您的当前位置:首页正文

五年级下册数学应用题含答案

来源:九壹网
五年级下册数学应用题含答案

一、人教五年级下册数学应用题

1.一个长方体,如果高增加3厘米,就成为一个正方体。这时表面积比原来增加了96平方厘米,原来的长方体的体积是多少立方厘米?

2.在一个长60cm,宽40cm的玻璃缸中放入一块石块,石块浸没于水中,这时水深20cm,取出石块后水深17cm,石块的体积是多少?

3.把45厘米、60厘米的两根彩带剪成长度一样的短彩带且没有剩余。

(1)每根短彩带最长是多少厘米? (2)一共可以剪成多少段?

4.用长5厘米、宽4厘米的长方形,照下图的样子拼成正方形。拼成的正方形的边长最小是多少厘米?需要几个长方形?

5.一种盒装纸巾长20cm,宽10cm,高12cm。想要把2盒纸巾包装在一起,最少需要多少平方厘米包装纸?

6.长75厘米、宽60厘米的长方形纸,要把它裁成同样大小的正方形,边长为整厘米,且没有剩余,裁成的正方形边长最大是多少厘米?至少可以裁成多少个这样的正方形? 7.五年级有48名同学报名参加义务劳动。老师让他们自己分成人数相等的若干小组,要求组数大于2,小于10。一共有几种分法?分别可以分成几组?(写出思考过程) 8.一种盒装纸巾的长、宽、高(如图1)所示。用塑料包装纸将3盒这样的纸巾包装起来(如图2),至少需要多少平方厘米的塑料包装纸?(接头处忽略不计)

9.蓬溪县某小学校五(2)班组织植树活动,在活动中发现,小宇和小斌同时栽第一棵树苗,小宇在每隔6分钟栽一棵树苗,小斌在每隔8分钟栽一棵树苗,至少多少分钟后两人再次同时栽树苗?此时,小宇和小斌各栽了多少棵树苗?

10.将四个大小相同的正方体粘成一个长方体(如图)后,表面积减少54平方厘米,求长方体的表面积和体积。

11.把一个棱长为12cm的正方体铁块沉入水深15cm的长方体水箱中。这个长方体水箱长48cm、宽25cm、高20cm。

(1)这个长方体水箱的容积是多少升?

(2)放入铁块后,水箱内的水面将上升到几厘米?

12.要测量一块不规则的岩石标本的体积,实验小组的同学先将1L水倒进一个长方体水箱,量得水深8cm,然后将岩石标本完全浸没在水中,这时水深13cm。请你利用观察到的数据计算岩石标本的体积。

13.班主任把20支钢笔和25本练习本平均奖给“三好学生”,结果钢笔多了2支,练习本少了2本。“三好学生”最多有多少人?

14.一条公路,已经修了 干米,剩下的比已经修了的多 千米,这条公路有多少千米? 15.一个长方体玻璃容器,从里面量长、宽均是2dm,向容器中倒入5L水,再把一个土豆放入水中。这时量得容器内的水深13cm。这个土豆的体积是多少?

16.把长16米和40米的两根绳子截成同样长的小段,没有剩余。每段最长是多少?共截成了多少段?

17.修一个长30米,宽20米,深3米的长方形的游泳池。 (1)要在四周与底面贴上磁砖,贴磁砖的面积是多少平方米?

(2)往池中注水6小时,平均每小时注水150立方米,这时池中水深多少米? 18.

(1)求出下图长方体的体积。

(2)下图是由棱长1cm的小正方体摆成的,请计算这个图形的表面积。

19.教室长8m,宽7m,高3m,门窗和黑板的面积是20.8m2 , 要粉刷这间教室的四面墙壁,需粉刷多少平方米?如果每平方米需要花7元涂料费,粉刷这间教室要花费多少钱? 20.东风湖湿地公园绿化栽树,每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余。这些树不到50棵,这些树一共有多少棵? 21.有两个没有标识容积大小的杯子,如图。

(1)请你设计实验比较这两个杯子的容积大小,工具不限,写一写你的方法。 (2)奇思想知道①号杯子的容积是多少mL,他家有一个长方体的容器(足够大),刻度尺和适量水,你能帮助他利用以上工具测量一下吗?写一写你的方法。

(3)笑笑家里也有一个长方体的容器,它的长是2.2dm,宽是2dm,高是1.5dm,有一天她看到妈妈买了一些黄豆回来做饭,出于对知识的探究欲望,她想知道一颗黄豆体积大约是多少,你能帮助她设计一个实验测量一下吗?写一写你的方法。(可用工具:她家里的这个长方体容器,刻度尺和适量水)

22.一杯纯果汁,小丽喝了半杯后觉得甜,就兑满了水,又喝了 杯就出去玩了。小丽一共喝了多少杯纯果汁?(可以画图、文字、列式表达。)

23.一块方钢长80厘米,横截面是边长3厘米的正方形,如果每立方厘米的钢重7.8克,这块方钢共重多少千克?

24.一个长方体玻璃鱼缸(无盖),长50厘米、宽40厘米、高30厘米。 (1)做这个鱼缸至少需要玻璃多少平方厘米? (2)在鱼缸里注入40升水,水深大约多少厘米?

(3)往水里放入鹅卵石,测得水面上升了2.5厘米,求放入物体的体积一共是多少立方厘米?

25.希望小学有一间长10米、宽6米、高3.5米的长方体教室。 (1)这间教室的空间有多大?

(2)现在要在教室粉刷墙壁,扣除门、窗、黑板面积6平方米,这间教室要刷多少平方米?

26.已知一包糖果不足50颗,平均分给12个人正好分完,平均分给16个人也正好分完,这包糖果共有多少颗?

27.李叔叔想要制作一个长20cm、宽15cm、高30cm的无盖长方体鱼缸。

(1)李叔叔至少需要买多少cm2的玻璃?

(2)为了提高观赏性,李叔叔在鱼缸里放了一块假山石,水面高度由原来的10cm上升到13cm。这块假山石头的体积是多少cm3?

28.有两根木棒,一根长36dm,另一根长42dm,要把他们截成同样长的小段,而不能有剩余,每根小棒最长有多少dm?一共可以截成多少段?

29.有三张正方形纸,边长分别是6分米、18分米和24分米。如果想裁剪成长4分米、宽3分米的长方形小纸片,且没有剩余。选择裁剪哪张正方形纸比较合适,能够裁剪成多少张小长方形纸片?

30.有一张长方形纸,长70厘米,宽50厘米,如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最长是几厘米?

【参考答案】***试卷处理标记,请不要删除

一、人教五年级下册数学应用题

1. 解:设原长方体的长为x厘米,则它的宽也为x厘米。 3x×4=96 12x=96 12x÷12=96÷12 x=8

8×8×(8-3)=64×5=320(立方厘米) 答:原来的长方体的体积是320立方厘米。

【解析】【分析】表面积增加数量=长方体的长×3×4,据此列出方程,求出原长方题的长;长方体体积=长×宽×高。

2. 解:石块的体积=60×40×(20-17) =2400×3

=7200(立方厘米)

答:石块的体积是7200立方厘米。

【解析】【分析】长方体的体积=长×宽×高,本题中石块的体积=玻璃缸的长×玻璃缸的宽×(放入石块时的水深-取出石块时的水深),代入数值计算即可。 3. (1)解:45=5×3×3 60=2×5×2×3

45和60的最大公因数是5×3=15,每根短彩带最长是15厘米。 答: 每根短彩带最长是15厘米。

(2)解:45÷15+60÷15 =3+4 =7(段)

答:一共可以剪成7段。

【解析】【分析】(1)根据条件“ 把45厘米、60厘米的两根彩带剪成长度一样的短彩带且没有剩余 ”可知,要求每根短彩带最长是多少,就是求45和60的最大公因数,据此解答;

(2)根据题意,每根彩带的长度÷每根短彩带最长的长度=每根彩带可以剪的段数,然后相加即可。

4. 解:4×5=20,即拼成的正方形的边长最小是20厘米; 20÷4×(20÷5) =5×4 =20(个)

答:拼成的正方形的边长最小是20厘米,需要20个长方形。

【解析】【分析】此题主要考查了最小公倍数的应用,根据题意可知,拼成的正方形的边长最小是小长方形长与宽的最小公倍数,据此计算;

要求需要几个长方形,分别用除法求出长、宽部分需要的长方形个数,然后相乘即可,据此列式解答。

5. 包装后的高:10+10=20(厘米)

包装后的表面积:(20×20+20×12+20×12)×2=880×2=1760(平方厘米) 答: 最少需要1760平方厘米包装纸 .

【解析】【分析】把最大的面叠放在一起,表面积最小,用的包装纸最少;(长×宽+长×高+宽×高)×2=长方体表面积,据此解答。 6. 解:75=3×5×5 60=2×2×3×5

75与60的最大公因数是3×5=15 75×60÷(15×15) =4500÷225

=20(个)

答:正方形的边长是15厘米。至少可以裁成20个这样的正方形。

【解析】【分析】此题主要考查了最大公因数的应用,要求把长方形纸裁成同样大小的正方形,边长为整厘米,且没有剩余,要求裁成的正方形边长最大是多少厘米?就是求长与宽的最大公因数,据此利用分解质因数的方法,求出长与宽的最大公因数,就是裁成的正方形最大边长;

要求至少可以裁成多少个这样的正方形?依据长方形的面积÷小正方形的面积=可以裁的个数,据此列式解答。

7. 解:48=1×48=2×24=3×16=4×12=6×8,

因为组数大于2,小于10,一共有4种分法,①分成3组,每组16人,②分成4组,每组12人,③分成6组,每组8人,④分成8组,每组6人。 答:有4种分法,分别可以分成3组、4组、6组和8组。

【解析】【分析】根据题意可知,先求出48的因数,然后根据条件“ 分成人数相等的若干小组,要求组数大于2,小于10 ”可知,2<组数<10,据此找出合适的分组方法。 8. 解:8×3=24(cm) (21×10+21×24+10×24)×2 =(210+504+240)×2 =954×2

=1908(平方厘米)

答:至少需要1908平方厘米的塑料包装纸。

【解析】【分析】观察图可知,先求出现在的长方体的高,然后用公式:长方体的表面积=(长×宽+长×高+宽×高)×2,据此列式解答。 9. 解:6=2×3,8=2×2×2,

6和8的最小公倍数=2×2×2×3=24,所以至少24分钟后两人再次同时栽树苗。 小宇:(24÷6)+1 =4+1 =5(棵), 小斌:(24÷8)+1 =3+1 =4(棵)。

答: 至少24分钟后两人再次同时栽树;小宇栽了5棵,小斌栽了4棵。

【解析】【分析】分析题意可知要求至少多少分钟后两人再次同时栽树苗即是求6和8的最小公倍数,将6和8分别写成质数连乘的形式,再找出最小的公倍数即可。

小宇(小斌)栽树苗的棵数=(6和8的最小公倍数÷小宇(小斌)栽两棵树之间的分钟数)+1,代入数值计算即可。

10. 解:每个正方形面的面积:54÷6=9(平方厘米), 长方体表面积:9×18=162(平方厘米), 3×3=9,所以正方体棱长是3厘米, 体积:3×3×3×4=27×4=108(立方厘米)

答:长方体的表面积是162平方厘米,体积是108立方厘米。

【解析】【分析】四个正方体拼成长方体后,表面积会减少6个正方形的面的面积,所以用54除以6即可求出一个正方形面的面积。长方体的表面积共有18个小正方形面的面积,由此计算长方体表面积。根据正方形面积公式确定正方体的棱长,然后用正方体体积乘4求出长方体的体积即可。

11. (1)解:48×25×20=24000(cm3)=24(L) 答:这个长方体水箱的容积是24升。

(2)解:15+12×12×12÷(48×25)=16.44(cm) 答:放入铁块后,水箱内的水面将上升到16.44厘米。

【解析】【分析】(1)长方体水箱的容积=长方体水箱的长×宽×高,计算时注意单位统一;

(2)铁块体积÷水箱的长与宽的积=水面升高的高度;长方体水箱中水原来的高度+水面升高的高度=放入铁块后,水箱内的水面将上升到的高度。 12. 解:1L=1dm3=1000cm3 1000÷8=125(cm2) 125×(13-8)=625(cm3) 答:岩石标本的体积是625cm3。

【解析】【分析】根据1升=1立方分米=1000立方厘米,已知水的体积与水深,可以求出长方体水箱的底面积,水的体积÷深度=长方体水箱的底面积,然后用长方体水箱的底面积×上升的水的高度=这块岩石标本的体积,据此列式解答。

13. 解:20-2=18(支),25+2=27(本),18和27的最大公因数是9 答:“三好学生”最多有9人。

【解析】【分析】把钢笔支数减去2,练习本本数加上2,那么钢笔和练习本就刚好能全部奖励给“三好学生”,那么三好学生数一定是18和27的最大公因数。 14. 解:+(+) =+ = =(千米)

答:这条公路有千米。

【解析】【分析】这条公路的总长=已经修了的千米数+剩下的千米数(已经修了的千米数+剩下的比已经修了的多的千米数),代入数值计算即可。 15. 解:5L=5dm3 , 5÷2÷2 =2.5÷2

+

=1.25(分米) =12.5(厘米) 2分米=20厘米, 20×20×(13-12.5) =20×20×0.5 =400×0.5 =200(立方厘米)

答:这个土豆的体积是200立方厘米。

【解析】【分析】根据题意可知,先求出原来长方体容器里水的高度,长方体的容积÷长÷宽=长方体容器内水的深度,放入土豆后,水的深度增加,增加部分的体积就是土豆的体积,长方体的长×宽×上升的水位=土豆的体积,据此列式解答。 16. 解:16=2×8,40=5×8, 所以每段最长是8厘米, (16+40)÷8=56÷8=7(段)

答:每段最长是8厘米,共截成了7段。

【解析】【分析】16和40的最大公因数是截取的最长的长度,两条绳子的长度和÷8米=截成的段数。

17. (1)解:30×20+(30×3+20×3)×2 =600+150×2 =600+300 =900(平方米)

答:贴瓷砖的面积是900平方米。 (2)解:150×6÷(30×20) =900÷600 =1.5(米)

答:这时池中水深1.5米。

【解析】【分析】(1) 贴磁砖的面积=底面积+(前面面积+侧面面积)×2=长×宽+(长×高+宽×高)×2。

(2)水的深度=水的体积÷底面积。 18. (1)解:体积=7×3×2 =21×2

=42(立方厘米)

(2)解:图形的表面积=(5+3+5)×2×(1×1) =13×2×1

=26(平方厘米)

【解析】【分析】(1)长方体的体积=长×宽×高,代入数值计算即可;

(2)图形的表面积=(从前面看到的正方形的个数+从左面看到的正方形的个数+从上面看到的正方形的个数)×2×1个小正方形的面积,计算即可。 19. 解:8×7+8×3×2+7×3×2-20.8 =56+48+42-20.8

=125.2(平方米) 125.2×7=876.4(元)

答:需粉刷125.2平方米,花费876.4元。

【解析】【分析】要求粉刷教室需要花费多少元,需要先求出粉刷的面积,即求出教室的上面、四面墙,5个面的面积去掉门窗和黑板的面积,然后再求出花费的钱数。 20. 解:12的倍数有:12、24、36、48、60…… 16的倍数有:16、32、48、64……

既是12的倍数,又是16的倍数,且在50以内的数是48, 所以这些树一共有48棵。 答:这些树一共有48棵。

【解析】【分析】 每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余 ,说明这些树的棵树是12和16的倍数,再分别列出12和16的倍数,然后找到既是12的倍数,又是16的倍数,并且比50小的数就是答案了。

21. (1)解:在①号杯子里面加满水,然后把①号杯子的水倒入②号容器,如果刚好加满,说明两个杯子容积相等;如果不能加满,说明②号杯子小于①号杯子的容积;如果加不完,说明①号杯子容积大于②号杯子容积。

(2)解:测量出长方体容器的长、宽、高分别是多少厘米。然后把①号杯子装满水,再把水倒入长方体容器中,测量出容器中水的高度,然后根据长方体体积公式计算出水的体积,就是①号杯子的容积。

(3)解:①在这个长方体容器里面倒入1dm高度的水;

②数出100粒黄豆,把这100颗黄豆倒数容器中,再测量出水面的高度; ③用长方体容器的底面积乘水面上升的高度即可求出100颗黄豆的体积; ④用100粒黄豆的体积除以100即可求出一颗黄豆的体积。

【解析】【分析】(1)容积是容器所能容纳物体的体积,可以采用倒水的方法来比较它们容积的大小;

(2)可以根据把①号杯子里面的水倒入长方体容器中,然后根据长方体体积公式计算杯子的容积;

(3)采用排水法求出100颗黄豆的体积,进而求出1颗黄豆的体积大约是多少即可。 22. 解:4÷6=(杯)

答:小丽一共喝了杯纯果汁。

【解析】【分析】一杯纯果汁被平均分成6份,喝了半杯就是喝了3份果汁,兑满了水,又喝了 杯就是喝了剩下3份果汁的 , 即喝了1份果汁,一共喝了4份果汁;喝的果汁份数÷果汁总份数=小丽一共喝的纯果汁杯数。

23. 解:3×3×80×7.8÷1000 =9×80×7.8÷1000 =720×7.8÷1000 =5616÷1000 =5.616(千克)

答:这块方钢共重5.616千克。

【解析】【分析】根据题意可知长方体的体积=底面积×高,计算出体积后,体积× 每立方厘米的质量=总质量,关键最后要单位换算。 24. (1)解:50×40+(50×30+40×30)×2 =50×40+(1500+1200)×2 =50×40+2700×2 =2000+5400 =7400(平方厘米)

答:做这个鱼缸至少需要玻璃7400平方厘米。 (2)解:40×1000=40000(立方厘米) 40000÷(50×40) =40000÷2000 =20(厘米)

答:水深大约20厘米。 (3)解:50×40×2.5 =2000×2.5 =5000(立方厘米)

答:放入物体的体积一共是5000立方厘米。

【解析】【分析】(1)无盖的长方体的表面积=长×宽+(长×高+宽×高)×2; (2)水深就是水的高,高=容积÷底面积;

(3)求物体的体积就等于容器内水上升的体积=底面积×高。 25. (1)解:10 ×6×3.5 =60×3.5 =210(立方米)

答:这间教室的空间有210立方米。 (2)解:10×6+(10×3.5+3.5×6)×2-6 =60+(35+21)×2-6 =60+56×2-6 =60+112-6 =166(平方米)

答:这间教室要刷166平方米。

【解析】【分析】(1)长方体体积=长×宽×高,根据体积公式计算这间教室的空间; (2)地面是不需要粉刷的,根据长方体表面积公式,只计算一个底面,再加上四个侧面,然后减去门、窗、黑板的面积即可求出需要粉刷的面积。 26. 解:12=3×2×2;

16=2×2×2×2;

12和16的最小公倍数是2×2×3×2×2=48,这包糖果共有48颗。 答: 这包糖果共有48颗。

【解析】【分析】此题主要考查了最小公倍数的应用,用分解质因数的方法求两个数的最小公倍数,先把每个数分别分解质因数,把这两个数公有的质因数和各自独有的质因数相乘,它们的乘积就是这两个数的最小公倍数,据此解答。 27. (1)解:20×15+(20×30+15×30)×2 =20×15+(600+450)×2 =20×15+1050×2 =300+2100 =2400(cm2)

答: 李叔叔至少需要买2400cm2的玻璃。 (2)解:20×15×(13-10) =20×15×3 =300×3 =900(cm3)

答: 这块假山石头的体积是900cm3。

【解析】【分析】(1)此题主要考查了长方体的表面积,无盖长方体的表面积=长×宽+(长×高+宽×高)×2,据此列式计算;

(2)观察图可知,假山石头的体积=长方体的底面积×上升的水位高度,据此列式解答。 28. 解:36=2×2×3×3 42=2×3×7

36和42的最大公因数是2×3=6 一共可以截成:36÷6+42÷6=13(段)

答:每根小棒最长有6dm,一共可以截成13段。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数,也就是每根小棒最长的长度; 要求一共可以截成几段,分别用除法求出两根木棒截的段数,然后相加即可。 29. 解:4和3的倍数有12、24、......;

所以选择裁剪边长是24分米的正方形纸比较合适, 能够裁剪成的张数: (24÷4)×(24÷3) =6×8 =48(张)

答:选择裁剪边长是24分米的正方形纸比较合适,能够裁剪成48张小长方形纸片。 【解析】【分析】正方形的边长如果是4和3的倍数,这样裁剪起来没有剩余,比较合适;

(正方形的边长÷4分米)×(正方形的边长÷3分米)=可以裁剪的个数。 30. 解:70=7×2×5;

50=5×2×5;

70和50的最大公因数是2×5=10,剪出的小正方形的边长最长是10厘米。 答: 剪出的小正方形的边长最长是10厘米。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数,也是剪出的小正方形的边长的最大数值,据此解答。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top