Nonlinearcontrollerofanair-cushionsystemforaswampterrainvehicle:fuzzylogicapproach
AHossain1,2*,ARahman1*,andAKMMohiuddin1DepartmentofMechanicalEngineering,FacultyofEngineering,InternationalIslamicUniversityMalaysia(IIUM),KualaLumpur,Malaysia
DepartmentofMechanicalEngineering,FacultyofEngineering,UniversitiIndustriSelangor(Unisel),KualaSelangor,Malaysia
Themanuscriptwasreceivedon28August2010andwasacceptedafterrevisionforpublicationon27January2011.DOI:10.1177/0954407011400818
21Abstract:Thispaperpresentsthefuzzylogiccontroller(FLC)ofanair-cushionsystemforaswamppeatterrainvehicleanddescribestheprocessbywhichitfunctions.Cushionpres-sureiscontrolledbyanelectronicproportionalcontrolvalveandFLCusingtheoutputsignalofthedistance(height)measuringsensorthatwasattachedtothevehicle.Themainpurposeofthisstudywastodevelopacontrolschemeforanair-cushionsystemandtoinvestigatetherelationshipbetweenvehicleverticalpositionandtheair-cushionsystem,andtoillustratetheimportantroleofthefuzzylogiccontrolsystem.Experimentalvalueswererecordedinthelaboratoryforcontrolsystemtesting,andintheswamppeatterrainfieldforvehicleperfor-manceinvestigation.Inthispaper,afuzzylogicexpertsystem(FLES)model,basedontheMamdaniapproach,wasdevelopedtopredictthechangesinflowrate.ThemeanrelativeerrorofactualandpredictedvaluesfromtheFLESmodelofflowratewasfoundtobeslightlyabovetheacceptablelimit.ThegoodnessoffitofthepredictionvaluesfromtheFLESmodelwasfoundtobecloseto1.0asexpected,andhencedemonstratedthegoodperformanceofthedevelopedsystem.
Keywords:swamppeatterrain,air-cushion,fuzzylogiccontroller,position
1INTRODUCTION
Transportationoperationisanimportantprobleminoff-roadvehiclesusedinagricultureandtravel-lingoverswamppeatterrain;itisconsideredasoneofthemajortransportationissuesinmanypartsoftheworld.Inordertoimprovethetractionperfor-manceofavehicleoperatingonsoftterrainandinwetfields–suchasswamp,sea,andbeach–ahybridvehiclewhichcombinesair-cushiontech-nologywithatracksystemhasbeendevelopedasshowninFig.1[1].However,becauseoftheuncer-taintyofthesoftterrain,thepowerconsumption
*Correspondingauthor:DepartmentofMechanicalEngineering,FacultyofEngineering,InternationalIslamicUniversityMalaysia(IIUM),50728KualaLumpur,Malaysia.
email:altab75@unisel.edu.my(A.Hossain)andarat@iiu.edu.my(A.Rahman)
andcushionpressurecontrolofthisvehiclecreatemajorproblemsforpracticalapplicationswhenthevehiclesareusedforagricultural,oilindustry,andmilitarypurposes.Although,thisvehiclehasbeenshowntobeeffectivewhenmovingonthelow-bearing-capacityswamppeats,someproblemshavebeenincurredduringoperationonswamppeatterrainduetothedifficultiesincontrollingtheair-cushionsystem.Variousdifferentresearchinstitu-tionsfromuniversities,governmentorganizations,andprivatecompanieshaveproposedanddevel-opeddifferenttypesoftrackedvehiclesfortrans-portationoperation,butonlyformoderateterrain[2–4].However,inordertobeabletodriveavehicleoff-road,forexampleinswamppeatterrain,thevehiclesneedlowergroundpressurethanordinaryroadvehicles.Whendrivingonswamppeatterrainthelowergroundpressureisneededtoavoidsink-ingandgettingstuck.Trackedvehiclesprovidelow
Proc.IMechEVol.225PartD:J.AutomobileEngineering
Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015
722AHossain,ARahman,andAKMMohiuddin
2METHODOLOGY
2.1TheoreticalmodelofpowerconsumptionTheair-cushiontrackedvehicleispartiallysupportedbytheair-cushion(lifting)systemandisdrivenbythepropulsionsystem.Therefore,thetotalpowerconsumptionPofthevehicleisgivenbyP=Pc+Pd
(1)
Fig.1Photoofthedevelopedvehicle[1]
wherePcisthepowerconsumedbytheair-cushion(inW)whenitpartiallysupportstheweightofthevehiclebodyandPdisthepowerconsumedbythedrivingsystem(inW)whenovercomingthetravel-lingresistanceandmaintainingthenormaldrivingstate.
2.1.1Powerrequiredfortheair-cushionsystemThepowerrequiredfortheair-cushionsystemcanbeexpressedby[13]
1=22
ðpcÞ3=2Pc=pcQ=hcLcDc
rwhereQ=hcLcDc
2pcr
1=2
(2)
groundpressureandhavethecapabilityofoperat-ingoverawiderangeofunpreparedmoderatepeatterrain[5].However,transportationefficiencyisthemainrequirementforthetrackedvehicleswhenthevehiclesaretravellingoverlow-bearing-capacityswamppeatterrain.Amoderatepeatterrainbear-ingcapacityof12kN/m2isreportedbyRahmanetal.[5];swamppeatterrainwithasurfacematthicknessof70mmandwithabearingcapacityof7kN/m2isreportedbyJamaluddinandSarawak[6].Systematicstudiesoftheprinciplesunderlyingthetransportationdevelopmentofoff-roadvehiclesonlow-bearing-capacityswamppeatterrain,there-fore,haveattractedconsiderableinterestinthesearchtodevelopanintelligentair-cushionsystemforaswampterrainvehicleandtoachievetheasso-ciatedreducedfuelconsumption[7].
Theair-cushion–terraininteractiontakesplaceinanuncertainandvagueenvironmentduetosoilcon-ditions,andsubmergedandundecomposedmateri-alssuchaswood,stones,stumps,andshrubs,etc.Nomathematicalmodelcandescribesuchacomplexmechanicssystemsatisfactorily[8].Ineffortstocon-trolsuchsystems,thefuzzylogiccontroller(FLC)hasbecomeapopularmodelthatoffersnonlinearcontrolandhastheadvantagethatthefuzzycontrol-lerdoesnotrequireaprecisemathematicalmodel[9–12].Theappropriateandinexactnatureoftheair-cushionsystemforatrackedvehiclehasbeeneffectivelycapturedusingfuzzylogic,whichisalogi-calsystemclosertohumanknowledgeandmachinelanguage.ThispaperdescribestheimplementationofaFLCtocontrolanair-cushionsystembasedonthevehicleverticalpositionfromtheground.Samplingdatacollectedfromtheswampterrainareusedtovalidatethefuzzymodels.
Inequation(2),Qisthevolumeflowrate(inm/s),pcisthecushionpressure(inN/m2),hcistheoreticalcushionclearanceheight(inm),Lcistheair-cushionperimeter(inm),Dcisthedischargecoefficient,andristheairdensity(inkg/m3).
32.1.2Powerrequiredforthedrivingsystem
Forthepropulsionsystem,thepowerconsumptionisfromtotalmotionresistance.Therefore,innormaldrivingcasesforthevehicle,therequiredpowerforthedrivingsystemcanbeexpressedby[8,13,14]
Á
Pd=RtVt=Rc+Rin+RdragVtwhere
kpz24
+mmz3Rc=2B23Dht
WÀpcAc
ð222+3VtÞRin=
1000gRdrag=pcActanu
À
(3)
Proc.IMechEVol.225PartD:J.AutomobileEngineering
Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015
Fuzzylogiccontrollerofanair-cushionsystemforaswampterrainvehicle723
Inequation(3),Rtisthetotalmotionresistance(inN)(whichisthesumofmotionresistanceduetoterraincompactionRc,innerresistanceRin,andthedraggingmotionresistanceRdrag),Vtisthevehi-cletheoreticalspeed(inm/sintheequationforPdandinkm/hintheequationforRin),Bisthetrackwidth(inm),zisthesinkage(inm),mmisthesur-facematstiffness(inN/m3),kpistheunderlyingpeatstiffness(inN/m3),Dhtisthetrackhydraulicdiameter(inm),Wisthetotalweightofthevehicle(inN),pcisthecushionpressure(inN/m2),Acistheair-cushioneffectivearea(inm2),andfistheterraininternalfrictionangle(indegrees).
However,toovercomethetotalmotionresistanceRt,thetractionforce(drivingforce)providedbythetracksofthevehicleFt[1]shouldbeequaltoRt,i.eÀÁ
Ft=Rt=Rc+Rin+Rdragwhere
!
Kw1KwiLeÀ1+exp1ÀFt=ðAtc+WttanfÞiLiLKwInequation(4),Ftisthetractionforcedeveloped
atthevehicle’strackgroundcontactpart(inN),Bisthetrackwidth(inm),Listhetrackgroundcontactlength(inm),Atisthetrackgroundcontactarea(inm2),Wtisthevehicleloadsupportedbythetracksystem(inN),cisthecohesiveness(inN/m2),fistheterraininternalfrictionangle(indegrees),Kwisthesheardeformationmodulusoftheterrain(inm),iistheslippageofthevehicle(inpercent),andeistheexponent(exp)term.2.1.3Totalpowerandoptimumstate
Accordingtopreviousstudies[14–16],ithasbeenshownthatloaddistributionratioaffectstotalpowerrequirementandvehicletractiveperfor-mancesignificantly.Whenthevehicleisaffectedbyexternaldisturbances,thischangestheloaddis-tributionratioandtotalpowerrequirement.Itisnotedthatloaddistributionratio(d)shouldbeaslowaspossibleinordertoreducethedraggingmotionresistance.LuoandYu[17]havesuggestedthattheloaddistributionratioshouldbekeptwithintherangeof0.2–0.75inordertomaintainthesemi-trackedair-cushionvehicleinnormaloperatingconditions,i.e.withsatisfactoryperfor-mance.Loaddistributionratioisdefinedasd=
WcWc
=WWt+Wc
(5)(4)
whereWc=pcAcistheweightsupportedbytheair-cushionsystem,Wisthetotalweightofthevehicle,
andWtisthevehicleweightsupportedbythetracksystem(inN).
Combiningequations(1),(2),and(3),thetotalvehiclepowerconsumption,Pisafunctionofpcandhcandcanberewrittenas
P=pcQ+RtVt
\"1=2#
ÀÁ2pc
P=pchcLcDc+Rc+Rin+RdragVt
r
\"1=2
2kz24p
+P=hcLcDcðpcÞ3=2+2Bmmz32r3Dht
#
WÀpcAc+ð222+3VtÞ+pcActanuVt
1000gP=f1ðpc,hcÞ+f2ðpcÞ
(6)
Foraparticularsoilcondition,theexistenceofanoptimalloaddistributionratio,whichresultsinminimumtotalpowerconsumptionforthevehicle,couldbedetermined.Soforequation(6),takingthepartialderivativeofPwithrespecttopcandhavingtheresultantequationequaltozero,i.e.∂P
=0∂pc
ThesystemconstraintsasshowninFig.2arehcgÀhi=hc+zz=k1Àhcwherek1=hcgÀhc
Therefore,thefirstderivativeofPinequation(6)withrespecttopccanbeexpressedby1=223
ðpcÞ1=2hcLcDc
r2 !ÀAc
+ð222+3VtÞ+ActanfVt=0
1000g1
pc=f
h2c
(7)
Theoptimalcushionpressurepciscalculated
foragivensoilconditionandvehiclespeed.Foranair-cushiontrackedvehiclewithagivenload,theoptimalair-cushionpressureisrelatedtosoilcon-dition,vehiclespeed,andcushionclearanceheight.
Proc.IMechEVol.225PartD:J.AutomobileEngineering
Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015
724AHossain,ARahman,andAKMMohiuddin
Fig.2Vehicletracksystemwithinitialinflatedair-cushion
Allthesefactorsaffectpowerconsumptionandoperationperformances.Sincetheloaddistributionfromthevehicletotheair-cushionsystemchangesduetoexternaldisturbances,thecushionclearanceheight(hc)ofthevehicleandtherequiredpowerfortheair-cushiontrackedvehiclechanges,andhenceair-cushionpressure(pc)alsochanges,asshowninFig.2.InFig.2,Tisthedrivingtorque(inNm),Rrsistheradiusofsprocket(inm),hiistheinitialinflatedair-cushionheight(inm),hcisthecushionclearanceheight(inm),hcgistheheightofvehiclecentreofgravity(CG)(inm),zisthevehiclesinkage(inm),Wisthetotalweightofthevehicle(inN),pcistheair-cushionpressure(inN/m2),andk1isaconstant.
Bysolvingequation(7),theminimumpowerconsumptioncanthusbedetermined,whichcanbeexpressedasanoptimalpoint(Pm,pcm,Qm,hcm),wherepcm,Qmandhcm,respectively,aretheopti-mumvaluesofcushionpressure,volumeflowrate,andtheoreticalcushionclearanceheightwithmini-mumpowerconsumptionPm.Becauseoftheprac-ticaldifficultiesofcontinuousmeasurementofswampterrainparametersinoperation,aFLCisdevelopedwhichcanrecognizecurrentterrainconditionsinoperationon-line.2.2Controlsystemdevelopment
2.2.1VehicleverticalpositioncontrolsystemThecontrolobjectiveoftheair-cushionpressuresystemmanagementistoregulatevolumeflowratethroughthechangeinvalvepositionbyusingafuzzylogicexpertsystem(FLES).Figure3illus-tratesthebasicschemeforvehicleverticalposition(i.e.height,h)controlduringsinkingduetothelow-bearing-capacityswamppeatterrain.Inthisfigure,twoelectronicproportionalvalvescontroltheinletandoutletflowratesoftheairrespectively.Adistancesensorismountedatthevehiclechassisframetomeasurethevehicleverticalposition(correspondingheightandhencesinkageare
Proc.IMechEVol.225PartD:J.AutomobileEngineering
measured).Figure3showsthecontrolsystemwhichincorporatesanaircompressorwithaccumu-lator,anair-cushionchamber,adistancesensor,amicrocontroller,andabatterypack.
ReferringtoFig.3,theoperationofthevehicleverticalpositioncontrolsystemcanbedescribedinthefollowingmanner.Theaimofthesystemisthatthevehicleverticalpositionismaintainedatadesired(reference)positionsothatthevehicleobtainssufficienttractioncontrol.Inordertoaccomplishthistask,itisrequiredthattheerrorbetweentheactualpositionandthedesiredposi-tionisequaltozero,andthedifferentialpositionrateshouldalsobeequaltozero.Anappropriatecontrolschemehasbeendevelopedforthiscontrolsystem;thefundamentalgoalistoemploytheFLEStosetthefuzzyrulesandtoactuatetheelectronicproportionalvalveinordertoobtainappropriatevalvecontrolactions.
2.2.2PrincipleofthecontrolsystemstructureAposition(height)controlsystemwithaFLCisdesignedtorealizethevehicleverticalposition(h)targetsandthusminimizethetotalpowercon-sumptionbasedonthevehiclesinkage.Thecontrollercanovercomethedisadvantageofconventionalproportional–integral–derivative(PID)control,i.e.theunadjustableparametersetting.TheFLChastheadvantageofthefuzzycontrollerbeingsimpleandrobust,andnotrequiringanexactmathematicalmodel[18,19].Inthevehiclecontrolsystem,positionhisselectedasthecontrolledvari-ableandairflowrateQisselectedastheregulatedvariable,asshowninFig.4.Basedonthedifferencebetweenthemeasuredvalue(h)andthereferencevalue(hr),thepositioniscontrolledbyaregulatedvariable,i.e.flowrateQ.Thereferencepositionhriscalculatedbasedonthemaximumallowablesink-ageandisthencomparedwiththemeasuredposi-tionvalues.Hence,theresultantdeviatione,i.e.positionerror(PE)anddifferentialpositionde/dtorrateofpositionerror(RPE)ofhrarecontinuouslymeasuredinoperation.2.2.3ImplementationofFLES
ForimplementationoffuzzyvaluesintothesystembyusingFLES,positionerror(e)andrateofposi-tionerror(de/dt)areusedasinputparametersandflowrate(Q)isusedastheoutputparameter.PEandRPE,respectively,arefuzzyvariablesofeandde/dt.Forfuzzificationofthesefactors,thelinguis-ticvariableslargenegativeerror(LNE),smallnega-tiveerror(SNE),zeroerror(ZE),smallpositiveerror
Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015
Fuzzylogiccontrollerofanair-cushionsystemforaswampterrainvehicle725
withtheaidofthefollowingfunctions.Thesefor-mulaearedeterminedbyusingmeasurementvaluesPEði1Þ=
&i1;0;i2;0;
À6 (8) ' RPEði2Þ= & & À1:5 Fig.3Vehicleverticalpositioncontrolsystem Qðo1Þ= o1;0; ' (10) Fig.4Blockdiagramofthecontrolsystem (SPE),andlargepositiveerror(LPE)areusedastheinputparametersforthepositionerror(PE);largenegativerateoferror(LNRE),smallnegativerateoferror(SNRE),zerorateoferror(ZRE),smallpositiverateoferror(SPRE),andlargepositiverateoferror(LPRE)areusedastheinputparametersfortherateofpositionerror(RPE).Similarly,thelinguisticvari-ableslargenegativeopen(LNO),smallnegativeopen(SNO),leavealone(LA),smallpositiveopen(SPO),andlargepositiveopen(LPO)areusedasoutputparametersfortheflowrate(Q).ThelogicalANDisimplementedwiththeminimumoperator,theaggregationmethodismaximum,andthecentreofgravitydefuzzificationmethodisusedbecausetheseoperatorsassurealinearinterpola-tionoftheoutputbetweentherules[20].Themem-bershipfunctionsmostfrequentlyusedinthecontrolhypothesisaretriangular,trapezoidal,Gaussian,Z-,S-,andbell-shapedforms[21].Basedontheexpertandtheapplication,manydifferentchoicesofmembershipfunctionsarepossible.However,thetriangularshapemembershipfunc-tionsareusedinthisstudyforbothinputandoutputvariablesbecauseoftheiraccuracy[22].Theunitsoftheusedfactorsare:PE(cm),RPE(cm/s)andQ(%).Forthetwoinputsandoneoutput,afuzzyassociatedmemoryordecisionisformedasregulationrules.Atotalof25rulesareformed;thepartsoftherulesareshowninTable1. ThefirstblockinsidetheFLESisfuzzification,whichconvertseachpieceofinputdatatodegreesofmembershipinoneorseveralmembershipfunc-tions.Fuzzificationofthepositionerror(PE),rateofpositionerror(RPE),andflowrate(Q)iscarriedout Inequations(8)to(10),i1isthefirstinputvari-able(PE),i2isthesecondinputvariable(RPE),ando1isthefirstoutputvariable(Q).Prototypetriangu-larfuzzysetsforthefuzzyvariables,namelyposi-tionerror(PE),rateofpositionerror(RPE),andflowrate(Q)aresetupusingMATLABFUZZYToolbox.ThemembershipvaluesobtainedfromtheaboveformulaeareshowninFigs5to7.ThedegreeofPEismeasuredincmfrom26to6,RPEismeasuredincm/sfrom21.5to1.5,andQismeasuredinpercentfrom2100to100.Withintheframeworkofthepresentstudy,thefollowingrulesareusedtocreatetheinputandoutputmember-shipfunctions. Ivanovetal.[21]hasreportedthatifthereisminimalinformationforaparticularvariableandthisvariableisaresponsiveindicator,therangeofvaluesisdividedintonumerousidenticaltriangularmembershipfunctions 8 0;>>> x\\c1 ;; c1 >>>= mtriangleðx,c1,c2,c3Þ= c2Àc1 c3Àx>>c>3Àc2 c2 x.c3 (11) Inthiscase,theedgeofthevariable’sintervalmayberepresentedwithlinearZ-andS-shapedfunctionsdescribedrespectivelyas 8><1;: x 9 >= (12) mZðx,c1,c2Þ= c2Àx c>2Àc1 0; c1\\x\\c2 >; x˜c2x mSðx,c1,c2Þ= 8 ><0;: xÀc1c>2Àc1 ; 1; c1 x˜c2 (13) Inequations(11)to(13),xistheinputandoutputvariable,andc1,c2,andc3arethecoeffi-cientsofmembershipfunctionsforthedescribed Proc.IMechEVol.225PartD:J.AutomobileEngineering Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015 726AHossain,ARahman,andAKMMohiuddin Table1Inferencerulesofcontrollerparameters Rules PE 1–6–10–14–25 LNE–SNE–SNE–ZE–LPE Inputvariables RPELNRE– LNRE–LPRE–SPRE–LPRE OutputvariableQLNO–SNO–SNO–LA–LPO mLPEði1Þ= 8><0;: 1; i1<3 i1À3 ;>33 i1.6i1<3 9>= 9>= (17) mLPEði1Þ= 8 ><0;: 1; i1À3 ;>33 i1.6 (18) Fig.5Prototypemembershipfunctionsofinputvari-ablePE inputandoutputvariables.ThecoefficientsofmembershipfunctionsfortheinputandoutputvariablesaregiveninTables2to4. Inordertoillustratethefuzzificationprocess,lin-guisticexpressionsandmembershipfunctionsofpositionerror(PE)obtainedfromthedevelopedrulesandpreviousformulaearepresentedanalyti-cally.Thenotationi1indicatesthesysteminput(forthiscasePE)andithasitsmembershipfunctionvaluesthatcanbecomputedforallfuzzysetsasfollows 9 i1\\À6>= À3Ài1mLNEði1Þ=3;À6 0;i1.À3 8><1; 8iÀðÀ6Þ 1><3; 0Ài1mSNEði1Þ=;>:30; 9 À6 ; i1.0 Similarly,thelinguisticexpressionsandmem-bershipfunctionsofotherparameterscanbecalculated. Theinferenceprocessgenerallyinvolvestwosteps:(1)thelinguisticsvariablesofalltherulesarecomparedtothecontrollerinputstodeterminewhichrulesapplytothecurrentsituation;and(2)theconclusions(whatcontrolactionstotake)aredeterminedbyusingtherulesatthecurrenttime.Inthisstage,truthdegrees(m)oftherulesaredeterminedforeachrulebyaidoftheminimum,andthenbytakingthemaximumamongthework-ingrules. Inordertocomprehendfuzzification,anexampleisconsidered.ForcrispinputPE(i1)=23.15cm,andRPE(i2)=20.46cm/s,therules2,3,7,and8arefired.Thefiringstrength(truthvalues)aofthefourrulesareobtainedas a2=minfmLNEðPEÞ,mSNREðRPEÞg=minð0:05,0:61Þ=0:05 a3=minfmLNEðPEÞ,mZREðRPEÞg=minð0:05,0:39Þ=0:05 a7=minfmSNEðPEÞ,mSNREðRPEÞg=minð0:95,0:61Þ=0:61a8=minfmSNEðPEÞ,mZREðRPEÞg=minð0:95,0:39Þ=0:39 (14) (15) 98iÀðÀ3Þ 1>=<3;À3 3Ài1mZEði1Þ=0 0;i1.3 Proc.IMechEVol.225PartD:J.AutomobileEngineering (16) Therefore,membershipfunctionsfortheconclu-sionreachedbyrules2,3,7,and8areobtainedas follows Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015 Fuzzylogiccontrollerofanair-cushionsystemforaswampterrainvehicle727 Fig.6Prototypemembershipfunctionsofinputvari-ableRPE Fig.7Prototypemembershipfunctionsofoutputvari-ableQ Table2Coefficientsofmembershipfunctionsforthefuzzyinferencesystem(FIS)parameterofPE Linguisticvariables Type c1LargenegativeerrorSmallnegativeerrorZeroerror Z-shapedTriangularTriangular 262623 Coefficients(cm) c223230 c3–03(continued) Table3CoefficientsofmembershipfunctionsforFISparameterofRPE Linguisticvariables Type c1LargenegativerateoferrorSmallnegativerateoferrorZerorateoferror SmallpositiverateoferrorLargepositiverateoferror Z-shapedTriangularTriangularTriangularS-shaped 21.521.520.7500.75 Coefficients(cm/s) c220.7520.7500.751.5 c3–00.751.5– m2ðQÞ=minf0:05,mLNOðQÞgm3ðQÞ=minf0:05,mLNOðQÞgm7ðQÞ=minf0:61,mSNOðQÞgm8ðQÞ=minf0:39,mSNOðQÞg wherebiisthepositionofthesingletonintheithuniverse,andm(i)isequaltothefiringstrengthoftruthvaluesofrulei. 2.2.4Controlsurfaceofthefuzzyinferringsystem RajasekaranandVijayalakshmiPai[23]havereportedthatinmanyconditions,forasystemwhoseoutputisfuzzy,itcanbesimplertoreceiveacrispdecisioniftheoutputisrepresentedasasinglescalarquantity.Thisconversionofafuzzysettoasinglecrispoutputinordertotakeactioniscalleddefuzzifi-cation.Inthisstage,theoutputmembershipvaluesaremultipliedbytheircorrespondingsingletonvaluesandthenaredividedbythesumofmembershipvaluestocomputeQcrispasfollows[18,19]P ibimðiÞ Qcrisp=PimðiÞ (19) UsingMATLAB,thefuzzycontrolsurfaceisdevelopedasshowninFig.8.ItmayserveasavisualdepictionofhowFLESoperatesdynamicallyovertime.Thisisthemeshplotoftheexamplerelationshipbetweenpositionerror(PE)andrateofpositionerror(RPE)ontheinputsideandcontrolleroutputflowrate(Q)ontheoutputside.ThiscontrolsurfacedisplaystherangeofpossibledefuzzifiedvaluesforallpossibleinputsofPEandRPE.ThesurfaceplotshowninFig.8depictstheimpactsofPEandRPEparametersonQ.Itshowsthatasthevehiclepositionerrorandrateofpositionerrorincreasepositively,thereisaconcomitantincreaseinflowratethroughthe Proc.IMechEVol.225PartD:J.AutomobileEngineering Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015 728AHossain,ARahman,andAKMMohiuddin Table4CoefficientsofmembershipfunctionsforFISparameterofQ Linguisticvariables Type c1LargenegativeopenSmallnegativeopenLeavealone SmallpositiveopenLargepositiveopen Z-shapedTriangularTriangularTriangularS-shaped 21002100250050 Coefficients(%) c2250250050100 c3–050100– changeinvalvepositionasexpected.Theflowratereachestheapexwhenthepositionerrorandrateofpositionerrorbothreachtheirrespectivemaximumlevels.Theplotisusedtochecktherulesandthemembershipfunctionsandtoseeiftheyareappro-priateandwhethermodificationsarenecessarytoimprovetheoutput.Whenasatisfactorysystemisachieved,thefuzzyprogramisconvertedtomachinelanguageanddownloadedintoamicroprocessorcon-troller.Themicroprocessorthenrunsthemachinebasedonthefuzzyprogram.Althoughtheprocessseemstobelong,itactuallyisrelativelyeasytoexe-cute,anditaddsintelligencetoamachine. Inaddition,thepredictiveabilityofthedevel-opedsystemhasbeeninvestigatedaccordingtomathematicalandstatisticalmethods.Inordertoestablishthis,therelativeerror(e)ofastructureiscalculatedas[15,16,20] nXyÀy100%^e=(20)yni=1Thegoodnessoffit(h)ofthepredictedsystemiscalculatedby vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiunPu^Þ2ðyÀyuu (21)h=u1Àni=1 Pt2 ðyÀymeanÞ i=1 Fig.8Controlsurfaceofthefuzzyinferringsystem Simulinkhastwoinputs:PEandRPErespectively,andoneoutput,Q.Figure9showsthefinalizedFLCwithallthesourcesandsinksconnectedtoit.Sincetheloaddistributionaffectsthetotalpowerconsumptionsignificantly,soposition(h)ofthevehicleisusedasacontrolledvariableinthecontrolsystemoftheair-cushiontrackedvehicle.UsingMATLABSimulink,theFLCshowstheoutputresultofflowrate(Q)as228.25basedontwoinputsofpositionerror(PE)andrateofpositionerror(RPE)as21.717and0.3997,respectively,whichcanbeobservedusingthreedisplayresultsofthecontrolsystem.Itisnoticedthattheinletvalveneedstobeopen28.25percentwiththeoutletvalveintheclosedposition. 3.2Investigationofcontrolsystemperformance bylaboratorytestingThecontrolsystemattachedtothevehiclewasequippedwithadistancesensor,pressuresensor,microcontroller,andelectronicproportionalcon-trolvalveasshowninFig.10.Theair-cushionsystemperformancetestingwasconductedintheAutomotiveLaboratoryoftheInternationalIslamicUniversityMalaysia(IIUM)withaloadingconditionof1.96kN.Duringthecontrolsystemtesting,thedistancesensorwasplacedonthefrontofthevehi-cletotestthecontrolsystemfunction.Anobstaclewasplacedinfrontofthedistancesensorandthecontrolsystemwastestedbymovingtheobstacle wherenisthenumberofinterpretations,yisthe ^isthepredictedvalue,andymeanmeasuredvalue,y isthemeanofthemeasuredvalue.Therelativeerrorprovidesthedifferencebetweenthepredictedandmeasuredvaluesanditisnecessarytoattainzero.Thegoodnessoffitalsoprovidestheabilityofthedevelopedsystemanditshighestvalueis1.3 RESULTSANDDISCUSSION 3.1SimulationresultsofthecontrolsystemAnFLCwasdesignedtosimulatetheFLESonceithadbeenverifiedwiththeruleviewer.TheFLCblockin Proc.IMechEVol.225PartD:J.AutomobileEngineering Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015 Fuzzylogiccontrollerofanair-cushionsystemforaswampterrainvehicle729 Fig.9BlockdiagramofFLCsimulation Fig.11Correlationbetweenactualandpredictedval-uesofflowrate 3.3Variationofloaddistributionand totalpowerconsumption Thecurrentstudyisfocusedonloaddistributionfromthevehicletotheair-cushionsystem,withtheaimofreducingtotalpowerconsumption;therefore,thepri-maryinvestigationisconcernedwiththeeffectofloaddistributiononthetotalpowerconsumption.TerrainpropertiesandvehicleparametersarepresentedinTable5.Figure12showsthevariationoftheloaddis-tributionandtotalpowerconsumption.Itcanbeseenthattheloaddistributionratio(d)affectsthetotalpowerconsumptionsignificantlyasitincreaseslinearlywiththeincreaseintheloaddistributionratio.Foraparticularterrainsituation,anoptimalloaddistribu-tionratioexistswhichresultsinminimumpowercon-sumption.However,forthepresentstudy,anoptimalloaddistributionratioof0.20isobtainedwhichresultsinoptimumtotalpowerconsumptionof3.5kW.Inaddition,whendexceedsabout0.4,thetotalpowerconsumptionwillincreasesignificantly.Obviously,indifferentoperatingconditions,thereisminimaltheo-reticalpowerconsumptionwithrespecttod.3.4Vehicleperformanceinvestigationby fieldtesting Thefieldtestwascarriedoutonaterrainoflength50m,whichissimilartotheswamppeatattheFacultyofEngineering,IIUM.Theterrainusedintestingissoftwithshortgrassandasmallamountofwatertomakeitsimilartoswamppeat.Figures13(a)and(b)showthetypicalvariationoftractionforceoftheair-cushiontrackedvehiclewithoutthecontrolsystemforthetwovehicleload-ingconditionsof1.96kNand2.45kNrespectively.Themeanvaluesoftractionare0.62kNand1.06kNforthevehicleweightsof1.96kNand2.45kN Proc.IMechEVol.225PartD:J.AutomobileEngineering Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015 Fig.10Vehiclecontrolsystemtestinginthelabora-tory.Numbersindicate:1,hoseconnectiontothecompressorandair-cushion;2,tracksystem;3,air-cushion;4,microcontroller;5,valve;6,ACtoDCconverter;7,distancemea-suringsensor;8,obstacle;9,computerdatarecording andrecordingthecorrespondingdata.TheresultsofthedevelopedFLESwerecomparedwiththeexperimentalresults.Themeanmeasuredandpre-dictedvalues(fromFLES)offlowrateQare77.78and70.29percentrespectively.Thecorrelationbetweenactual(measured)andpredictedvalues(fromtheFLESmodel)ofairflowrateisshowninFig.11.Thecorrelationcoefficientwas0.971,whichissignificantinoperation.Furthermore,forflow-rate,themeanrelativeerroroftheactualvalueandpredictedvaluesfromtheFLESmodelwas10.93percent,whichisalmostequaltotheacceptablelimitof10percent[22].ThegoodnessoffitofthevaluespredictedfromtheFLESmodelwas0.91whichiscloseto1.0asexpected. 730AHossain,ARahman,andAKMMohiuddin Fig.12Variationoftheloaddistributionandtotal powerconsumption respectively;i.e.whenthevehicleloadingcondi-tionsareincreasedfrom1.96kNto2.45kN,themeanvalueofthevehicletractionincreasesby71percent.Thissignificanttractionincreaseisprincipallyduetotheloadingsituationofthevehi-cleasthecohesivenessofthefieldisapproximatelyinvariablefortheentireterrainlength.Furthermore,thistrendcouldbeduetothehydrodynamiceffectoftheterrainasthereisnodrainagesysteminthefield[13].However,fromtheexperiments,itwasobservedthattheair-cushiontrackedvehiclegotstuckoncetheair-cushionwasincontactwiththeterrain.Byusingthepropeller’sadditionalthrustthevehiclecouldbeoperatedwithoutgettingstuck.Itappearsthatifthecushionsystemisincontactwiththeterrainallthetime,morepowerisneededtooperatethepropeller.Itwasalsonoticedthattheair-cushionsystemwasincontactwiththeterrainonceithadbeeninflated.Therefore,inthisstudy,anintelligentsystemhasbeendevelopedtooperatetheair-cushionsystemandtoovercometheabove-mentionedproblem. Unlikeconventionalvehiclesoperatingonhardsurfaceconditions,theintelligentair-cushiontrackedvehicle(IACTV)wasdevelopedwithaspe-cialconfigurationforitsauto-adjustedair-cushion protectingmechanism,withmoreflexibilitytosat-isfythedemandsofworkinginsevereconditions.Sincepowerconsumptionisthemainissueworld-wide,loaddistributionfromthevehicletotheair-cushionsystemshouldbedeterminedproperly[17];ifthisisnotdone,thevehicle’sfullpotentialmaynotbereachedandexcessivepowerconsumptioncouldresult. ThetestingofvehicleperformancewhenusingthedevelopedfuzzylogiccontrolsystemwascarriedoutonsoftterrainattheFacultyofEngineering,IIUM.Thevehiclewastestedundercontrolledcon-ditionswiththecohesivenessofthefieldconsideredasapproximatelyconstantfortheentirelengthtrav-elled.Thevehiclewastestedatatravellingspeedof10km/hwithloadingconditionsof1.96kNand2.45kN,andwiththeintelligentair-cushionsystemactivated.Thevehicletravellingdistanceduringtest-ingwasconsideredtobe50m.VehiclefieldtestingwascarriedouttomeasurethevehiclesinkageandtractionforceinordertoevaluatethevehicletractiveperformanceandtovalidatethesustainabilityofthedevelopedmathematicalmodelsandFLES.Vehiclesinkageismeasuredusingadistancesensorinstalledonthefrontofthechassisframe,atthecentrepointbetweenthetwofrontroadwheels.TheoutputtorqueoftheDCmotorwasmeasuredusingadigitalmultimeterandwasconvertedintotractionforce,tractiveefficiency,andtotalpowerrequirement.SamplingdatacollectedfromthefieldtestwereusedtovalidatetheFLESmodels.ThemeasuredtractiveperformancedatawereusedtoprepareanExcelspreadsheetandthevaluesoftractionforcewerecalculated.Figures14(a)and(b)showthetypicalvariationintractionforceoftheair-cushiontrackedvehicleusingthecontrolsystem,forthesamevehi-cleloadingconditions.Themeantractionvaluesare0.94and1.43kNforvehicleweightsof1.96and2.45kNrespectively;i.e.increasingthevehicleload-ingconditionsfrom1.96kNto2.45kNincreasedthemeanvehicletractionvalueby52percent.Thissig-nificantincreaseintractionisprincipallyduetotheloadingsituationofthevehicleasthecohesiveness Table5Terrainandvehicledesignparameters Parameters Totalvehicleload LengthoftrackgroundcontactWidthoftrackgroundcontactLengthoftheair-cushionWidthoftheair-cushionAircushioneffectiveareaVehicletheoreticalvelocitySurfacematstiffnessUnderlyingpeatstiffness NotationWLBLacBacAcVtmmkpValue19620.530.130.480.300.1442.7813590171540 UnitsNmmmmm2m/sN/m3N/m3Proc.IMechEVol.225PartD:J.AutomobileEngineering Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015 Fuzzylogiccontrollerofanair-cushionsystemforaswampterrainvehicle731 Fig.13Variationoftractionforceforthevehicle withoutthecontrolsystem.Vehicleweightof(a)1.96kNand(b)2.45kN Fig.14Variationoftractionforceforthevehiclewith thecontrolsystemVehicleweightof(a)1.96kNand(b)2.45kN ofthefieldisapproximatelyinvariablefortheentireterrainlength.Furthermore,themeanvaluesoftrac-tionforceforthevehiclewiththecontrolsystemare51.6and34.9percenthigherthanthetractionforcevaluesforthevehiclewithoutthecontrolsystem,forthesamevehicleloadingconditionsof1.96and2.45kNrespectively.Finallyitcanbeconcludedthatthetractionforceincreasesmorewiththeadditionofthecontrolsystemtothevehicle.ItcanbestatedthattheIACTVhas,overall,thebestperformance,givingabout51.6percentincreaseintractionforceascomparedwiththevehiclewithouttheintelligentsystemandtheIACTVgivesthebestdrivingopera-tion.Figure15showsfieldtestingofthevehicleontheswampterrain. 3.5Powerconsumptionpredictionand validation Thevalidationofthemathematicalmodeldevel-opedinthisstudyhasbeencarriedoutbycompar-ingthemeasured(actual)andpredictedpowerconsumptionofthevehicle.PredictionofpowerconsumptionhasbeendonebyusingtheFLES Fig.15Vehiclefieldtesting.Numbersindicate:1, microcontroller;2,battery;3,inletvalve;4,outletvalve;5,connector;6,hosepipecon-nectedtoair-cushion;7,distancesensor;8,vehicleglasscover;9,counterbalanceweight;10,controlboard;11,pressuresensor;12,converter modelbasedonvehiclesinkage(VS)andvehicleweight(VW).Themeansofthemeasuredand Proc.IMechEVol.225PartD:J.AutomobileEngineering Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015 732AHossain,ARahman,andAKMMohiuddin Table6Weightsandbiasesbetweeninputlayerand hiddenlayerforPC i C112345 3.415425.718425.954921.594524.1258 Ei=C1CH+C2CP+C3C25.22592.395721.44223.346225.0255 C326.31013.046921.500025.769625.7378 Themainconclusionsdrawnfromthisstudyareasfollows. 1.Takingthevehicleposition(height)inrelation tothegroundasthecontrolvariable,acontrolschemeisproposedanditsfeasibilityisexam-inedbysimulations. 2.Experimentalresultsshowedthatthefuzzylogic controllerdevelopedcankeepthevehicleoper-atingsteadilybyadjustingcushionpressureandbymaintainingsufficienttraction. 3.Themeanrelativeerroroftheactualflowrate valuesandthevaluespredictedfromtheFLESmodelwas10.93percentwhichisalmostequaltotheacceptablelimit;thegoodnessoffitvaluewascloseto1.0asexpected. 4.Foraparticularswampterraincondition,anopti-malloaddistributionratioof0.20wasobtainedwhichresultedinoptimumtotalpowerconsump-tionof3.5kW. 5.Theintelligentair-cushiontrackedvehiclehad, overall,thebestperformance,givinga51.6percentincreaseintractionforceascomparedwiththevehiclewithouttheintelligentsystem. predicted(fromtheFLES)valueswere4.206and4.224kWrespectively.Thecorrelationcoefficientoftotalpowerconsumptionwas0.961.Themeanrela-tiveerroroftheactualvaluesandvaluespredictedfromtheFLESmodelwas10.3percentwhichisalmostequaltotheacceptablelimitof10percent[22].ThegoodnessoffitofthevaluespredictedfromtheFLESmodelwas0.9whichiscloseto1.0asexpected.Furthermore,thedevelopedFLEShasbeenjustifiedwiththepowerconsumptionresultsobtainedbyusinganartificialneuralnet-work(ANN)controlmodel.Cushionclearanceheight(CH)andcushionpressure(CP)areusedintheinputlayerwhilepowerconsumption(PC)isusedintheoutputlayer.ThedetailedprocedureandcomparisonoftheANNandthefuzzylogiccontrolsystemcanbefoundinapreviouslypub-lishedarticle[14].Theoutputobtainedfromtheweightsisgivenas PC= 1 1+eÀ(0:2439F1+0:61F2+2:1031F3+5:1129F4À1:9788F5À2:3312)5FUTUREWORK (22) whereFi= 11+eÀEi Inthispaper,accordingtoevaluationcriteriaofpre-dictedperformance,thedevelopedFLESmodelhasbeenfoundtobevalid.Therefore,thedevelopedmodelcanbeusedasareferenceforfurtherair-cush-ion–terraininteractionstudies.Thissystemcanbedevelopedfurtherbyincreasingtheknowledgebaserulesandbytheadditionofanadaptiveneuro-fuzzyintegratedcontrolapproachtocreateahybridintelli-gentsystem. EiistheweightedsumoftheinputandcanbeobtainedusingTable6.Basedontheoptimalloaddistributionratioof0.2,totalpowerconsumptionisfoundas3.42kWbyusingANNwhichjustifiesthedevelopedfuzzylogicsystem.Thedetailedexpla-nationandcomparisonofpowerconsumptionbetweenthefuzzylogiccontrollerandtheneuralnetworkcontrolleraregiveninreference[14].4 CONCLUSIONS ACKNOWLEDGEMENT TheauthorsaregratefulforthefinancialassistanceprovidedbytheInternationalIslamicUniversityMalaysia(IIUM)forthisproject.ÓAuthors2011REFERENCES 1Rahman,A.,Mohiuddin,A.K.M.,Ismail,A.F.,Yahya,A.,andHossain,A.Developmentofhybridelectricalair-cushiontrackedvehicleforswamppeat.J.Terramechanics,2010,47,45–54. 2Wingate-Hill,R.Atrack-layingaircushionvehicle.J.Terramechnics,1975,12(3/4),201–216. Inthispaper,theFLESispresentedanditsimple-mentationinanair-cushionpressurecontrolsystemforaswampterrainvehicleisdescribed.Thecontrolmethodfortheair-cushionsystemisinvestigatedbasedonsimulationsandexperiments. Proc.IMechEVol.225PartD:J.AutomobileEngineering Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015 Fuzzylogiccontrollerofanair-cushionsystemforaswampterrainvehicle733 3Ataur,R.,Azmi,Y.,Zohadie,M.,Desa,A.,andWan,I.DesignanddevelopmentofasegmentedrubbertrackedvehicleforSepangpeatterraininMalaysia.Int.J.HeavyVehicleSystems,2005,12(3),239–267. 4Luo,Z.,Yu,F.,andChen,B.-C.Designofanovelsemi-trackedair-cushionvehicleforsoftterrain.Int.J.VehicleDesign,2003,31(1),112–123. 5Rahman,A.,Yahya,A.,andMohiuddin,A.K.M.MobilityinvestigationofadesignedanddevelopedsegmentedrubbertrackvehicleforSepangpeatterraininMalaysia.Proc.IMechE,PartD:J.Auto-mobileEngineering,2007,221(D7),7–800.DOI:10.1243/09544070JAUTO139. 6Jamaluddin,B.J.Sarawak:peatagriculturaluse.MalaysianAgricultureResearchandDevelopmentInstitute(MARDI),2002,1–12. 7Hossain,A.,Rahman,A.,Mohiuddin,A.K.M.,andAminanda,Y.Developmentofanintelligentair-cushiontrackedvehicle.InProceedingsofthe33rdFISITAWorldAutomotiveCongress2010,30May–4June,Budapest,Hungary,2010. 8Xie,D.,Luo,Z.,andYu,F.Thecomputingoftheoptimalpowerconsumptionforsemi-trackair-cushionvehicleusinghybridgeneralizedexternaloptimization.Appl.Math.Model.,2009,33,2831–2844. 9Bean,T.A.,Okamoto,A.,Canning,J.R.,andEdwards,D.B.Anonlinearfuzzylogiccontrollerdevelopedforanautonomoussurfacecraftboat.InProceedingsofIDETC/CIE2005,ASME2005InternationalDesignEngineeringTechnicalCon-ferenceandComputersandInformationinEngi-neeringConference,California,USA,24–28September2005,pp.1–8. 10Sreenatha,G.A.,Choi,J.Y.,andWong,P.P. Designandimplementationoffuzzylogiccontrol-lerforwingrock.Int.J.ControlAutomationSys-tems,2004,2(4),494–500. 11Wang,X.,Luo,Z.,Chen,B.C.,Shi,Y.W.,and Ning,S.J.Studyonautomaticcontrolsystemofasemi-trackedair-cushionvehicle.InProceedingsoftheIEEInternationalConferenceonVehicleelectronics,China,1999,pp.48–51. 12Poorani,S.,Priya,T.V.S.U.,Kumar,K.U.,and Renganarayanan,S.FPGAbasedfuzzylogiccon-trollerforelectricvehicle.J.InstnEngrs,Singapore,2005,45(5),1–14. 13Wong,J.Y.Theoryofgroundvehicles,4thedition, 2008(JohnWiley,NewYork). 14Hossain,A.,Rahman,A.,andMohiuddin,A.K.M. Loaddistributionforanintelligentair-cushiontrackvehiclebasedonoptimalpowerconsump-tion.Int.J.VehicleSystemsModel.Test.,2010,5(2/3),237–253. 15Hossain,A.,Rahman,A.,Mohiuddin,A.K.M., andAminanda,Y.Powerconsumptionpredictionforanintelligentair-cushiontrackvehicle:fuzzylogictechnique.J.EnergyPowerEngng,2010,4(5),10–17. 16Hossain,A.,Rahman,A.,Mohiuddin,A.K.M., andAminanda,Y.Tractiveperformanceprediction 171819 2021 22 23 ofintelligentair-cushiontrackvehicle:fuzzylogicapproach.WorldAcad.Sci.EngngTechnol.,2010,6(62),163–169. Luo,Z.andYu,F.Loaddistributioncontrolsystemdesignforasemi-trackair-cushionvehicle.J.Terramechanics,2007,44,319–325. Passino,K.M.andYurkovich,S.Fuzzycontrol,1998(AddisonWeselyLongman,Inc.,MenlowPark,California,USA). Gopal,M.Digitalcontrolandstatevariablemeth-ods:conventionalandintelligentcontrolsystems,3rdedition,2009(TataMcGraw-HillEducationPvtLtd,Singapore). Carman,K.Predictionofsoilcompactionunderpneumatictyresusingafuzzylogicapproach.J.Terramechanics,2008,45,103–108. Ivanov,V.,Shyrokau,B.,Augsburg,K.,andAlgin,V.Fuzzyevaluationoftyre–surfaceinterac-tionparameters.J.Terramechanics,2010,47,113–1130. Marakoglu,T.andCarman,K.Fuzzyknowledge-basedmodelforpredictionofsoillooseninganddraftefficiencyintillage.J.Terramechanics,2010,47,173–178. Rajasekaran,S.andVijayalakshmiPai,G.A.Neuralnetworks,fuzzylogic,andgeneticalgo-rithms:synthesisandapplications,2007(Prentice-HallofIndiaPrivateLimited,NewDelhi). APPENDIXNotation AcAtbiBBaccciCiDcDhte_ee1EiFiFtghhchcghcmhihri air-cushioneffectiveareatrackgroundcontactareapositionofsingletonwidthofthetrack widthoftheair-cushionterraincohesivenesscoefficientsofvariables coefficientsofinputandhiddenlayersdischargecoefficienttrackhydraulicdiameterpositionerror rateofpositionerrorexponential weightedsumofinputvariablescoefficientsTractionforce gravitationalaccelerationvehicleverticalpositioncushionclearanceheight heightofvehiclecentreofgravityoptimumcushionclearanceheightinitialinflatedair-cushionheightreferencevehicleverticalpositionslippageofthevehicle Proc.IMechEVol.225PartD:J.AutomobileEngineering Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015 734AHossain,ARahman,andAKMMohiuddin i1/2kpk1KwLLacLcmmno1pcpcmPPcPdPmQQmRcRdragRininputvariables underlyingpeatstiffnessconstant sheardeformationmodulustrackgroundcontactlengthlengthoftheair-cushionair-cushionperimetersurfacematstiffness numberofinterpretationsoutputvariablecushionpressure optimumcushionpressuretotalpowerconsumption powerconsumedbyair-cushionsystempowerconsumedbydrivingsystemminimumpowerconsumptionvolumeflowrate optimumvolumeflowrate terraincompactionmotionresistancedraggingmotionresistanceinnermotionresistance RrsRtTVtWWcWtxy^yyzadehmrf radiusofsprocket totalmotionresistancetorqueofthesprocketvehicletheoreticalspeedtotalweightofthevehicle vehicleweightsupportedbyair-cushionvehicleweightsupportedbythetrackabscissa(input/outputvariables)measuredvaluepredictedvalue meanofmeasuredvaluevehiclesinkage firingstrengthortruthvaluesloaddistributionratiorelativeerrorgoodnessoffitmembershipvalueairdensity terraininternalfrictionangle Proc.IMechEVol.225PartD:J.AutomobileEngineering Downloaded from pid.sagepub.com at Tsinghua University on November 26, 2015
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务