校本课程 数学计算方法
目 录
第一讲 生活中几十乘以几十巧算方法 .. 错误!未定义书签。 第二讲 常用巧算速算中的思维与方法(1) ........................ - 4 - 第三讲 常用巧算速算中的思维与方法(2) ........................ - 6 - 第四讲 常用巧算速算中的思维与方法(3) ........................ - 8 - 第五讲 常用巧算速算中的思维与方法(4) ........................ - 9 - 第六讲 常用巧算速算中的思维与方法(5) ...................... - 10 - 第七讲 常用巧算速算中的思维与方法(6) ...................... - 11 - 第八讲 小数的速算与巧算 ......................................................... - 12 - 第九讲 乘法速算1 ........................................................................ - 13 - 第十讲 乘法速算2 ........................................................................ - 15 - 第十一讲 乘法速算3 ........................................................................ - 17 - 第十二讲 乘法速算4 ........................................................................ - 17 - 第十三讲 乘法速算5 ........................................................................ - 18 - 第十四讲 乘法速算6 ........................................................................ - 19 - 第十五讲 乘法速算7 ........................................................................ - 22 - 第十六讲 乘法速算8 ........................................................................ - 24 - 注:《速算技巧》 .......................................................................... - 27 -
第一讲 生活中几十乘以几十巧算方法
???1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。 例:12×14=? 解: 1 × 1 = 1 2+4=6 2×4=8 12×14=168 注:个位相乘,不够两位数要用0占位。 2.头相同,尾互补(尾相加等于10): 口诀:一个头加1后,头乘头,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 注:个位相乘,不够两位数要用0占位。?
3.第一个乘数互补,另一个乘数数字相同: 口诀:一个头加1后,头乘头,尾乘尾。 例:37×44=? 解:3+1=4
4×4=16 7×4=28 37×44=1628
注:个位相乘,不够两位数要用0占位。? 4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。 例:21×41=? 解:2×4=8 2+4=6 1×1=1 21×41=861? 5.11乘任意数: 口诀:首尾不动下落,中间之和下拉。 例:11×23125=? 解:2+3=5 3+1=4 1+2=3 2+5=7
2和5分别在首尾 11×23125=254375
注:和满十要进一。?
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。 例:13×326=? 解:13个位是3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 注:和满十要进一。 第二讲 常用巧算速算中的思维与方法(1) 【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。 例如着名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为 1+2 +……+99+100 所以,1+2+3+4+……+99+100 =101×100÷2 =5050
“3+5+7+………+97+99=?
3+5+7+……+97+99=(99+3)×49÷2= 2499。
这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建利用这一
思路巧妙地解答了“有女不善织”这一名题:
“今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。问织几何?”
题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。问她一共织了多少布?
张丘建在《算经》上给出的解法是: “并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。 这一解法,用现代的算式表达,就是 1 匹=4 丈,1 丈=10 尺, 90 尺=9 丈=2 匹1 丈。 张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的布都加起来,算式就是:5+…………+1 在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。若把这个式子反过来,则算式便是 :1+………………+5 此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。 假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等” 这一特点,那么,就会出现下面的式子: 所以,加得的结果是6×30=180(尺) 但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。所以,这妇女30 天织的布是 180÷2=90(尺)
可见,这种解法的确是简单、巧妙和饶有趣味的。
第三讲 常用巧算速算中的思维与方法(2)
方法一:分组计算
一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。 例如:
求1 到10 亿这10 亿个自然数的数字之和。
这道题是求“10 亿个自然数的数字之和”,而不是“10 亿个自然数之和”。 什么是“数字之和”?例如,求1 到12 这12 个自然数的数字之和,算式是 1+2+3+4+5+6+7+8+9+1+0+1+1+1+2=5l。 显然,10 亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10 亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。然后,将它们分组: 0 和999,999,999;1 和999,999,998; 2 和999,999,997;3 和999,999,996; 4 和999,999,995;5 和999,999, 994; ……… ……… 依次类推,可知除最后一个数,1,000,000,000 以外,其他的自然数与添上的0 共10 亿个数,共可以分为5 亿组,各组数字之和都是81,如 0+9+9+9+9+9+9+9+9+9=81 1+9+9+9+9+9+9+9+9+8=81 2+9+9+9+9+9+9+9+9+7=81 ……………… 最后的一个数1,000,000,000 不成对,它的数字之和是1。所以,此题的计算结果是
(81×500,000,000)+1 =40,500,000,000+1 =40,500,000,001 方法二:由小推大
计算复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。例如:
(1)计算下面方阵中所有的数的和。
这是个“100×100”的大方阵,数目很多,关系较为复杂。不妨先化大为小,再由小推大。先观察“5×5”的方阵,如下图(图4.1)所示。 容易看到,对角线上五个“5”之和为25。
这时,如果将对角线下面的部分(右下部分)用剪刀剪开,如图4.2 那样拼接,那么将会发现,这五个斜行,每行数之和都是25。所以,“5×5”方阵的所有数之和为25×5=125,即53=125。 于是,很容易推出大的数阵“100×100”的方阵所有数之和为1003=1,000,000。 (2)把自然数中的偶数,像图4.3 那样排成五列。最左边的叫第一列,按从左到右的顺序,其他叫第二、第三……第五列。那么2002 出现在哪一列: 列数 一 二 2 三 4 12 20 28 36 四 6 10 22 26 38 五 8 16 14 18 24 32 30 34 40 …… …… …… 图4.3 因为从2 到2002,共有偶数2002÷2=1001(个)。从前到后,是每8 个偶数为一组,每组都是前四个偶数分别在第二、三、四、五列,后四个偶数分别在第四、三、二、一列(偶数都是按由小到大的顺序)。所以,由1001÷8=125…………1,可知这1001 个偶数可以分为125 组,还余1 个。故2002 应排在第二列。 方法三:凑整巧算
用“凑整方法”巧算,常常能使计算变得比较简便、快速。例如 (1)99.9+11.1=(90+10)+(9+1)+(0.9+0.1)=111 (2)9+97+998+6=(9+1)+(97+3)+(998+2)
=10+100+1000 =1110
(3)125+125+125+125+120+125+125+125 =155+125+125+125+(120+5)+125+125+125-5 =125×8-5 =1000-5 =995 第四讲 常用巧算速算中的思维与方法(3) 方法一:巧妙试商 除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。 (1)用“商五法”试商。 当除数(两位数)的10 倍的一半,与被除数相等(或相近)时,可以直接试商“5”。如70÷14=5,125÷25=5。 当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。“无除”指被除数前两位不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“ 5”。例如1248÷24=52,2385÷45=53 (2)同头无除商八、九。 “同头”指被除数和除数最高位上的数字相同。“无除”仍指被除数前两位不够除。这时,商定在被除数高位数起的第三位上面,再直接商8 或商9。 5742÷58=99,4176÷48=87。 (3)用“商九法”试商。
当被除数的前两位数字临时组成的数小于除数,且前三位数字临时组成的数与除数之和,大于或等于除数的10 倍时,可以一次定商为“9”。
一般地说,假如被除数为m,除数为n,只有当9n≤m<10n 时,n 除m 的商才是9。同样地,10n≤m+n<11n。这就是我们上述做法的根据。 例如4508÷49=92,80÷72=90。
(4)用差数试商。
当除数是11、12、13…………18 和19,被除数前两位又不够除的时候,可以用“差数试商法”,即根据被除数前两位临时组成的数与除数的差来试商的方法。若差数是1 或2,则初商为9;差数是3 或4,则初商为8;差数是5 或6,则初商为7;差数是7 或8,则初商是6;差数是9 时,则初商为5。若不准确,只要调小1 就行了。 例如
1476÷18=82(18 与14 差4,初商为8,经试除,商8正确); 1278÷17=75(17 与12 的差为5,初商为7,经试除,商7 正确)。 为了便于记忆,我们可将它编成下面的口诀: 差一差二商个九,差三差四八当头; 差五差六初商七,差七差八先商六; 差数是九五上阵,试商快速无忧愁。 方法二:恒等变形 恒等变形是一种重要的思想和方法,也是一种重要的解题技巧。 它利用我们学过的知识,去进行有目的的数学变形,常常能使题目很快地获得解答。 例如 (1)1832+68=(1832-32)+(68+32) =1800+100 =1900 (2)359.7-9.9=(359.7+0.1)-(9.9+O.1) =359.8-10 =349.8 第五讲 常用巧算速算中的思维与方法(4)
方法一:拆数加减
在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。
(1) 又如
拆成两个分数相减。例如
(2)拆成两个分数相加。 例如 又如
方法二:同分子分数加减
同分子分数的加减法,有以下的计算规律: 分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。 分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。 例如 (注意:分数减法要用减数的原分母减去被减数的原分母。) 由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积, 根据这一关系,我们也可以简化运算过程。例如 方法三:先借后还 “先借后还”是一条重要的数学解题思想和解题技巧。例如 做这道题,按先通分后相加的一般办法,势必影响解题速度。现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。 第六讲 常用巧算速算中的思维与方法(5) 方法一:个数折半
下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。 (1)分母相同的所有真分数相加。求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。
这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除
以2,就能得出结果。
(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。比方
(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折 半法”求得数。 比方
方法二:带分数减法 带分数减法的巧算,可用下面的两个方法。 (1)减数凑整。例如 (2)交换位置。例如 在这两种方法中,第(1)种“凑整”法,也可以运用到带分数的加法中去。 例如 第七讲 常用巧算速算中的思维与方法(6) 方法一:带分数乘法 有些特殊的带分数相乘,可以采用一些特殊的巧算方法。 (1)相乘的两个带分数整数部分相同,分数部分的和是1,则乘积也是个带分数,它的整数部分是一个因数的整数部分乘以比它大1 的数,分数部分是两个因数的分数部分的乘积。例如 (2)相乘的两个带分数整数部分相差1,分数部分和为1,则积也是个带分数,它用较大数的整数部分的平方,减去分数部分的平方,所得的差就是这两个带分数的乘积。例如
(注:这是根据“(a+b)(a-b)=a2-b2”推出来的。)
(3)相乘的两个带分数,整数部分都是1,分子也都是1,分母相差1,则乘积也是个带分数。这个带分数的整数部分是1,分子是2,分母与较大因数的分母相同。例如
读者自己去试一试,此处略)。
方法二:两分数相除
有些分数相除,可以采用以下的巧算方法:
(1)分子、分母分别相除。在个别情况下,分数除法可沿用整数除法的做法:用分子相除的商作分子,用分母相除的商作分母。不过,这只有在被除数的分子、分母,分别是除数的分子、分母的整数倍数的情况下,计算才比较简便。 例如
(2)分母相除,一次得商。在两个带分数相除的算式中,当被除数和除数的整数与分母调换了位置,而它们的分子又相同时,根据分数除法法则,只要用原除数的分母除以被除数的分母,所得的数就是它们的商。 例如 (注:用除法法则可以推出这种方法,此处略。) 第八讲 小数的速算与巧算 【知识精要】 凑整法是小数加减法速算与巧算运用的主要方法。用的时候主要看末位。但是小数计算中“小数点”一定要对齐。 【例题精讲】 <一>凑整法 例1、 计算5.6+2.38+4.4+0.62。 【分析】5.6 与4.4 刚好凑成10,2.38 与0.62 刚好凑成3,这样先凑整运算起来会更加简便。 【解答】原式=(5.6+4.4)+(2.38+0.62) =10+3 =13
【评注】凑整,特别是“凑十”、“凑百”等,是加减法速算的重要方法。 例2、计算:1.999+19.99+199.9+1999。
【分析】因为小数计算起来容易出错。刚好1999 接近整千数2000,其余各加数看做
与它接近的容易计算的整数。再把多加的那部分减去。 【解答】 1.999+19.99+199.9+1999 =2+20+200+2000-0.001-0.01-0.1-1 =2222-1.111 =2220.8
【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,我们也可以引申为读整法,譬如此题。“1.999”刚好与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。 但是,一定要记住刚才“多加的”要“减掉”。“多减的”要“加上”! 第九讲 乘法速算1 一.前数相同的: 1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)×10+A×B 方法:百位为二,个位相乘,得数为后积,满十前一。 例:13×17 13 + 7 = 2- - ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了) 3 × 7 = 21 ----------------------- 221 即13×17= 221 1.2.十位是1,个位不互补,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B 方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。 例:15×17
15 + 7 = 22- ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了) 5 × 7 = 35 -----------------------
255
即15×17 = 255
1.3.十位相同,个位互补,即A=C,B+D=10,S=A×(A+1)×10+A×B
方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积
例:56 × 54 (5 + 1) × 5 = 30- - 6 × 4 = 24 ---------------------- 3024 1.4.十位相同,个位不互补,即A=C,B+D≠10,S=A×(A+1)×10+A×B 方法1:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然 例:67 × (6+1)×6=42 7×4=28 7+4=11 11-10=1 4228+60=4288 ---------------------- 4288 方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。 例:67 × 6 ×6 = 36- - (4 + 7)×6 = 66 - 4 × 7 = 28 ----------------------
4288
第十讲 乘法速算2
二、后数相同的:
2.1. 个位是1,十位互补 即 B=D=1, A+C=10 S=10A×10C+101 方法:十位与十位相乘,得数为前积,加上101.。 - -8 × 2 = 16- - 101 ----------------------- 1701 2.2. <不是很简便>个位是1,十位不互补 即 B=D=1, A+C≠10 S=10A×10C+10C+10A +1 方法:十位数乘积,加上十位数之和为前积,个位为1.。 例:71 ×91 70 × 90 = 63 - - 70 + 90 = 16 - 1 ---------------------- 61 2.3个位是5,十位互补 即 B=D=5, A+C=10 S=10A×10C+25 方法:十位数乘积,加上十位数之和为前积,加上25。 例:35 × 75 3 × 7+ 5 = 26- - 25
---------------------- 2625
2.4<不是很简便>个位是5,十位不互补 即 B=D=5, A+C≠10 S=10A×10C+525
方法:两首位相乘(即求首位的平方),得数作为前积,两十位数的和与个位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。 例: 75 ×95 7 × 9 = 63 - - (7+ 9)× 5= 80 - 25
---------------------------- 7125 2.5. 个位相同,十位互补 即 B=D, A+C=10 S=10A×10C+B100+B2 方法:十位与十位相乘加上个位,得数为前积,加上个位平方。 例:86 × 26 8 × 2+6 = 22- - 36 ----------------------- 2236 2.6.个位相同,十位非互补 方法:十位与十位相乘加上个位,得数为前积,加上个位平方,再看看十位相加比10大几或小几,大几就加几个个位乘十,小几反之亦然 例:73×43 7×4+3=31 9 7+4=11 3109 +30=3139 ----------------------- 3139
第十一讲 乘法速算3
2.7.个位相同,十位非互补速算法2
方法:头乘头,尾平方,再加上头加尾的结果乘尾再乘10 例:73×43 7×4=28 9 2809+(7+4)×3×10=2809+11×30=2809+330=3139 ----------------------- 3139 三、特殊类型的: 3.1、一因数数首尾相同,一因数十位与个位互补的两位数相乘。 方法:互补的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。 例: 66 × 37 (3 + 1)× 6 = 24- - 6 × 7 = 42 ---------------------- 2442 第十二讲 乘法速算4 3.2、一因数数首尾相同,一因数十位与个位非互补的两位数相乘。
方法:杂乱的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看非互补的因数相加比10大几或小几,大几就加几个相同数的数字乘十,反之亦然 例:38×44 (3+1)×4=16
8*4=32 1632 3+8=11 11-10=1 1632+40=1672 ---------------------- 1672 第十三讲 乘法速算5 3.3、一因数数首尾互补,一因数十位与个位不相同的两位数相乘。 方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看不相同的因数尾比头大几或小几,大几就加几个互补数的头乘十,反之亦然 例:46×75 (4+1)*7=35 6*5=30 5-7=-2 2*4=8 3530-80=3450 ---------------------- 3450 3.4、一因数数首比尾小一,一因数十位与个位相加等于9的两位数相乘。 方法:凑9的数首位加1乘以首数的补数,得数为前积,首比尾小一的数的尾数的补数乘以凑9的数首位加1为后积,没有十位用0补。 例:56×36
10-6=4,3+1=4,36÷9也等于4 5*(10-6)=20
4*(10-6)=16
“注:(10-6)也可以写作(3+1)和(36÷9)” --------------- 2016
3.5、两因数数首不同,尾互补的两位数相乘。
方法:确定乘数与被乘数,反之亦然。被乘数头加一与乘数头相乘,得数为前积,尾乘尾,得数为后积。再看看被乘数的头比乘数的头大几或小几,大几就加几个乘数的尾乘十,反之亦然 例:74×56 (7+1)*5=40 4*6=24 7-5=2 2*6=12 12*10=120 4024+120=4144 --------------- 4144 第十四讲 乘法速算6 3.6、两因数首尾差一,尾数互补的算法 方法:不用向第五个那么麻烦了,取大的头平方减一,得数为前积,大数的尾平方的补整百数为后积 例:24×36 3>2 3*3-1=8 6^2=36 100-36=
--------------- 8
3.7、近100的两位数算法
方法:确定乘数与被乘数,反之亦然。再用被乘数减去乘数补数,得数为前积,再把两数补数相乘,得数为后积(未满10补零,满百进一) 例:93×91 100-91=9 93-9=84 100-93=7 7*9=63 --------------- 8463 3.8、头互补,尾不同的两位数乘法 方法:先确定乘数与被乘数,前两位为将被乘数的头和乘数的头相乘加上乘数的个位数。后两位为被乘数与乘数尾数的积。再看被乘数末尾的数比乘数末尾数字小几或大几,小几就减几个乘数的头乘十,反之亦然 例:22×81 2*8+1=17 2*1=2 2=1+1 1702+1*80=1782 --------------- 1782
B、平方速算 一、求11~19 的平方
同上1.2,乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一 例:17 × 17
17 + 7 = 24- 7 × 7 = 49 --------------- 2
二、个位是5 的两位数的平方
同上1.3,十位加1 乘以十位,在得数的后面接上25。 例:35 × 35 (3 + 1)× 3 = 12-- 25 ---------------------- 1225 三、十位是5 的两位数的平方 同上2.5,个位加25,在得数的后面接上个位平方。 例: 53 ×53 25 + 3 = 28-- 3× 3 = 9 ---------------------- 2809 四、21~50 的两位数的平方 求25~50之间的两数的平方时,记住1~25的平方就简单了, 11~19参照第一条,下面四个数据要牢记: 21 × 21 = 441 22 × 22 = 484 23 × 23 = 529 24 × 24 = 576
求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。 例:37 × 37
37 - 25 = 12-- (50 - 37)^2 = 169 -------------------------------- 1369
第十五讲 乘法速算7
五、知道平方后的速算 5.1 相邻奇(偶)数的速算 方法,取平均数的平方减去1 例:21*23 22^2=484,484-1=483 -------------------------------- 483 5.2 两数相加为100的速算(限用于小数为25-49) 方法:将大数减去50,再用2500减去差的平方 例:36* -50=14 2500-14^2=2500-196=2304 -------------------------------- 2304 5.3 两数相加为100的速算(限用于小数为1-25) 方法,将小数乘以100,减去小数的平方即可 例:11*
1100-11^2=1100-121=979 -------------------------------- 979
5.4(三位乘三位)两因数第一位相同,后两位互补的乘法
方法:前两位为被乘数第一位加1和另一个被乘数第一位的积;后面四位为两个数字中每个数末尾两位的积 例:436*4 -50=14
2500-14^2=2500-196=2304 4*5=20
-------------------------------- 202304 5.5 和为200的两数乘法 方法:将大数百位上的1直接去掉,再用10000减去去掉后数的平方 例:127*73 27^2=729 10000-729=9271 -------------------------------- 9271 5.6 两数字(三位数)后两位互补,百位数差一的乘法 方法:将大数百位上的数字直接去掉,再用大数平方减一作为前两位,后四位为10000减去去掉后数的平方 例:217*183 2^2=3 10000-17^2=10000=2=9711 -------------------------------- 39711
5.7 十位数相差2,个位数相同的乘法 方法:取平均数的平方减去100 例:25*45 (25+45)÷2=35 35^2-100=1125
-------------------------------- 1125
5.8 百位互补,后两位相同的乘法
方法:取两数的百位相乘加上并乘以10后加上后两位为前两位,后面三位为后两位的平方(位数不够用0补,满十进一) 例:323*723 3*7*10+23=233 23^2=529 -------------------------------- 233529 第十六讲 乘法速算8 六:多位数特殊算法 6.1 一数和为9,一数为顺子的算法 方法:凑9的数字按3.4条的方法处理,再将此数乘以顺子的头和尾的补数,中间的数字全部替换为上一步处理完的数。 例:45*234567 步骤1:4+1=5,10-5=5,45÷9=5(任选一个即可) 步骤2:5*2=10;5*(10-7)=15 步骤3:将中间的3456替换为全部替换为5 -------------------------------- 10555515
6.2、一数和为9,一数为含0的顺的算法
方法:凑9的数字按3.4条的方法处理,再将此数乘以顺子的头和尾的补数。中间的数字除9以外全部替换为上一步处理完的数,9替换成0,若0为结尾则先约掉0按6.1的方法算出答案后再补0。 例:36*67012
步骤1:3+1=4,10-6=4,36÷9=4(任选一个即可) 步骤2:4*6=24;4*(10-2)=32 步骤3:将701替换为44044 -------------------------------- 244404432
6.3、一数和为9,一数为缺八顺的算法(末尾可以是7)
方法:凑9的数字按3.4条的方法处理,再将此数乘以顺子的头和尾的补数。中间的数字全部替换为上一步处理完的数。若0为结尾则先约掉0按6.1的方法算出答案后再补0。 例:36*567901234 步骤1:3+1=4,10-6=4,36÷9=4(任选一个即可) 步骤2:4*5=20;4*(10-4)=24 步骤3:将6790123全部替换为4 -------------------------------- 20444444424 6.4、一数互补,一数为相同数的算法 方法:头加一和尾同时与相同数的任意一位数字相乘。 中间的数字位数为相同数的位数减2,数字不变 例:46*444444444 步骤1:(4+1)*4=20,6*4=24 步骤2:444444444有9个4,9-2=7,抄7个4 -------------------------------- 20444444424
6.5、一数为相同数,一数位两位循环(相邻两位互补)的算法
方法:先将相同数的任意一位乘以循环节首位+1,再将相同数的任意一位乘以尾数,中间数字替换成相同数的任意一位数 例1:77*
步骤1:(6+1)*7=49,7*4=28
步骤2:将46替换为7777 -------------------------------- 49777728 例2:44*7373737
步骤1:(7+1)*4=32,7*4=28 步骤2:将37373替换为44444 -------------------------------- 324444428 6.6、多个9乘以任意数(位数要少于或等于前数的总位数) 方法:先将(任意数)-1,然后把(任意数)的位数和(多个9)比较位数的多少,少几位则在中间写几个9,写完9后写补数。熟练者可以直接看出位数,写补数。如果两个数位数相同,中间则没有9。 例:1536*999999 第一步:1536-1=1535 第二步:6(6个9)-4(1536是4位数)=2 第三步:10000-1536=84 答案:15359984 C、加减法 一、补数的概念与应用 补数的概念:补数是指从10、100、1000……中减去某一数后所剩下的数。 例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。 补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。 D、除法速算
一、某数除以5、25、125时 1、 被除数 ÷ 5 = 被除数 ÷ (10 ÷ 2) = 被除数 ÷ 10 × 2
= 被除数 × 2 ÷ 10 2、 被除数 ÷ 25 = 被除数 × 4 ÷100 = 被除数 × 2 × 2 ÷100 3、 被除数 ÷ 125 = 被除数 × 8 ÷1000
= 被除数 × 2 × 2 × 2 ÷1000 注:《速算技巧》 A、乘法速算?一、十位数是1的两位数相乘 乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。 例:15×17 15 + 7 = 22 5 × 7 = 35 --------------- 255 即15×17 = 255 解释: 15×17 =15 ×(10 + 7) =15 × 10 + 15 × 7 =150 + (10 + 5)× 7 =150 + 70 + 5 × 7 =(150 + 70)+(5 × 7) 为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。 例:17 × 19 17 + 9 = 26
7 × 9 = 63 连在一起就是255,即260 + 63 = 323 二、个位是1的两位数相乘 方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。 例:51 × 31 50 × 30 = 1500 50 + 30 = 80 ------------------ 1580 因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。 例:81 × 91 80 × 90 = 7200 80 + 90 = 170 ------------------ 7370 ------------------ 7371 原理大家自己理解就可以了。 三、十位相同个位不同的两位数相乘 被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。 例:43 × 46 (43 + 6)× 40 = 1960 3 × 6 = 18 ---------------------- 1978
例: × 87 ( + 7)× 80 = 7680 9 × 7 = 63 ---------------------- 7743 四、首位相同,两尾数和等于10的两位数相乘 十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。 例:56 × 54 (5 + 1) × 5 = 30-- 6 × 4 = 24 ---------------------- 3024 例: 73 × 77 (7 + 1) × 7 = 56-- 3 × 7 = 21 ---------------------- 5621 例: 21 × 29 (2 + 1) × 2 = 6-- 1 × 9 = 9 ---------------------- 609 “--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。 五、首位相同,尾数和不等于10的两位数相乘 两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
例:56 × 58 5 × 5 = 25-- (6 + 8 )× 5 = 7-- 6 × 8 = 48 ---------------------- 3248 得数的排序是右对齐,即向个位对齐。这个原则很重要。 六、被乘数首尾相同,乘数首尾和是10的两位数相乘。 乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。 例: 66 × 37 (3 + 1)× 6 = 24-- 6 × 7 = 42 ---------------------- 2442 例: 99 × 19 (1 + 1)× 9 = 18-- 9 × 9 = 81 ---------------------- 1881 七、被乘数首尾和是10,乘数首尾相同的两位数相乘 与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。 例:46 × 99 4 × 9 + 9 = 45-- 6 × 9 = 54 ------------------- 4554
例:82 × 33 8 × 3 + 3 = 27-- 2 × 3 = 6 ------------------- 2706 八、两首位和是10,两尾数相同的两位数相乘。 两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。 例:78 × 38 7 × 3 + 8 = 29-- 8 × 8 = ------------------- 29 例:23 × 83 2 × 8 + 3 = 19-- 3 × 3 = 9 -------------------- 1909 B、平方速算 一、求11~19 的平方 底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。 例:17 × 17 17 + 7 = 24- 7 × 7 = 49 --------------- 2 参阅乘法速算中的“十位是1 的两位相乘”
二、个位是1 的两位数的平方 底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。 例:71 × 71 7 × 7 = 49-- 7 × 2 = 14- ----------------- 5041 参阅乘法速算中的“个位数是1的两位数相乘” 三、个位是5 的两位数的平方 十位加1 乘以十位,在得数的后面接上25。 例:35 × 35 (3 + 1)× 3 = 12-- 25 ---------------------- 1225 四、21~50 的两位数的平方 在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。它们是: 21 × 21 = 441 22 × 22 = 484 23 × 23 = 529 24 × 24 = 576 求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。 例:37 × 37 37 - 25 = 12-- (50 - 37)^2 = 169
---------------------- 1369 注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。 例:26 × 26 26 - 25 = 1-- (50-26)^2 = 576 ------------------- 676 C、加减法 一、补数的概念与应用 补数的概念:补数是指从10、100、1000……中减去某一数后所剩下的数。 例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。 补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。 D、除法速算 一、某数除以5、25、125时 1、 被除数 ÷ 5 = 被除数 ÷ (10 ÷ 2) = 被除数 ÷ 10 × 2 = 被除数 × 2 ÷ 10 2、 被除数 ÷ 25 = 被除数 × 4 ÷100 = 被除数 × 2 × 2 ÷100 3、 被除数 ÷ 125 = 被除数 × 8 ÷100 = 被除数 × 2 × 2 × 2 ÷100
一、“九几乘九几,左减右补数,后面空两格,写上补乘补。”被乘数减去乘数的补数,后面写上两个数的补数的乘积。如 93×95 95的补数是5,93-5=88,93的补数是7,7×5=35,93×95=8835 原理:93×95=93×(100-5)=9300-5×93=9300-5×(100-7)=9300-500+5×7=8800+35=8835 00看作两个空格 二、 任意数乘25,等于此数除以4,整除补00,余1补25,余2补50,余3补75. 如 24×25=24÷4=6补00=600, 25×25=25÷4=6--1补25=625 26×25=26÷4=6--2补50=650, 27×25=27÷4=6--3补75=675 三、 任意数乘15,等于此数加上自己的一半,单数后面补5,双数后面补0.如 33×15=33+16=49补5=495, 32×15=32+16=48补0=480 四、 任意数乘55,等于此数折半,单数补5双数补0再乘11。 如 37×55=37÷2=18补5=185×11=2035 32×55=32÷2=16补0=160×11=1760 五、“十同个凑10,十加1乘十,后面空两格,写上个乘个”。十位数相同个位数相加等于10的两位数相乘,等于十位数加1再乘以十位数,后面写上个位数乘以个位数。如36×34=(3+1)×3=12后面写6×4=24,36×34=1224 六、 被乘数的两位数之和是10,乘数的两位数相同,算法同上。如37×66=(3+1)×6=24后面写上7×6=2442 原理:37 ×66=30×60+(7×60+30×6)+7×6=30×60+(10×60)+42=(30+10)×60+42=2442 七、 “十补个相同,十乘十加个,后面空两格,写上个乘个”。十位数相加等于10,个位数相同的两个两位数相乘,十位乘十位加上个位,后面写上个乘个。 如,78×38=7 ×3+8=29后面写上8×8=,78 ×38=29 八、 个位是1的两位数相乘,等于十乘十空一格,加上十加十,后面写上1.如41×51=4×5=20_+4+5=209后面写1=2091 九、 一个数的各个位数相加的和能被3整除,则这个数能被3整除。 因为34×3=102,所以一个能被3整除的数乘以34,可以用此数除以3再乘以102. 如135×34=45×102=45 90,39×34=1326 67×3=201,也可以用上述技巧。如69×67=46 23 37×3=111,同样可以用上面的技巧。如135×37=45×111,两位数乘以111,首尾不变中间重复相加。45×111=4(4+5)(4+5)5=4995
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务