专业资料整理分享
平抛运动和斜面组合模型及其应用
平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,其运动轨迹和规律如图1所示,会应用速度和位移两个矢量三角形反映的规律灵活的处理问题。设速度方向与初速度方向的夹角为速度偏向角φ,
位移方向与初速度方向的夹角为位移偏向角θ,若过P点做与初速度平行的直线,则该直线与位移方向的夹角可以看作是构造的虚斜面的倾角,这样平抛运动模型和斜面模型就组合在一起了。在中学物理中有大量的模型,平抛运动和斜面模型是重要的模型,这两个模型组合起来进行考查,是近几年高考的一大亮点。为此,笔者就该组合模型的特点和应用,归纳如下。
一.斜面上的平抛运动问题
例1.(2006·上海)如图2所示,一足够长的固定斜面与水平面的夹角为370,物体A以初速度v1从斜面顶端水平抛出,物体B在斜面上距顶端L=15m处同时以速度v2沿斜面向下匀速运动,经历时间t物体A和物体B在斜面上相遇,则下列各组速度和时间中满足条件的是(sin37O=0.6,cos370=0.8,g=10 m/s2)
A.v1=16 m/s,v2=15 m/s,t=3s B.v1=16 m/s,v2=16 m/s,t=2s C.v1=20 m/s,v2=20 m/s,t=3s
 完美WORD格式编辑
   专业资料整理分享
D.v1=20m/s,v2=16 m/s,t=2s
解析:设物体A平抛落到斜面上的时间为t,
12gt 2y由位移矢量三角形关系得 tan
x由平抛运动规律得 xv0t,y由以上三式解得t2v0tan g222v0tan2v0tan2在时间t内的水平位移x;竖直位移y
gg将题干数据代入得到3v1=20t,对照选项,只有C正确。 将v1=20 m/s,t=3s代入平抛公式,求出x,y
sAx2y275m,sBv2t=60m,
sAsBL15m,满足题目所给已知条件。
结论1:物体自倾角为θ的固定斜面抛出,若落在斜面上,飞行时间为
222v0tan2v0tan22v0tant,水平位移为x,竖直位移y,均与初速度
ggg和斜面的倾角有关且分位移与初速度的平方成正比。
跟踪训练:
1.在例1中,题干条件不变,改变设问角度和题型。则v1、 v2应满足的关系式为     。
温馨提示:由结论1得飞行时间为t2v0tan,由几何关系得gv1v2tL。联立以上两式化简得v1、 v2应满足的关系式为cos15v1212v1v28gL。
2.如图3所示,AB为斜面,BC为水平面,从A点以水平初速度v向右抛出
 完美WORD格式编辑
   专业资料整理分享
一小球,其落点与A的水平距离为x1,从A点以水平初速度3v向右抛出一小球,其落点与A的水平距离为x2,不计空气阻力,则
1111A.    B.    C.    D.
3591122v0tan温馨提示:若两物体都落在斜平面上,由水平位移x得,
gx1可能为(    ) x22x1v0112,即选项C正确。若两物体都落在水平面上,由x2v029水平位移xv0vx12y得,101,即选项A正确。若第一
x2v023g球落在斜面上,第二球落在水平面上(如图4所示),
x11不会小于,但一定小x291于,故选项B对D错。所以本题正确选项为ABC。 33.(2003·上海)如图5所示,一高度为h=0.2m的水平面在A点处与一倾角为θ=30°的斜面连接,一小球以v0=5m/s的速度在平面上向右运动。求小球从A点运动到地面所需的时间(平面与斜面均光滑,取g=10m/s2)。某同学对此题的解法为:小球沿斜面运动,则
h1v0tgsint2,由此可求得落地的时间t。问:你同意sin2上述解法吗?若同意,求出所需的时间;若不同意,则说明理由并求出你认为正确的结果。
温馨提示:不同意。小球离开平面后,其重力与初速度垂直,故小球做平抛运动而不是沿斜面运动。
物体能否落到斜面上,用假设法计算判断。假设物体平抛能落在斜面上,利
 完美WORD格式编辑
   专业资料整理分享
22v0tan25用其竖直分运动特点,由竖直位移y得,ym>h=0.2m。故小球不
g3会落在斜面上。所以小球下落时间为t=
2h=0.2s。   g4.将一质量为m的小球以初速度v0从倾角为θ的斜坡顶向外水平抛出,并落在斜坡上,那么当小球击中斜坡时重力做功的功率是(  )
A.mgv0cot            B.mgv0tan C.2mgv0cot           D.2mgv0tan 温馨提示:由结论1中的飞行时间为t2v0tan和功率的计算式gpmgvymggt,得p2mgv0tan。故正确的选项为C。
拓展创新:如图6中的a是研究小球在斜面上平抛运动的实验装置,每次将小球从弧型轨道同一位置静止释放,并逐渐改变斜面与水平地面之间的夹角θ,获得不同的射程x,最后作出了如图6中的b所示的x-tanθ图象,g10m/s2。则:
(1)由图b可知,小球在斜面顶端水平抛出时的初速度v0=          。实
验中发现θ超过60°后,小球将不会掉落在斜面上,则斜面的长度l           m。
(2)若最后得到的图象如图6中的c所示,则可能的原因是(写出一个)
                   
 完美WORD格式编辑
   专业资料整理分享
22v0tan温馨提示:(1)由结论1物体的水平位移为x知,图象b中直线
g22v0xktan的斜率k,解得v0=1m/s。由几何关系得斜面的长度l=0.7mgcoscos(
23m)   522v0(2)图象b中直线的斜率k可知,平抛运动的初速度变大,即释放位
g置变高或释放时有初速度。
例2.(2008·全国)如图7所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角φ满足(  )
A.tanφ=sinθ B. tanφ=cosθ C. tanφ=tanθ D. tanφ=2tanθ
解析:设平抛运动的初速度为v0,如图所示,由速度矢量三角形关系得
tanvyv0gt v0                             完美WORD格式编辑
   专业资料整理分享
由位移矢量三角形关系得tan选项D正确。
ygt,由以上两关系式得tan2tan。故x2v0结论2:物体自倾角为θ的固定斜面抛出,若落在斜面上,末速度与初速度的夹角φ满足tan2tan。
跟踪训练:
5.如图8所示从倾角为的足够长的斜面上的A点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v1,球落到斜面上前一瞬间的速度方向与斜面的夹角为1,第二次初速度为v2,球落在斜面上前一瞬间的速度方向与斜面间的夹角为
2,若v2v1,则1、2的大小关系是      。
温馨提示:如图9所示,由结论2可知,tan()2tan,  解得arctan(2tan) 即仅与有关,故有12
点评:由此可以得出,物体自倾角为θ的固定斜面抛出,以不同初速度平抛的物体落在斜面上各点的速度是互相平行的推论。
6.如图10所示,AB为足够长斜面,BC为水平面,从A点以3m/s 的初速度水平向右抛出一小球,落在斜面上的动能为E1,再从A点以5m/s 的初速度水平向右抛出该小球,落在斜面上的动能为E2。不计空气阻力,则
E1为(    ) E2A.
9135   B.    C.    D.  25553                             完美WORD格式编辑
   专业资料整理分享
温馨提示:小球落在斜面上时的动能为Ek12122mvm(v0vy) 22设斜面倾角为θ,由图1知vyv0tan,由结论2得tan2tan 联立解得Ek为C。
点评:由此可以得出,物体自倾角为θ的固定斜面抛出,以不同初速度平抛的物体落在斜面上时的动能与初动能的关系式为Ek12mv0(14tan2)。可2EE312mv0(14tan2)。即1k01,所示本题正确的选项
E2Ek0252见,以不同初速度平抛的物体落在斜面上各点的动能与初速度的平方成正比或与初动能成正比。
二.物体做平抛遇到斜面时的最值问题
例3.如图11所示,小球以v0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t为(重力加速度为g)(    )
A.tv0tan2vtan   B.t0 ggv0cot2vcot   D.t0 ggC.t解析:如图所示,要小球到达斜面的位移最小,则要求落点与抛出点的连线与斜面垂直,所以有tanx1,而xv0t,ygt2, y2解得t2v0cot所以正确的选项为D。 g点评:注意本题中物体做平抛运动的位移偏向角与斜面的倾角互余。要深刻
 完美WORD格式编辑
   专业资料整理分享
理解处理平抛运动的方法,学会灵活的迁移和应用。
例4.在倾角为的斜面上以初速度v0平抛一物体,则物体离斜面的最大距离是多少?
解析:方法一:
如图13所示,速度方向平行于斜面时,离斜面最远,由速度矢量三角形关系得tanvyv0gt, v02v0tan此时横坐标为xv0t
g平抛运动任意时刻的瞬时速度方向的反向延长线,一定通过此时水平位移x的中点(见图13所示)即xx/2。由几何关系得:
H12xsin2v0tansin2g
方法二:建立如图14所示坐标系,正交分解得
v0xv0cos ;v0yv0sin  axgsin   ;aygcos
把运动看成是沿x方向初速度为v0cos,加速度为gsin的匀加速运动和沿y方向的初速度为v0sin,加速度为gcos的匀减速运动的合运动。
最远处vy0,由运动学公式得
20(v0sin)2v0tansinH
2gcos2g点评:本题考查了处理曲线运动的方法—“化曲为直”,考查了平抛运动分
 完美WORD格式编辑
   专业资料整理分享
解的非惟一性,即平抛运动可以分解为水平方向和竖直方向,也可以分解为沿斜面方向和垂直于斜面方向,考查学生的灵活处理物理问题的能力。
跟踪训练:
7.如图15所示,从倾角θ的斜面上的M点水平抛出一个小球,小球的初速度为v0,最后小球落在斜面上的N点,在已知θ和v0的条件下(重力加速度g已知),空气阻力不计,则(   )
A.可求出M、N之间的距离 B.可求出小球落到N点时的动能
C.可求出小球落到N点时的速度的大小和方向
D.可求出小球从M点到达N点的过程中离斜面的距离最大时的时间 温馨提示:由结论1可知选项AC正确,由于不知道小球的质量或初动能,所以选项B错误。由速度矢量三角形关系得tanvyv0gt,可求出小球从M点v0到达N点的过程中离斜面的距离最大时的时间t为ACD。
v0tan。所以本题正确的选项g三.平抛运动与斜面上做匀变速直线运动的组合
例5.(2007·宁夏)倾斜雪道的长为25 m,顶端高为15 m,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图16所示。一滑雪运动员在倾斜雪道的顶端以水平速度v0=8 m/s飞出。在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己
只保留沿斜面的分速度而不弹起。除缓冲外运动员可视为质点,过渡轨道光滑,其长度可忽略。设滑雪板与雪道的动摩擦因数μ=0.2,求运动员在水平雪道上
 完美WORD格式编辑
   专业资料整理分享
滑行的距离(取g=10 m/s)
解析:建立如图17所示坐标系,斜面的方程为:
2
yxtan3x     ① 4运动员飞出后做平抛运动
xv0t              ②
y12gt            ③ 22v0tan1.2 s g联立①②③式,得飞行时间:t22v0tan9.6m 落点的x坐标:xg落点离斜面顶端的距离:s1x12 m cos落点距地面的高度:h1(Ls1)sin7.8 m
接触斜面前的x分速度:vx8 m/s;y分速度:vygt12 m/s 沿斜面的速度大小为:vBvxcosvysin13.6 m/s 设运动员在水平雪道上运动的距离为s2,由功能关系得:
12mghmvBmgcos(Ls1)mgs2
2解得:s2=74.8 m
点评:此类问题以平抛运动和斜面模型为载体,考查运动的合成与分解和功能关系。要求考生灵活的建立坐标系并根据实际情况进行速度的分解;应用功能关系时要选择恰当的物理过程,明确各个力做的功和能量的转化。
跟踪训练:
8.如图18所示,一小球以初速度v03m/s从高为H=21.6m的平台上水平抛出,恰好落在临台的一倾角为α=530的光滑斜面顶端,并刚好沿斜面下滑,
 完美WORD格式编辑
   专业资料整理分享
g=10m/s2,sin530=0.8,cos530=0.6,则
(1)斜面顶端与平台边缘的水平距离x是多大? (2)小球离开平台后经多长时间t到达斜面底端?
温馨提示: (1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,由平抛运动规律有
vy = v0tan53°      vy = gt1 代入数据得t1 = 0.4s 由x =v0t1 = 3×0.4m=1.2m  (2)由h112gt1,得h1=0.8m   2由几何关系得斜面的高度为h2Hh120.8m
22vy5m/s 小球在斜面上做匀加速直线运动的初速度为v1v0设小球在斜面运动的时间为t2,到达斜面底端时的速度大小为v2
1212由机械能守恒得 mv0 mgHmv222由运动学公式得
h2v1v2t2 02sin53代入数据解得v2=21m/s,t2=2s 所以tt1t22.4s
四.物体在斜面上做类平抛运动
例6.如图19所示,将质量为m的小球从倾角为θ的光滑斜面上A点以速度v0水平抛出(即v0∥CD),小球运动
 完美WORD格式编辑
   专业资料整理分享
到B点,已知A点的高度h,则小球在斜面上运动的时间______,小球到达B点时的速度大小为______.
解析:小球在光滑斜面上做类平抛运动,由A运动至B的时间为t,沿斜面向下的加速度a=gsinθ
沿斜面向下的位移为解得:t=
h1=at2 sin22h1=asinsin2h g1sin2沿斜面向下的速度为vy=at=gsinθ·
222h=2gh g故小球在B点的速度为v=v0vy=v02gh
点评:本题求小球在B点的速度,利用了运动的合成与分解的方法,目的是
121学会方法的迁移和应用。也可以由机械能守恒定律mv0mghmv2求小球在
22B点的速度。
 完美WORD格式编辑