surface
LaurentDuchemin,St´ephanePopinet,ChristopheJosserand
andSt´ephaneZaleski
Abstract
Westudynumericallybubblesburstingatafreesurfaceandthesub-sequentjetformation.TheNavier-Stokesequationswithafreesurface
andsurfacetensionaresolvedusingamarker-chainapproach.Differenti-ationandboundaryconditionsnearthefreesurfacearesatisfiedusingleast-squaresmethods.Initialconditionsinvolveabubbleconnectedtotheoutsideatmospherebyapreexistingopeninginathinliquidlayer.Theevolutionofthebubbleisstudiedasafunctionofbubbleradius.Ajetformswithorwith-outtheformationofatinyairbubbleatthebaseofthejet.Theradiusofthedropletformedatthetipofthejetisfoundtobeaboutonetenthoftheinitialbubbleradius.Aseriesofcriticalradiusesexist,forwhichatransitionfromadynamicswithorwithoutbubblesexist.Forsomeparametervalues,thejetformationisclosetoasingularflow,withaconicalcavityshapeandalargecurvatureorcuspatthebottom.ThisiscomparedtosimilarsingularitiesinvestigatedinothercontextssuchasFaradaywaves.
1Introduction
Bubblesburstingatthewatersurfaceareafamiliareverydayoccurrence.Theyalsotakepartinimportantprocessesoftransportandexchangeacrossliquid/gasinterfaces,causedbytheejectionofjetsandvariouskindsofsmalldroplets.Theseareinvolvedinthetransferofheat,massandvariouscontaminantsbetweentheoceansandtheatmosphere[1].Indeed,breakingwavescausetheformationofalargenumberofbubblesbeneaththewaterlevel.Theefficiencyoftheresultingmasstransfer,includingthetransferofCOdependsontheinitialpropertiesoftheejecteddroplets(size,initialvelocity).
1
Thephenomenaproducingaerosolsduringtheburstingofabubbleareoftwokinds:thefirstistheruptureofthefilmseparatingthebubblefromtheatmo-sphere.Thisfilmatomizationcanproduceseveralhundreddropletsofaroundamicrometerindiameterwhichprobablyrepresentalargefractionofthetransfers[1].Sincethescalesinvolvedduringthisruptureareoftheorderof100nm,aphysicaldescriptionisoutsidethescopeofcontinuumfluidmechanics.Indeed,long-rangemolecularforcessuchasVanderWaalsforcesorelectrostaticrepul-sionmustbetakenintoaccount[2].
Thesmallcavityremainingafterthefilmrupturecollapsesundertheeffectofbothsurface-tensionandbuoyancy.Thiscollapsegivesbirthtoanarrowverticaljetwhicheventuallybreaksintooneorseveraldroplets(seeFig.1).Thisphe-nomenonconstitutesthesecondaerosolproductionprocessandistheprincipaltopicofthispaper.
Theseaerosolsareofadifferentkind:theyareejectedvertically—whichisnotthecaseforfilmaerosols—andtheirdiameterisaboutonetenthofthesizeoftheinitialcavity,i.e.about100mforatypicalbubbleradiusofonemillimeter.Dependingontheirmassandinitialvelocity,thedropletswilleitherfallbackintowaterorevaporate.
Thetopicofthispaperistheinvestigationofthebubbleevolutionaftertheinitialfilmrupturing,includingthejetformation.AnumericalmethodsolvingtheNavier-Stokesequationsanddescribingthefreesurfacewithhighprecisionisused.Previousnumericalstudiesofthesephenomenahavebeenmadepostulatingmostlyinviscidfluids;however,amodifiedboundaryelementmethodtakingintoaccountsmallviscouseffectswasalsoused[2,3].ANavier-Stokessimulationwasshownin[4],withaVOF-typemethodinaregimewherethebubbleisverydeformed.
Inmostpreviousstudiestheeffectoffilmatomizationonjetbirthwasassumedtobenegligible.Fewcomparisonsweremadewithexperimentaldata.Someex-perimentalstudieswerealsoconductedtomeasurequantitiessuchasjetvelocity[5,6,7],sizeofthefirstejecteddroplet,heightatwhichthedropletdetachesfromthejet,orheightreachedbythedroplet.Theseexperimentsarefairlydif-ficulttoconduct,becauseofsurfacecontaminationwhichmodifiessignificantlythefree-surfaceboundaryconditionandthesurfacetensioncoefficient.
Asournumericalresultswilldemonstrate,thejetformationisinmanycasessingularandself-similar.Singularjetsformingatafreesurfacehavealreadybeenobservedandstudiedindifferentcontexts.Indeed,inthebubble-burstingprob-lemaswellasinseveralotherfree-surfaceflows,oneobservestheformationofaconicalcavity,withaveryhighcurvatureorcuspatitsbase.Insomecasesa
2
Figure1:Jetproducedbythecollapseofasphericalcavity.TheenddropletwilleventuallydetachduetotheSavart-Plateau-Rayleighinstability.
3
smallbubbleistrappedatthebottomofthecavity.Athinnarrowjetsubsequentlyformsinaself-similarmanner.ThisphenomenonwasobservedexperimentallyinFaradaywavesbyLonguet-Higgins[8]andLathrop[9],inthedevelopmentofthejetinsideabubblecontainingasinkflowinthenumericalstudyof[10].Forburstingbubblestheconicalcavitymaybeseenintheexperimentsandsimula-tionsbutthesingularcharacterofthejetformationhasnotbeeninvestigatedtoourknowledge.Thephenomenonmayalsobeseeninthecavityformedbyfallingraindrops[11,12,13,14].
TheevolutionoftheconicalcavityhasbeenstudiedbyLonguet-Higgins[12]asaspecialcaseofafamilyofhyperbolicsurfaces:conicalsurfaceswereshowntobeaspecialcaseofthehyperbolicsurfacesofRef.[8].Theseconicalsurfacesarepreservedbythevelocitypotential
(1)
whereisthesphericalradialdistanceandnorthpole,whichyieldsthevelocityfield
thepolaranglemeasuredfromthe
(2)
whereisanarbitraryfunction.Indeedanyconicalfreesurfaceinthisflowremainsconical.Forpositivethecavityopensintimeasintheexperiment.Ofcoursetheactualflowisnotexactlyconical.Thebottomoftheconeisrounded,andoscillatesinshapeascapillarywavesconvergetowardsthebottomoftheconicalsurface.Atsomeinstantintimethebottommaydevelopacusp,fol-lowedbyjetformation.Thisprocessisobviouslysingularatleastforsomevaluesoftheparameters,butthereisnoagreementamongtheabovecitedpublicationsontheexactnatureofthesingularity.
Indeedonemayinquireintothespecificscalingformofthesingularity.TheEulerequationswithoutsurfacetensionandgravitywillinprincipleadmitself-similarsolutionsoftheform
(3)
whereisanarbitraryscalingfunctionandisthesingularitytime.Thesolutionmaybevalidbeforeand/orafterthesingularitytime.Theexponentsshouldsatisfy
.IndeedwiththisconditionallthetermsintheBernoulliequation
balance.Howeverwhensurfacetensionisadded,theonlywaytoformaself-similarsolutionthatbalancesinertiaandsurfacetensionisbyselecting.
4
Thisisbecausetheonlylengthscalethatcanbebuiltiswhereisthesurfacetensionandthedensity.Thenthesimilarityvariableisandtheflowvelocitydivergeslikenearthesingularityforafixedvalueofthesimilarityvariable.ThisideaisatthebasisofexponentsfoundforinstancebyMiksisandKeller[15].Thistypeofscaling,wasappliedbyZeffetal.[9]toobservationsofjetformationinFaradaywaves.Theleadingordertermforthevelocitypotentialisoftheform
(4)
However,aseriesofalternatetheoriesforsingularfree-surfaceflowsandinparticulartheconicalcavityandjetformationwasproposedbyLonguet-Higgins.HehasshownthatthetypeofflowdescribedbyEq.(2)hadadivergentvelocity
thusadivergenceforafixedvalueoftherealwith
(unscaled)distance[12].Inthissolutionthescalingisnotfixedbyabalancewithsurfacetension.Instead,surfacetensionisaddedasaperturbationtotheconicalsolution,intheformofasinkflow[12].TheLonguet-Higginssolutionyieldsananglefortheconicalcavityof5,ingoodagreementwiththenumericalobservationsof[11].Anotherself-similarsolutionforjetformationwasfoundnumericallyby[10]obtainingyetanotherscaling,forthecaseofjetformationinsideabubble.Thepotentialisthenapproximatedby
(5)
Thisarticleisorganizedasfollows.Wefirstdescribethegeneralcontextofthisstudy,thenon-dimensionalnumberscontrollingtheproblemandthescalinglawsdeducedfromdimensionalanalysis.Wethenbrieflyintroducethenumericalmethodweuseanditsmainadvantages.Afirstcomparisonwithexperimentalprofilesispresented.Finally,adetailedparametricstudyisconductedusingasimpleinitialshapeforthecavityandneglectinggravity.Wemeasurethevolumeofthefirstejecteddroplet,thevelocityofthejetandthemaximumpressureen-counteredontheaxisofsymmetryanddiscusstheresults.Insomecircumstances,atinybubbleisformedatthebaseofthejet.Theself-similarflowoccurringwhentheconicalcavityandthecuspformisinvestigated.
2Initialconditionsandexpectedscalinglaws
Giventhesmallsizeofthebubblesweareinterestedin(diameterisaroundonemillimeter),someassumptionscanbemaderegardingtheparametersgoverning
5
jetbirth.Thefirstideaistosupposethatthecavityismotionlessattheinitialtime.Experimentshaveshownthat,evenintheabsenceofsurfactants,thebubblecanstayatthefreesurfaceinaquasistaticequilibriumforafewseconds[16].Thebubbleisthenseparatedfromtheatmospherebyathinliquidfilm,thecavitybeingsubjecttosurfacetensionandbuoyancyforces.Amodelforthisstaticconfigurationisamoreorlessdeformedbubbleadjacentoverpartofitssurfacetoafilmofnegligiblethickness.Thisconfigurationmaybecomputed,orobtainedfromtheexperimentaldataasinthecasereportedin[7].
Whenthefilmreachesacriticalthickness(about100nm)afterdrainingslowly,itbreaksmoreorlessrapidly(dependingonthepresenceofsurfacecontami-nants).Itisthenpossibletorunsimulationsbytakingthecurrent,staticconfigu-rationandremovingthethinfilm.Whilewedothisinonecase,thedrawbackisthatasharpcornerexistsattherimoftheneckorjuncturebetweenthefilmandthebulkliquid.Thesmalllengthscalesinvolvedmaycreatenumericalconver-genceproblems.Moreover,asweshowbelow,smalllengthscalesaregeneratedindependentlyofinitialconditionsbythesteepeningofcapillarywavesandjetformation.Keepingthesmalllengthscalesintheinitialconditionsmakesitmoredifficulttoobservetheintrinsicallygeneratedsmallscales.Wethusdecidedtodrasticallysmooththerimoftheneck.Inmostcalculations,theinitialshapewasdefinedasfollows.Asphericalcavityisseparatedfromtheatmospherebyacircularhole,theborderoftheholebeingacircularrim(seeFig.2).
Thecollapsebehaviordependsonlyonfourphysicalparameters:thekine-maticviscosity,,andtheaccelerationduetogravity.Outofthefourphysicalparametersonlytwolengthscalescanbedefined,thecapillarylength
andthetheviscous-capillarylength.Inpurewa-termmandmrespectively.Iftheradiusofthebubble
,capillaryeffectsarepredominantcomparedwiththegravityeffects;if,viscouseffectsareexpectedtobenegligiblecomparedtothecapillary
ones.Forthephenomenonisdominatedbysurfacetensionandinertia.
Wealsodecidedtoneglecttheeffectofgravitywhichisacorrectapproxima-tionfor.Therefore,onlytheOhnesorgenumbergovernsthephenomenonanddimensionalanalysisgivesvelocityintheform
Figure2:Theinitialconfigurationinthe“largerim”case.ThegridisaCartesiangrid.
7
Whenever,wealsoexpectthatviscosityplaysnorole.Theonlywaytoeliminateviscosityistosupposethatthefunctionhasafinite,non-zerolimitwhengoestozero.Thenon-dimensionalvelocityofthejetthenbehaveslike
(7)
where.
Similarargumentsleadtoascalinglawforthenon-dimensionalpressureoftheform
(8)
where
.
3Numericalmethod
Thechoiceofthenumericalmethodisconditionedbythetermsweneedtosolveaccurately.Inourproblem,thefirsttermofinterestissurfacetension:beingthemaindrivingforceintheparameterrangeweconsider,itisimportanttomodelitcorrectly.Giventhelargedensityratiobetweenwaterandairwecanmoreoverassumethattheinfluenceofthegasphaseisnegligible.
Accordingtothesetwoassumptions,weusedanumericalmethodwhichsolvesthefullaxisymmetricNavier-Stokesequationsinafluidboundedbyafreesurfacewhileallowinganaccuratedescriptionoftheinterfacialtermssuchassur-facetension.Thismethodhasbeendocumentedelsewhere[17,18]andhasbeenshowntoproduceaccuratequalitativeandquantitativeresultswhencomparedwithboththeoreticalandexperimentaldata.
Inshort,aregularCartesianfixedgridisused.Masslessparticles(markers)advectedbytheflowdefinethepositionoftheinterface.Linkedbycubicsplines,theydescribeaccuratelythegeometryofthefreesurface.Forcellswhicharenotcutbythefreesurface,aclassicalfinite-volumeschemeisapplied.Forthecellsinthevicinityoftheinterface,finitedifferencescannotbecomputedsincevelocitiesarenotdefinedinthe“gas”phase.Therefore,anextrapolationofthevelocityfieldnearthefreesurfaceontheothersideisnecessary.Thisextrapolationmusttakeintoaccounttheboundaryconditionsonthefreesurface(inparticularlythenullityofthetangentialstress).Thisisdonebyusingaleast-mean-squareprocedureconstrainedbytheconditionofvanishingtangentialstress.Comparisonswith
8
theoreticalresultsshowthatthisapproachgivesanaccuratedescriptionoftheviscousdissipativetermsassociatedwiththeboundaryconditions.
Thepressureontheboundaryisobtainedasfollows.Thelocalcurvatureisestimatedfromthesplinereconstruction.Thelocalnormalviscousstressisestimatedfromtheaboveleast-squaresprocedure.Thenthepressureisobtainedfromthenormal-stressboundarycondition.ThepressureontheboundaryservesasaboundaryconditionforthePoissonequationforthepressure.Thisequationisinturnsolvedusingamultigridalgorithm.
grid,exceptthecomparisonMostcomputationshavebeenmadeona
withtheexperimentalprofilesfromMacIntyre,whichhasbeenmadeonagridandsomeselectedcomputationswhichwererefinedtogrids.
4Comparisonofthenumericalresultswithexperi-mentalprofiles
Wehavefirstinitializedthecalculationwitharealisticshape,andtakenintoac-countallthephysicalparameters,i.e.capillarity,viscosityandgravity.ThegoalwastocomparetheresultswithaseriesofshapespublishedbyMacIntyre[7].TheinitialshapeofthefreesurfacehasbeenobtainedfromthefirstimagegivenbyMacIntyre,justafterthefilmrupture.
Fig.3illustratestheexperimentalandthecomputationalresults.Thenumer-m/s,kg/s,kg/mandtheicalparametersare:
volumeofthebubbleisthesameastheonegivenbyMacIntyre:l.Thecomputationaltimeisaboutonedayonthegrid.Theoverallagreementisverysatisfactory.Inparticularcapillarywavesarewelldescribed,incontrasttotheearlierpublishedresultsusingboundaryintegralmethods[3,2].Webelievethatthislackofcapillarywavesisduetothestrongsmoothingneededtoavoidnumericalinstabilitiesinboundaryintegraltechniques(andprobablyalsotoaninsufficientspatialresolution,whichisalsolimitedbynumericalstability).Inourmethod,real,molecularviscosityispresentandthefinegridweuseallowsinprincipletosolvethesmallspatialscalesofthecapillarywaves.
ThetimeintervalbetweenimagesisthesameastheonegivenbyMacIntyre,i.e..Adifferenceintimebetweenprofilescanbeseen,eveniftheshapeisverysimilar.ApossibleexplanationisthepresenceofsurfacecontaminantsintheMacIntyreexperiment.Thesecontaminantscouldchangethesurfacetension,evenmodifyitsvaluelocally,thereforechangingthebehaviorofthefreesurface
9
Figure3:Timesequenceofthejetformationinabubbleburstingatafreesurface.Top:experimental[7]andbottom:computationalresults.Profilesare
apart.
10
throughgenerationofMarangonicurrents.Theycouldalsomaketheinterfacepartiallyorentirelyrigid,changingthefree-surfaceboundarycondition.
Figure4:Vorticityisolinesduringthecollapseofthebubbleforthesamecondi-tionsasinFig.3.
11
Figure5:Sameaspreviousfigure.
Figure6:Sameaspreviousfigure.
12
Figure7:Sameaspreviousfigure.
13
SolvingthefullNavier-Stokesequations,wehaveaccesstovorticitywhichcan,aswewillseelater,haveanimportanteffectevenonverysmallstructuresinalowviscosityfluidsuchaswater.Fig.4showsthevorticityisolinesduringthecollapseofthecavity.Thevorticityisconfinedtoathinboundarylayerbeforethejetbirth.Lateronhowever,avorticityconeisentrainedbelowthejetandtheshearstressthereiscomparabletothatinthenarrowjet.Thisdetachmentofvorticityillustratestheformationofadownwardjet,alreadyobservedbyBoulton-StoneandBlakewiththeirmodifiedboundaryintegralmethod[3,2].
5Resultsoftheparametricstudy
Asetofcomputationshavebeenmadeforradiibetweenand(
)withtheinitialshapedescribedabove.
TheevolutionoftheprofilesisverysimilartothatshownonFig.3.Aconicalcavityformswithatrainofcapillarywavesconvergingtotheaxis.ThenumberofcapillarywavesdependsstronglyontheOhnesorgenumber:thehigherthisnumber,thehigherthenumberofcapillarywavesconvergingtothebaseofthecavity.Fig.8showsalarge-radiuscasewithalargenumberofwaves(seealsoFig.11).Insomecases,especiallynearthejetbecameverythin(Fig.9)andthelocalradiusofcurvaturesmallerthanthegridsize.Thecalculationthenbecomesinaccurateandhastobestopped.
Forsomeparametervaluesweobserveantendencytotrapabubbleontheaxisofsymmetryjustbeforetheformationofthejet.Wehavesearchedsystem-aticallyforbubbleentrapment.Therearetwocompetingchangesofshape:thejetformationisheraldedbyachangeofcurvatureatthebaseofthecavity,whilethebubblepinchingisprecededbytheformationofanoverhangintheinterface,i.e.theheightoftheinterfacebecomesmulti-valued.Thusourcriterionforincipientbubbleformationisasfollows:(a)Theheightbecomessteep,thenmulti-valued,and(b)thecurvatureatthebaseremainspositive.ThisisonlyanindicationthatabubblewillbetrappedbeforethejetformsasshownonFig.10,butweneedsuchacrudecriterionbecausethebubblesareverysmallforthekindsofgridswehave.Wefoundafirstbubbleentrapmentregionfor
,thesecondonebetween.Other
suchregionsathighervaluesofarelikely,butdifficulttoobservenumer-ically.Oneindicationistheexistenceoflargetrainsofcapillarywavesatlarge
asshownonFig.11.
Thetopologyoftheinterfacechangeswhenabubbleistrapped.Thispinching
14
0.5
0.4
0.3
0.2
0.1−0.2
Figure8:Capillarywavesfor
.As
15
1.0
0.0−0.5
isasingulareventakintothepinchingofagascylinderbytheSavart-Plateau-Rayleighinstability.Weshallcallitapinchingsingularitytodistinguishitfromotherfreesurfacesingularities.Topursuethecalculationnumericallybeyondapinchingsingularity,oneshouldinprincipleperformsurgeryonthemarkerchainandcontinuethesimulation.Thisishoweverdifficultbecausetheproblemslightlychangesinnature:thepressureinsidethesmalltrappedbubblecannotbesettoatmosphericpressurebutshouldinprincipledependonthebubblevolumethroughsomeequationofstate.Thischangesmarkedlythenatureofthecalcu-lation.Moreoverthetrappedbubblesareextremelysmallandverydifficulttoresolvewithoutmeshadaptation.Thusinmostcaseswecontinuedthesimulationwithoutmarkersurgery.Whenthetrappedbubbleisverysmall,themarkerchainreorganizesitselfspontaneouslyandthecalculationproceeds.Insomecases,asintherightmostbubbleentrapmentregion,itseemsthattheeffectonthedynam-icsissmall.Inothercases,asintheleftmostentrapmentregion,thecalculationhastobestoppedorprovidesunreliableresultswhichwereremovedfromthequantitativeanalysesbelow.
Wehaveredoneallthecalculationsforadifferentinitialcondition.Theover-allconfigurationisthesameasonFig.2buttherimthicknessishalved.Alltheabovequalitativeresultsareidentical.Inparticular,wedonotobserveanysteepeningofthecapillarywavesorthinnerjetsaswereducetherimsize.Thisisaclearindicationthatthesmalllengthscalesweobserveformspontaneously,independentlyofinitialconditions.
5.1Jetvelocity
Afirstquantityofinterestisthevelocityofthejet,ortheejectionspeedofthefirstdrop.Fig.12showsthenon-dimensionalvelocityofthejet,measuredwhenthetopofthejetreachesthemeanwaterlevel.CirclesymbolscorrespondtothelargerrimthicknessasonFig.2whilesquaresymbolscorrespondtothinnerrims.Apartfromaverticalshift,themeasuredvelocitiesareverysimilar.Thisshiftmayinpartbeexplainedbythefactthatwemeasurethejetvelocityatthemeanwaterlevelforbothcases,whichisatadifferentdistancefromthebaseofthetwocavities.
andtimestheviscous-capillaryForalargerangeofradii(between
length),thenumericalresultsareingoodagreementwiththeinviscidscaling.Forsmallradiithevelocitystartsdecreasingasdecreases.Forthesmallestradiiwehaveinvestigatedthecavityrelaxestoaflatsurfaceshapewithoutjetformation.
17
Figure10:Beginningoftheentrapmentofabubblebythecollapsingcavity,for
(abubble).
18
10
5velocity on the axis0−50
Figure11:Thevelocityoftheinterfaceontheaxisfor.Theoscillationscorrespondtothearrivalofatrainofcapillarywaves.Forthislarge
capillarywavesarenumerousandofshortwavelength.Theveryvalueof
largeexcursioninvelocitymaybeduetotheexistenceofafurtherbubbleentrap-mentregion,howevertheverysmallscalesinvolvedmakenumericalresolutiondifficult.
19
10
1
10
0
10
−1
10
−2
10
Figure12:Non-dimensionaljetvelocityasafunctionofthenon-dimensionalbubbleradius.Thetworegionsbetweenverticalstraightlinescorrespondtotheradiiforwhichabubbleistrappedatthebaseofthejet.
20
TheregionswherebubblesformatthebaseofthejetareindicatedasverticallinesonFig.12.Intheleftmostregion,around,forthereasonsdiscussedabove,thereisagapindatapoints.Itisthuspossiblethatmuchhigherjetvelocitiesmaybereachedinthatregion.
5.2Maximumpressureontheaxisofsymmetry
Wehavecomputedthemaximumpressureontheaxisofsymmetrywhenthejetreachesthemeanwaterlevel.Fig.13showsthispressureandafitin.Oncemore,thenumericalresultisingoodagreementwiththescalinglawfor
andtimestheviscous-capillarylength.Wealsoremarkaradiibetween
smalljitteraboutthestraightlineontherighthandsideofthecurve,perhapsasaresultofthesingularbehaviorinthebubbleentrapmentregion.Noteagainthatinthelefthandsideofthecurvewecouldnotreliablycalculatepressure.
5.3Radiusofthefirstejecteddrop
ExperimentaldataobtainedbySpieletal.[6]tendtoshowthattheradiusofthefirstejecteddropisaboutone-tenththeradiusoftheinitialbubble.
Wehaveobtainedthisradiusfromthenumericalsimulationsasfollows.Thecomputationstopswhenthejetthicknessreachesthesizeofonecomputationalcell.Thejetrupturewilloccursoonthereafter.Thevolumeenclosedbythefree-surfacebetweenthispointofminimumthicknessandthetipofthejetisthenagoodapproximationofthevolumeoftheejecteddroplet.Theequivalentradiusisdefinedastheradiusofasphericaldropletwiththesamevolume.Fig.14shows.Forlargeweobtainalinearfitwhichisconsistentwiththeexperimentallyobservedvalueof.Thislinearbehaviorisconsistentwiththeviscosity-independentregimeofEqs.(7,8)inwhichtheonlylengthscaleis.Ontheotherhand,thereisalargefractionofthedatawherethisregimedoesnotholdandtheejecteddropradiusismuchsmallerthan.Noticeagainthegapinvaluesaround.Therethejetwastoothintobewell-resolvednumerically,andtheactualdropletsizemaybemuchsmaller.Varyingtheinitialconditionhaslittleeffect,exceptatsmallradiiwherethethinnerrimleadstoalargerdroplet.
21
10
0
10
−1
10
−2
10
−3
10
−4
10
−5
10
−6
10
1
0.1
0.01
10
6Singularjetformationbycurvaturereversal
Theformationofathin,high-velocityjetinandaroundthefirstbubbleentrapmentregionleadstosuspecttheexistenceofasingularity.Thescaling(3)discussedaboveyields
(9)
(10)
thedistancetotheaxisofsym-whereisthesurfaceelevationand
metry.Werescaledtheradialandverticalcoordinatesofthesurfacepointsby
for.Wedeterminedbyfittingtwooftherescaled
profilesontooneanother.TheresultsareshownonFig.15.
Alltheprofileshavebeentranslatedverticallyinorderforthepointontheaxisofsymmetrytobeatthesameverticalcoordinate.Therescaledprofilessuperimposewellatsmallvaluesofthesimilarityvariable.Theshapeoftheprofilescloselyresemblestheexperimentalandnumericalprofilesinothertypesofflow[11,14,9].Howeveratalargedistancefromthesingularitytheconeangleisabout.ThisshouldbecomparedwiththeangleofthecavityseenintheMcIntyredatashownonFig.3.There,onprofile6wemeasureanangleof,asmalldifferencewithourcalculations.Incontrast,theotherphysicalprocessesdiscussedintheintroductionyieldrelativelylargerangles.
Thefiniteviscosityshouldalsointroduceadiscrepancywiththetheoreticalsimilaritysolution.Itseemshoweverthatitseffectsaresmallinthatcase.
Inreference[9]itwasshownthatforFaradaywavestherewasaconnectionbetweenbubbleentrapmentandsingularities.Inourcasethepictureseemsdif-ferent.Theself-similarsolution(10)isobservedintheentirefirstbubbleentrap-mentband.Ontheotherhand,thissolutionisnotseeninoraroundthesecondbandofbubbleentrapment,whereweshouldinprinciplealsohaveasingularity.Howevertheshapeoftheinterfaceisverydifferentinthatcase(Fig.16)andasuperpositionusingtheaboverescaledvariablescouldnotbefound.ApossibleexplanationisthattheconicalcavityassociatedwiththesingularityispresenthereonlyonthelargescaleasseenonFig.10.Theconvergenceofsmall-scalecap-illarywavesisnotablebyitselftogenerateaself-similarconicalflow.Thustheconicalflowwouldbeatleastasimportantasbubbleformationinproducingthesurface-tensiondrivenself-similarscaling.
Atantalizingpossibilityistheexistenceoffurtherbandsofbubbleentrapmentandsingularitiestotherightofthesecondband.Whilebubbleentrapmentisobservedinsomecases,detailsofthedynamicsarenotwell-enoughresolved.It
24
0.3
0.2
0.1
0
−0.1
−0.2
Figure15:Comparisonbetweensuccessiveprofilesmadenon-dimensionalusingthescalingdescribedinthetext.Left:unrescaledprofiles.Right:rescaledprofiles.Theretheopeningangleofthecavityisaround.Sincethenumericalmethodusesadaptivetime-stepping,theprofilesarenotseparatedbyequaltimeintervals.
25
0.3
0.28
0.26
0.24
0.22
0.2−0.05
−0.03−0.010.01
Figure16:Shapeoftheinterfaceontheedgeofthesecondbubbleformationregionat.InthatcasearescalingofthetypeshownonFig15couldnotbefound.AsinthepreviousFigureprofilesarenotseparatedbyuniformtimeintervals.
26
islikelythatbubbleentrapmentandcuspsingularitiesarerelatedtotheamplitudeoftheconvergingcapillarywaves.Asviscosityisreduced,evermorecapillarywavesareobservedtoconvergeontheaxis.Forverylargevaluesof,waveshavingbothshortwavelengthandsmallamplitudeareformed.
27
7Conclusions
Wehavepresentedanumericalstudyoftheburstingprocessofbubblesatafreesurface.Theschemeusedwasbasedonanaccuratedescriptionofthefreesurfacewiththehelpofamarkerschain.Thismethodhasshowngoodcapabilitiestoresolvesmallcapillarywaves.Thelargescalefeaturesofthedynamics,thepres-sureandfinaldropletradiusmaybepredictedwithaccuracy,exceptnearthefirstbubbleentrapmentregionnear.Thepredictionsarequantitativelyinagreementwithexperiment:theangleofopeningofthecavityissimilartotheangleobservedintheexperimentsofMacIntyreandthesizeofthedropletatthetipofthejetisclosetotheexperimentallyreportedsize.Themeasurementsofjetvelocitynearshowasurprisinglylargevelocity.Theinterfaceshapescaleswithacharacteristiclength
predictedbythebalanceofsurfacetensionandinertia.Theshapeoftheinterfaceresemblesshapesfoundinotherjet-formingflowsandcuspsingularities,buthasquantitativedifferencessuchastheopeningangleoftheconicalcavity.
Theconnectionofthisscalingwithbubbleentrapmentislessclear.Wefoundthescalinginawideregion.Theoccurrenceofselfsimilarflowandanapprox-imatesingularityisnotconnectedtotheexactboundaryofabubbleentrapmentband.Wealsofoundbubbleentrapmenttransitionswhichwerenotassociatedtothescaling.Finallytheangleoftheconicalcavityagreeswiththeexper-imentaldataforburstingbubbles,butnotwiththeanglesseenorpredictedinotherflows.Thisindicatesthatothertypesofsingularities,correspondingtodifferenttopologiesorinitialconditions,maybeobserved.Furtherworkshouldexploreindetailthenatureofthesesingularitiesusingforinstancemeshrefinement.
Alsoofinterestwouldbeastudyoftheinfluenceoftheinitialshapeofthebubble.Wehaveshownthatafactoroftwochangeintherimthicknesshadnoqualitativeeffect,andverylittlequantitativeeffectonthecollapseprocess.Howeverotherchangesintheinitialconditionmaycauseachangeinthepositionofthevarioussingularities.Inotherwords,foragivenradius,itwouldbepossibletoreachasingularitybychangingtheshapeofthebubble.
28
References
[1]M.Coantic.Masstransfertacrosstheocean-airinterface:smallscalehydro-dynamicandaerodynamicmechanisms.PhysicoChemicalHydrodynamics,1:249–279,1980.[2]J.M.Boulton-StoneandJ.R.Blake.Gasbubblesburstingatafreesurface.
J.FluidMech.,254:437–466,1993.[3]J.M.Boulton-Stone.Theeffectofsurfactantsonburstinggasbubbles.J.
FluidMech.,302:231–257,1995.[4]M.Rudman.Avolume-trackingmethodforincompressiblemulti-fluidflows
withlargedensityvariations.Int.J.Numer.Meth.Fluids,28:357–378,1998.[5]D.C.Blanchard.Thesizeandheighttowhichdropsareejectedfromburst-ingbubblesinseawater.J.Geophys.Res.,94(C8):10999–11002,19.[6]D.E.Spiel.Onthebirthsofjetdropsfrombubblesburstingonwatersur-faces.J.Geophys.Res.,100(C3):4995–5006,1995.[7]F.MacIntyre.Flowpatternsinbreakingbubbles.
77(27):5211–5228,1972.
J.Geophys.Res.,
[8]M.S.Longuet-Higgins.Bubbles,breakingwavesandhyperbolicjetsata
freesurface.J.FluidMech.,127:103–121,1983.[9]B.W.Zeff,B.Kleber,J.Fineberg,andD.P.Lathrop.Singularitydynamics
incurvaturecollapseandjeteruptiononafluidsurface.LetterstoNature,403:401–404,2000.[10]M.S.Longuet-HigginsandH.Oguz.Criticalmicrojetsincollapsingcavi-ties.J.FluidMech.,290:183–201,1995.[11]H.N.OguzandA.Prosperetti.Bubbleentrainmentbytheimpactofdrops
onliquidsurfaces.J.FluidMech.,203:143–179,1990.[12]M.S.Longuet-Higgins.Ananalyticmodelofsoundproductionbyrain-drops.J.FluidMech.,214:395–410,1990.[13]M.Rein.Thetransitionalregimebetweencoalescingandsplashingdrops.
JournalofFluidMechanics,306:145–65,1996.
29
[14]D.Morton,LiowJong-Leng,andM.Rudman.Aninvestigationoftheflow
regimesresultingfromsplashingdrops.PhysicsofFluids,12(4):747–63,2000.[15]J.B.KellerandM.J.Miksis.Surfacetensiondrivenflows.SIAMJournalon
AppliedMathematics,43(2):268–77,1983.[16]D.C.BlanchardandL.D.Syzdek.Filmdropproductionasafunctionof
bubblesize.J.Geophys.Res.,93(C4):39–3654,1988.[17]S.PopinetandS.Zaleski.Afronttrackingalgorithmfortheaccuraterepre-sentationofsurfacetension.Int.J.Numer.Meth.Fluids,30:775–793,1999.[18]S.PopinetandS.Zaleski.Bubblecollapsenearasolidboundary:anumer-icalstudyoftheinfluenceofviscosity.SubmittedtoJFM.
30
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务