNR(1948tothepresent)hasbeenconstructedwithamodelanddataassimilationsystemkeptunchanged,butitisaffectedbychangesintheobservingsystems,especiallytheintroductionofthesatelliteobservingsystemin1979.Therefore,inthecompu-tationoftrendsweexcludechangesfromthedecadeofthe1970stothe1980s.
Figure1comparestimeseriesof50yearsofmonthlymeantemperatureanomaliesforBaltimore,alargecityinMaryland,includingtheaveragedecadaldifferencebetweenobservationsandtheNNR.Thereisgoodagreementintheinterannualvariability,withacorrelationofover0.9,butalsoagrowingtrendinthedifferencebetweenthesurfaceobservationsandNNR,increasingto1.48Cduringthe1990s,adifferenceweattributetourbanizationandothersurfacechangesthatdonotaffecttheNNR.Asimilaranalysisonallsurfacestations(SupplementaryFig.1)indicatesa50-yearcorrelationofabout0.9everywhereexceptinmountainousregions,whereitisbetween0.4and0.7,whichiswhyweonlyincludestationslocatedbelow500m.Thecorrelationisalsolowerinthewestcoast,possiblyowingtotheproximityofmountainsortolowdatadensityinthePacificOcean.Decadaltrendscanbelocallydominatedbyinterannualanddecadalvariabilityofthetemperatureduetoanomaliesinthecirculationratherthantolandusechange—effectsthatareexcludedbytakingthedifferencesbetweensurfaceandNNRtemperatures.
NATURE|VOL423|29MAY2003|www.nature.com/nature
Thedecadaltrendaveragedoverthetwoseparate20-yearperiods(1980–1999,and1960–1979)iscomputedforeverystationandaveragedinboxesof0.58latitudeby0.58longitude,withanoverallaveragecomputedoveralltheboxes.Figures2and3showtheaveragetrendsfortheobservationsandfromtheNNR,andalsothedifferencebetweenthesetwotrends,whichisatleastpartiallyattributabletochangesinuseofthelandsurface.
Themaximumtemperature(Fig.2)showsawarmingtrendintheobservationsintheeasternandwesternUSandacoolingtrendintheMidwest,withaslightlynegativeoverallaverageof20.0178Cperdecade.TheNNRissimilarbutsmoother,withanaverageofþ0.0088Cperdecade.ThedifferencebetweentheobservedandNNRtrendsissomewhatnegativeinmostofthecountryeastoftheRockies,butisstronglypositiveinCaliforniaandtoalesserextent,inOregonandWashington,withanaveragedifferenceof20.0258Cperdecade.
Theminimumtemperature(Fig.3)observationsshowamuch
Figure1ComparisonofmonthlymeanstationandNNRsurfacetemperatureanomalieswithrespecttotheirannualcyclesforthecityofBaltimore,Maryland,USA.Tob,observedmonthlymeantemperaturein8C,showninred.Tan,analysedmonthlymeantemperaturein8C,showninblue.Fivedecades(1950to1999)areshownforcomparison.
529
©2003 Nature PublishingGroup
letterstonature
strongerpositivetrendinmostofthecountry,withanaverageofþ0.1938Cperdecade.IntheNNR,theminimumtemperatureincreaseseverywhereexceptintheMidwestandCalifornia,withanaverageofþ0.1138Cperdecade.ThedifferenceinminimumtemperaturetrendsbetweenobservedandNNRvaluesispositiveinmostofthecountry,especiallyinCalifornia,withanaverageof0.0808Cperdecade(40%oftheobservedtrend).
SupplementaryFig.2showsthetrendinthedifferencebetweenmaximumandminimumtemperaturesordiurnaltemperaturerange(DTR).IntheobservationstheDTRtrendisstronglynegativeinmostofthecountrywithanaveragedecreaseof20.2108Cperdecade.TheNNRalsoshowsageneraldecreaseofDTR,withanationalaverageof20.1058CperdecadesothatabouthalfofthedecreaseinDTRcouldbeattributabletosurfacechanges.
Thedailymeantemperatureobservationtrends(SupplementaryFig.3)obtainedastheaverageofthemaximumandminimumtemperaturesshowanincreaseinmostofthecountry,withanaveragetrendofþ0.0888Cperdecade.TheNNRtrendshaveanaverageofþ0.0618Cperdecade.Ofthetwo“urbancorrection”estimates7,8,ourestimateof0.278Cpercenturyattributabletolanduseisclosertotheestimatebasedonthenight-lighturbaneffect(seecentrebottomofplate3Cinref.7)thantotheestimatebasedonpopulationdensity(seecentrebottomofplate3Binref.7).Itshouldbenotedthatourobserveddailymeantemperaturetrends
a
4845423936333027
–0.017 °C
10.50.30.20.10.050–0.05–0.1–0.2–0.3–0.5–1
(SupplementaryFig.3a)aredifferentfromprevious50-yearor100-yeartrendestimates(seeplates3Aand7Ainref.7)becauseinourcomputationswedidnotinclude(1)thedecadaltrendscorre-spondingtothe1980s–1970sandespeciallythe1960s–1950s,and(2)urbanandnon-urbandataadjustments.Thenon-urbanadjust-mentstendtobestronglypositiveexceptovertheRockies(seeplate3Binref.7),sothatifwehadaddedthemtotherawobservations,ourestimateoftheland-useimpactonthemeantemperaturetrendswouldhavebeengeographicallysimilarbutlarger.
AlthoughitisnotpossibledefinitivelytoattributethedifferencesbetweentheobservationandtheNNRtemperaturetrendssolelytolanduse,includingurbanization,agricultureandirrigation,ourresultsarecompatiblewithsuchaninterpretation.Thewell-known‘urbanheatisland’effectactuallytakesplaceatnight,whenbuild-ingsandstreetsreleasethesolarheatingabsorbedduringtheday.Atthetimeofthemaximumtemperaturetheurbaneffectisoneofslightcooling,owingtoshading,aerosols,andtothermalinertiadifferencesbetweencityandcountrythatarenotcurrentlywellunderstood12.
Theeffectofagriculturaldevelopment,increasingevaporationduringtheday,wouldalsotendtodecreasethemaximumtem-perature:irrigationwouldincreasetheheatcapacityofthesoil,thusincreasingtheminimumtemperature.Therefore,bothurbaniz-ationandagricultureeffectscouldbeconsistentwiththegeneralincreaseintheminimumtemperatureandslightdecreaseinthemaximumtemperature,andcontributetothereductioninthediurnaltemperaturerangeshowninourestimateseastoftheRockies(Figs2cand3c).
Thisimpliesthatthecomparisonofurbanandruralstationswithoutincludingagriculturaleffectswouldunderestimatethetotal
a
48454239
Maximum temperature (°C)36333027
+0.193 °C
10.50.30.20.10.050–0.05–0.1–0.2–0.3–0.5–1
b
4845Latitude (°N)423936333027
+0.008 °C
10.50.30.20.10.050–0.05–0.1–0.2–0.3–0.5–1
b
4845Latitude (°N)423936333027
+0.113 °C
10.50.30.20.10.050–0.05–0.1–0.2–0.3–0.5–1
Maximum temperature (°C)c
4845423936333027
120115110105100959085
Longitude (°W)
80
75
70–0.025 °C
10.50.30.20.10.050–0.05–0.1–0.2–0.3–0.5–1
c
4845423936333027
120115110105100959085
Longitude (°W)
80
75
70+0.080 °C
10.50.30.20.10.050–0.05–0.1–0.2–0.3–0.5–1
Figure2DecadaltrendofthemaximumtemperatureaveragedforeveryUSstationbelowanelevationof500m.Eachvalue(in8Cperdecade)wascalculatedfromtheaverageofthe‘1990sminusthe1980s’andthe‘1970sminusthe1960s’maximumtemperatures.Thestationvaluesaredisplayedasaveragesinboxesof0.58latitudeby0.58longitude.Blankboxesindicatethatnoneofthe1982stationsiswithintheboxes,andthenationalaverageistheaverageoftheseboxes.Theaveragevalueofthetrendisindicatedineachpanel.a,Station(observed)maximumtemperaturetrends.b,NNR(analysed)maximumtemperaturetrends.c,‘Observedminusanalysed’maximumtemperaturetrends.
530
Figure3DecadaltrendoftheminimumtemperatureaveragedforeveryUSstationbelow500m.LegendasforFig.2butfortheminimumtemperatures.
NATURE|VOL423|29MAY2003|www.nature.com/nature
©2003 Nature PublishingGroup
letterstonature
impactofland-usechanges.Morestudiesareneeded,includingacomparisonofgeographicaldistributionofNNRtrendswithotherupper-airobservations,suchasrawinsondesandsatellites,amoreprecisedefinitionoftheurbanandruralobservingstations,andtheimpactofotherhumanactivitiessuchascontrailsandaerosolsthatcanalsoreducethediurnaltemperaturerange13.
Ourmethodcanincorporateupdatedobservationsastheybecomeavailable,canbeappliedtolandstationsthroughouttheworld,toothervariablessuchashumidityandwinds,detectseasonaltrends,andsignalchangesinstationlocationsthatareotherwisedifficulttoidentify.A
9.
climatologynetworkbasedonsatellite-designatedlanduse/landcover.J.Clim.12(5),1344–1348
(1999).
NRCBoardonAtmosphereSciencesandClimateCommitteePanel,JohnM.Wallace,chair,pages1–71.ReconcilingObservationsofGlobalTemperatureChange(NationalResearchCouncil,WashingtonDC,2000).
Kalnay,E.etal.TheNCEP/NCAR40-yearreanalysisproject.Bull.Am.Meteorol.Soc.77,437–431(1996).
Kistler,R.etal.TheNCEP/NCAR50-yearreanalysis:MonthlymeansCD-ROManddocumentation.Bull.Am.Meteorol.Soc.82,247–267(2000).
Runnalls,K.E.&Oke,T.R.Dynamicsandcontrolsofthenear-surfaceheatislandofVancouver,BC.Phys.Geogr.21,283–304(2000).
Travis,D.J.,Carleton,A.M.&Lauritsen,R.G.Contrailsreducedailytemperaturerange.Nature418,601(2002).
10.11.12.13.
Methods
Data
Forthesurfaceobservations,weusethedailysurfacemaximumandminimum
uncorrectedsurfacestationtemperaturesfromtheNationalClimateDataCenter(NCDC)‘CooperativeSummaryoftheDay’datasetoverthe48contiguousstatesoftheUnitedStatesfor1950–1999.FortheNNR,weusetheglobaldailysurfacemaximumandminimumtemperaturesgriddedon2.58gaussianboxes,alsofortheperiod1950–1999.
SupplementaryInformationaccompaniesthepaperonwww.nature.com/nature.
AcknowledgementsThisstudywaspartiallysupportedbyaRiskPredictionInitiativegrant.WearegratefultoA.Senserini,whoperformedmostofthecomputations,toJ.E.JanowiakandW.Ebisuzakiwhoprovidedthedata,andtoR.Murnane,T.Oke,J.Hansen,E.Rassmusson,R.PielkeSr,T.vonderHaarandZ.Lifordiscussions.
CompetinginterestsstatementTheauthorsdeclarethattheyhavenocompetingfinancialinterests.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoE.K.(ekalnay@atmos.umd.edu).
Analysis
WeinterpolatelinearlythegriddedNNRdatatoeachobservationalsite,andonlyconsiderthesitesthathaveatotalofatleast480(whole)monthsofobservations.Inaddition,becausetheNNRhassurfaceheightsdifferentfromthoseofthereallocations,andextrapolationsundergroundcanintroduceerrorsoverwhelmingthesignaloftherealtrends(SupplementaryFig.2),inthecomputationofthetrendsweonlyconsidersiteswithelevationslowerthan500m.Thereare1,982USsurfacestationssatisfyingthesetwoconditions.Weobtainmonthlymeansbyaveragingdailydata;dailymeantemperaturesareobtainedbyaveragingmaximumandminimumtemperatures,anddailytemperaturerangesbysubtractingtheminimumfromthemaximumtemperature.
BecausetheNNRcanhavesystematicdifferenceswithobservations,especiallynearthesurface,owingtodeficienciesinthemodelforecastorthemethodofassimilation,weremovethe50-yearmonthlymeanannualcycleforeachsitefromboththeobservationsandtheNNR.Wearethuscomparinganomalieswithrespecttothe50-yearmeanannualcycle.Intheresultswepresentbothcomparisonsofthe50-yeartimeseriesandtrends.Thetrendsarecomputedaschangesindecadalaveragesinordertoreducerandomerrors.Weonlyconsidertwodecadaltrends:thedecade1990–1999minus1980–19,and1970–1979minus1960–1969.Wedonotincludeinthetrendsthedifferencebetweenthedecades1960–1969and1950–1959,becausetheobservingsystemduringthe1950swas
considerablylessreliablethaninlaterdecades,anditunderwentsignificantschedulingchangesduring1958(ref.11).
Inaddition,wehavetoaddresschangesintheobservingsystems,especiallytheintroductionofthesatelliteobservingsystem(ofwhichthemostimportantistheTIROS-NOperationalVerticalSounder,TOVS)startingin1979.ThesetwomajorchangesarethemainreasonwhytrendsintheNNRneedtobecarefullyestimated.Wethereforedonotincludethechanges1980–19minus1970–1979.Thetwodecadalchangesthatwekeepcorrespondtothe1990sminus1980s(20yearswithsatellitedata),and1970sminus1960s(20yearsessentiallywithoutsatellitedata).Thus,whenweaveragethemweobtaindecadaltrendsfromtwoindependentandlargelyhomogeneous20-yearperiods.
Wecomparedthe1990sversus1980strendof775stationsclassifiedasurbanversus167stationsclassifiedasrural.Themeansurfacetemperatureincreasedby0.318Cfortheurbanstationsand0.138Cfortheruralstations,withstandarddeviationsofabout0.58Ceach.Thedifferencebetweenurbanandruralwarming,0.188C,issignificantata99%levelofsignificance.Thetrendsforthereanalysisstationestimatesare0.268Cforurbanand0.258Cforrural,withstandarddeviationsofabout0.228C,andthedifference0.018Cbetweenurbanandruralisinsignificant,showingthattheNNRisinsensitivetosurfaceeffects.
Inthetimeserieswecomputethe1950–1959averagetemperaturedifferencebetweentheNNRandthesurfacestationateachstationandsubtractitfromtheNNR.Thisforcesthetwotimeseriestohavethesame10-yeartimeaverageduringthe1950sandisdonefordisplaybutdoesnotaffectthecomputationofthetrendsorcorrelations.
Received18December2002;accepted23April2003;doi:10.1038/nature01675.
1.IPCCClimateChange2001:TheScientificBasis(CambridgeUniv.Press,Cambridge,UK,2001).2.Pielke,R.A.Sretal.Theinfluenceofland-usechangeandlandscapedynamicsontheclimatesystem:
Relevancetoclimate-changepolicybeyondtheradiativeeffectsofgreenhousegases.Phil.Trans.R.Soc.Lond.A360,1–15(2002).
3.Gallo,K.P.&Owen,T.W.Satellite-basedadjustmentsforurbanheatislandtemperaturebias.J.Appl.
Meteorol.38,806–813(1999).
4.Owen,T.W.,Gallo,K.P.,Elvidge,C.D.&Baugh,K.E.UsingDMSP-OLSlightfrequencydatato
categorizeurbanenvironmentsassociatedwithUSclimateobservingstations.Int.J.RemoteSensing19,3451–3456(1998).
5.Easterling,D.R.etal.Maximumandminimumtemperaturetrendsfortheglobe.Science277,3–
367(1997).
6.Gallo,K.P.,Easterling,D.R.&Peterson,T.C.Theinfluenceoflanduse/landcoveronclimatological
valuesofthediurnaltemperaturerange.J.Clim.9(11),2941–2944(1996).
7.Hansen,J.E.etal.AcloserlookatUnitedStatesandglobalsurfacetemperaturechange.J.Geophys.
Res.106,23947–23963(2001).
8.Gallo,K.P.,Owen,T.W.,Easterling,D.R.&Jamason,P.F.TemperaturetrendsoftheUShistorical
..............................................................
FieldsportsandconservationintheUnitedKingdom
T.E.E.Oldfield,R.J.Smith,S.R.Harrop&N.Leader-Williams
DurrellInstituteofConservationandEcology,UniversityofKent,Canterbury,KentCT27NS,UK
.............................................................................................................................................................................
Manynaturalhabitatsexistonprivatelyownedlandoutsideprotectedareas1,butfewgovernmentscanaffordtoenforceorsubsidizeconservationofthisbiodiversity.Eveninsomedevel-opedcountries,conservationsubsidyschemeshaveonlyachievedlimitedsuccess2–4.Fortunately,somelandownersmaybewillingtoacceptmanagementcostsinreturnforotherbenefits5,althoughthisremainscontroversialwhenitinvolvesthekillingofcharismaticspecies.Forexample,participantsinBritishfieldsports,suchasfoxhuntingandgame-birdshooting,mayvolun-tarilyconserveimportanthabitatsthatarerequiredbyquarryspecies6–8.HerewereportresultsfromamultidisciplinarystudythataddressedthisissuebyfocusingonthreesitesacrosscentralEngland.Wefoundthatlandownersparticipatinginfieldsportsmaintainedthemostestablishedwoodlandandplantedmorenewwoodlandandhedgerowsthanthosewhodidnot,despitetheequalavailabilityofsubsidies.Therefore,voluntaryhabitatmanagementappearstobeimportantforbiodiversityconserva-tioninBritain.CurrentdebatesonthefutureoffieldsportsinBritain,andsimilaractivitiesglobally,maybenefitfromcon-sideringtheirutilityasincentivestoconserveadditionalhabitatonprivateland.
Privatelandownersplayanincreasinglyimportantroleinbio-diversityconservation1.Thisisespeciallyimportantwherehabitatsformisolatedremnantsinanagriculturalmatrix,anditispoliticallydifficulttoestablishlargeprotectedareas9.ThisistypifiedbythesituationinBritain,wherefarmlandcovers76%ofthecountryandincreasesinagriculturalefficiencyhavecausedgreatdeclinesinbiodiversity7,10,11.TheBritishgovernmenthasrespondedbyintro-ducinglegislationtoprotectimportanthabitatsandspeciesonpublicandprivateland12–14,aswellasestablishingsubsidyschemes11,15.However,conservationlegislationremainsunpopular
531
NATURE|VOL423|29MAY2003|www.nature.com/nature©2003 Nature PublishingGroup
letterstonature
19.Otwinowski,M.&Minor,W.ProcessingofX-raydiffractiondatacollectedinoscillationmode.MethodsEnzymol.276,307–326(1997).
20.Terwilliger,T.C.&Berendzen,J.AutomatedMADandMIRstructuresolution.ActaCrystallogr.D55,849–861(1999).
21.Terwilliger,T.C.Maximumlikelihooddensitymodification.ActaCrystallogr.D56,965–972(2000).22.Jones,T.,Zou,J.-Y.,Cowan,S.&Kjeldgaard,M.Improvedmethodsforbuildingproteinmodelsinelectrondensitymapsandthelocationoferrorsinthesemodels.ActaCrystallogr.A47,110–119(1991).ˆnger,A.T.etal.Crystallography&N.M.R.system:anewsoftwaresuiteformacromolecular23.Bru
structuredetermination.ActaCrystallogr.D54,905–921(1998).
..............................................................
corrigenda
SupplementaryInformationaccompaniesthepaperonwww.nature.com/nature.
AcknowledgementsWearegratefultoJ.R.H.Tameforacriticalreadingofthemanuscript.WethankZ.Noforprovidingsildenafilcitrate;D.-K.Kimforprovidingvardenafil;D.K.Shinfordiscussionandfigures;andH.-S.LeeandG.-H.KimfortheirassistanceatthePohangLightSource(PLS),beamline6B.ExperimentsatPLSweresupported,inpart,bytheMinistryofScienceandTechnology(MOST)ofKoreaandPOSCO.WealsothankS.Y.P’sgroupfortheirassistanceatSpring-8forhigh-resolutiondata.ThisworkwassupportedpartiallybyagrantfromtheNationalResearchLaboratoryProgramandtheCenterforBiologicalModulatorsofthe21cFrontierR&DProgram,subsidizedMOST.ThisworkwasalsosupportedpartlybyYuyuInc.andKT&GCo.Ltd..
CompetinginterestsstatementTheauthorsdeclarethattheyhavenocompetingfinancialinterests.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoS.G.R.
(sgro@crystalgenomics.com)orJ.M.C.(jmcho@crystalgenomics.com).Coordinatesforthesildenafil,tadalafilandvardenafilcomplexstructurehavebeendepositedintheProteinDataBankunderaccessioncodes1UDT,1UDUand1UHO,respectively.
StructureofthereplicativehelicaseoftheoncoproteinSV40largetumourantigen
DaweiLi,RuiZhao,WayneLilyestrom,DahaiGai,RongguangZhang,JamesA.DeCaprio,EllenFanning,AndrzejJoachimiak,GerdaSzakonyi&XiaojiangS.Chen
Nature423,512–518(2003).
.............................................................................................................................................................................
ThenameofA.J.wasmisspeltintheauthorlistandshouldbeAndrzejJoachimiak.Also,heisintheBiosciencesDivisionofSBC(andnotattheAdvancedPhotonSource,aspublished).A
..............................................................
corrigendum
Impactofurbanizationand
..............................................................land-usechangeonclimate
erratum
E.Kalnay&M.Cai
Theexpressiondomainof
PHANTASTICAdeterminesleafletplacementincompoundleaves
MinsungKim,SheilaMcCormick,MarjaTimmermans&NeelimaSinha
Nature423,528–531(2003).
.............................................................................................................................................................................
Nature424,438–443(2003)..............................................................................................................................................................................
IntheMethodssectiononpage443ofthisLetter,alinewasomitted.Thesentenceshouldread:“Wedeterminedantibodypurityandspecificitybywesternblotanalysisonproteinextractspreparedfromwild-typeandrs2mutantapices.”A
Whencalculatingarealaverages,whichinvolveweightinggridded
datawiththecosineofthelatitudeofhalf-degreegridboxes,wedividedthesumbythetotalnumberofgridsbutomittedtodividethesumalsobytheaveragecosinelatitudeofthedomain,whichis0.786.Thiserroraffectsonlythearea-averagedvalues,notthemapsorthestationvalues,ortherelativedifferencesbetweenstationandreanalysisvalues.Asaresult,theaveragenumbersonthemapsshouldbedividedbythisfactor.Astheproportionsquotedremainthesame,thiserrordoesnotaffectourconclusions,exceptthatthevaluesofarea-averagedtrendshavetobemultipliedby1.272.Thecorrectedestimateofthetrendindailymeantemperatureduetolandusechangesis0.358Cpercentury.A
102©2003 Nature PublishingGroupNATURE|VOL425|4SEPTEMBER2003|www.nature.com/nature
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务