过河爬井问题
过河爬进问题最常见于公中,属于趣味杂题中的一种,学习这种题只要把核心公式记下来直接套用即可。
公式:M个人过河,船能载N个人。需要A个人划船,共需过河(M-A)/ (N-A)次
【真题】32名学生需要到河对岸去野营,只有一条船,每次最多载4人(其中需1人划船),往返一次需5分钟,如果9时整开始渡河,9时17分时,至少有( )人还在等待渡河。
A. 15 B. 17 C. 19 D. 22
【解析】由于9时开始渡河,往返一次需要5分钟,9点0分、9点5分、9点10分、9点15分,船各运一批人过河,所以一共运了4次(其中第四次还在路上)。运用公式:(M-1)/(4-1)=4求出M=13。因此,共有13人已经离开了出发点,因此至少有32-13=19人等待过河。
【青蛙爬井问题】
“青蛙爬井问题”可转化为“过河问题”, 因此可以使用相同的公式。
【例】有一只蜗牛掉入一口深30米的井中。每天白天这只蜗牛爬上5米晚上又下滑2米,则这只蜗牛经过多少天可以从井中爬出?
A.7 B.8 C.9 D.10
【解析】本题当中的蜗牛白天、晚上一来一回,可以类比“过河问题”当中的船的来回。因此,本题相当于:一共30个人,船上能承载5个人,但需要2个人划船,于是每次过去5人需要回来2个人,所以一共需要(30—2)/(5—2)=9.33天,取整数需要10天。本题选D。
【预测】有一只青蛙掉入一口深15米的井中。每分钟能跳上4米后又下滑1米,青蛙需要休息1分钟才能继续往上跳,问青蛙如此往复需要多少分钟才能跳出井口?
【解析】先利用公式求出青蛙跳出需要(15-1)/(4-1)=4.67,取整得5次青蛙跳出井口。因为青蛙最后一次跳上井口后就不再下滑,所以一共有5次跳和4次下滑(休息),共用了5+4=9分钟
人数方阵问题
公行测中的横竖排问题,我们将横着排称为行,竖着排称为列。如行数与列数相等,则正好排成一个正方形,此图形被称为方阵(也被称为乘方问题)。对于解答此类问题,人事考试网的专家在多年辅导公的基础上,总结出方阵各要素之间存在如下的关系:
特点:1、方阵每边的实物数量相等。2、同边上相邻两层的实物数量相差2。3、相邻两层的实物数量相差8。
设:最外层每边人数为a,中空方阵层数为n,最内层每边人数为b。
(1)、方阵每边人数和每层总人数关系。
每层总数=(每边人数-1)×4
每边人数=每层总数÷4+1
(2)、方阵总人数
①实心方阵:总人数=每边人数×每边人数,即总人数=a×a
②空心方阵:总人数=每边人数×每边人数-内边人数×内边人数,即
总人数=a×a-(b-2)×(b-2),
总人数=4×(外边人数-层数)×层数,即
总人数=4×(a-n)×n
总人数=4×(b-2+n)×n
(3)、在方阵中如果去掉一行一列,则:去掉的人数=最外边人数×2+1
以下面真题为例验证:
例题1.(2007年浙江省第15题)
某战士排成了一个6行、8列的长方阵。现在要求各行从左至右1,2,1,2,1,2,1,2报数,再各列从前到后1,2,3,1,2,3报数。问在两次报数中,所报数字不同的战士有( )。
A.18个 B.24个
C.32个 D.36个
【解析】此题可画出直观图进行解答。当从左至右报1时,从前至后报2的有8人,报3的也有8人,当从左至右报2时,同理可得,从前至后报1的有8人,报3的也有8人,即所报数字不同的战士有32人。故选C。
例题2.(2007年黑龙江省(A类)第15题)
某学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?( )
A.272 B.256
C.225 D.240
【解析】本题考查方阵问题。方阵最外层每边人数为60÷4+1=16,所以这个方阵共有162=256人。故选B。
植树问题
植树问题的要素有三种:总距离、棵距(间距)长、棵数(个数),它在日常生活中应用比较广泛,主要有下面两种情况:
1)在不封闭的曲线(直线、折线、半圆等)上植树。
如果两端都可以植一棵树时,植树的棵数应比要分的段数多1;如果两端已经植树(或两端不宜植树)再在其间植树时,植树的棵数应比要分的段数少1.
常用数量关系:棵数(个数)=总距离÷棵距(间距)+1;棵数(个数)=总距离÷棵距(间距)-1
例1:甲单位义务植树一公里,乙单位紧靠甲单位又植树一公里,如果按10米植一棵树的话,两单位共植树多少棵?( )
A.199 B.200 C.201 D.202
解析:甲单位在一公里内植树,则两端都可以种一棵树,则一共可以中1000÷10+1=101棵树;乙单位紧靠着甲单位植树,则有一端不需要植树,一共可以中1000÷10=100棵树。甲、乙共植树101+100=201棵树。
正确答案:C
例2:李大爷在马路边散步,路边均匀地栽着一行树,李大爷从1棵树走到第15棵树共用了7分钟,李大爷又向前走了几棵树后就往回走,当他回到第5棵树时共用了30分钟。李大爷步行到第几棵树时就开始往回走?
A.第32棵 B.第33棵 C.第37棵 D.第38棵
解析:利用两棵数的间距相等的性质进行计算,实质还是植树问题。第一次李大爷走了15-1=14个间距,速度为每分钟14÷7=2个间距,剩下的23分钟李大爷可以走23×2=46个间距,以第5棵树为基准,往回走到第5棵树比从第15棵树走到回头的地方要多
走15-5=10个间距,即还能再向前走(46-10)÷2=18个间距,即走到第15+18=33棵树时回头。
正确答案:B
例3:在一条公路的两边植树,每隔3米种一棵树,从公路的东头种到西头还剩5棵树苗,如果改为每隔2.5米种1棵,还缺树苗115棵,则这条公路长多少米?
A.700 B.800 C.900 D.600
解析:注意,本题说明是在“一条公路的两边植树”。设公路长为a米,列方程2(a÷3+1)+5=2(a÷2.5+1)-115,解得a=900.
正确答案:C
例4:为了把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。某单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗多少棵?
A.8500棵 B.12500棵 C.12596棵 D.13000棵
解析:设两条路共有树苗x棵,由植树的数量关系根据路程相等列方程(x+2754-4)×4=(x-396-4)×5,解得X=13000.(因为在2条路两边植树,则棵树要比段数增加2×2=4)
正确答案:D
2)在封闭的曲线(圆、正方形、长方形等闭合曲线)上植树。
因为两端重合在一起,所以植树的棵数就等于可分的段数。
常用数量关系:棵数(个数)=总距离÷棵距(间距)
例5:一块三角地带,在三个边上植树,三个边的长度分别为156米、186米、234米,树与树之间的距离均为6米,三个角上都必须栽一棵树,问共需植树多少棵?
A.93 B.95 C.96 D.99
解析:三角地带的三边组成一个三角形,构成一条闭合线,则一共植树(156+186+234)÷6=96棵。
正确答案:C
从植树问题中可以衍生出一些其他问题,如锯木、锯钢管等,其运算实质同植树问题是一致的。
例6:把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需要多少分钟?
A.32分钟 B.38分钟 C.40分钟 D.152分钟
解析:把钢管锯成5段相当于种五棵树,它们的间距有5-1=4个,则需要锯4次,每
次需要8÷4=2分钟,那么,把钢管锯成20段需要锯19次,共需要19×2=38分钟。
正确答案:B
例7:用10张同样长的纸条,粘接成一条长61厘米的纸条,如果每个接头处都重叠1厘米,那么每条纸条长多少厘米?
A.6 B.6.5 C.7 D.7.5
解析:粘结时10张个纸条相当于种10棵树,它们的间距有10-1=9个,共有10-1=9个接头,则如果设每张纸条为x厘米,可以列方程:10x-1×9=61,x=7厘米。
正确答案:C
牛吃草问题
牛吃草问题又称为消长问题或牛顿牧场解决牛吃草问题常用到四个基本公式,分别是︰
假设定一头牛一天吃草量为“1”
1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷ (吃的较多天数-吃的较少天数);
2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
3)吃的天数=原有草量÷(牛头数-草的生长速度);
4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决消长问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的基本数量关系是:
1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草量。
解多块草地的方法 多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单
些。
“牛吃草”问题分析
【牛老师例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?
A.3 B.4 C.5 D.6
【牛老师答案】C
【牛老师解析】设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天
根据核心公式 代入
(200-150)/(20-10)=5 10*20-5*20=100 100/(25-5)=5(天)
【牛老师例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?
A.20 B.25 C.30 D.35
【牛老师答案】C
【牛老师解析】设该牧场每天长草量恰可供X头牛吃一天,
根据核心公式代入
(20×10-15×10)=5 10×20-5×20=100 100÷4+5=30(头)
【牛老师例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?
A.50 B.46 C.38 D.35
【牛老师答案】D
【牛老师解析】 设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y ,
24天内吃尽40公亩牧场的草,需要Z头牛
根据核心公式:
,代入
,因此 ,选择D
【牛老师注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。
下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。
【牛老师例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】
A.5台 B.6台 C.7台 D.8台
【牛老师答案】B
【牛老师解析】设每分钟流入的水量相当于X台抽水机的排水量,共需Y台抽水机
有恒等式:
解 ,得 ,代入恒等式
【牛老师例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?【北京社招2006】
A.16 B.20 C.24 D.28
【牛老师答案】C
【牛老师解析】设每分钟流入的水量相当于X台抽水机的排水量,共需Y小时
有恒等式:
解 ,得 ,代入恒等式
【牛老师例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)【浙江2007】
A.2周 B.3周 C.4周 D.5周
【牛老师答案】C
【牛老师解析】设每天新生长的野果足够X只猴子吃,33只猴子共需Y周吃完
有恒等式:
解 ,得 ,代入恒等式
【牛老师例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了【浙江2006】
A.2小时 B.1.8小时 C.1.6小时 D.0.8小时
【牛老师答案】D
【牛老师解析】设共需X小时就无人排队了。
例题 1、旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客OK了 求增加人数的速度还有原来的人数
设一个检票口一分钟一个人
1个检票口30分钟30个人
2个检票口10分钟20个人
(30-20)÷(30-10)=0.5个人
原有1×30-30×0.5=15人
或2×10-10×0.5=15人
2、有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份
所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份
因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份
所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份
所以45-30=15天,每亩面积长84-60=24份
所以,每亩面积每天长24÷15=1.6份
所以,每亩原有草量60-30×1.6=12份
第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份
新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛
所以,一共需要38.4+3.6=42头牛来吃。
两种解法:
解法一:
设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草
量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)
解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15亩,可以推出15亩每天新长草量 (28×45-30×30)/(45-30)=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头
时钟问题
近几年,无论在地方或国家公、选调生考试、或者是事业单位招聘考试中,经常会出现这样一类题型,考察内容通常是关于“时钟上分针和时针的重合、垂直、成一直线、成多少度角及钟表快慢等”问题,在此称之为“时钟问题”。时钟问题属于中等难度的题,但是很多考生朋友在解此类问题的时候觉得毫无头绪、无从下手,为什么会出现这种局面呢?毫无疑问,是因为没有抓住时钟问题的实质。希望通过下面的学习能对大家解决此类问题有小小帮助。
题型一:钟面追及问
此类问题通常是研究时针、分针之间的位置的问题,如“分针和时针的重合、垂直、成一直线、成多少度角”等。时针、分针朝同一方向运动,但速度不同,类似于行程问题中的追及问题。解决此类问题的关键在于:
1、确定时针、分针的速度(或速度差)
①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。分针每小时走一圈,即60分格,而时针每小时只走5分格,因此分针每分钟走1分格,时针每分钟走1/12分格。速度差为11/12分格。
②度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,即分针速度为6°/min,时针每小时转360/12=30度,所以每分钟的速度为30°/60,即0.5°/min。分针与时针的速度差为5.5°/min。
2、确定时针、分针的初始位置
通常以整点,比如3点、4点等这样的时间作为初始位置。
3、确定时针与分针的路程差(或目标位置)
例1、时钟上时针与分针每两次重合之间相隔多少分钟?( )
A、62.5 B、.5 C、(6/11) D、65(5/11)
答案:D 解析:分针速度6°/min,时针速度0.5°/min,速度差为6-0.5=5.5°。到下一次重合,分针比时针多走了一圈,即路程差为360°,所以两次重合间隔时间为360/5.5=65(5/11)
题型二:快慢表问题
解答快慢表问题的关键是分清楚每块表分针各自对应的速度与路程。
例2、有一只钟,每小时慢3分钟,早晨4点30分的时候,把钟对准了标准时间,则钟走到当天上午10点50分的时候,标准时间是( )
A、11点整 B、11点5分 C、11点10分 D、11点15分
答案:C 解析:这是一道非常典型的快慢表问题,这里面涉及两块表,一块好表,一块坏表(慢表)。好表分针速度为60分格/小时,而我们的坏表每小时比好表慢3分钟,也就是说坏表的分针每小时只走57分格,即坏表分针速度为57分格/小时。根据题意,坏表从早晨4点30分走到上午10点50分,实际上分针走了380分格,即坏表分针的路程为380分格。不管好表还是坏表,他们所经历的标准时间是相同的,所以根据时间相等可以列出以下方程,设好表分针的路程为X,则X/60=380/57,解得X=400,也就是说好表的分针比坏表多走(400-380)分格,也就是说标准时间应该比坏表所显示的时间快20分钟,所以标准时间应该是11点10分。本题有很多考生容易得到错误答案(11点09分),这主要就是由于没有分清楚每块表分针各自对应的速度与路程。
以上就是时钟问题经常考的两种题型,大家只要掌握时钟问题的本质,将其作为行程问题来解,相信可以较快得到正确答案。