函数的对应法则
1、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设是一次函数,且,求
二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。 例2 已知 ,求 的解析式
三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3 已知,求
四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构
造方程组,通过解方程组求得函数解析式。例5 设求
五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
已知:,对于任意实数x、y,等式恒成立,求
二,练习题
1、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
2、求一个一次函数f(x),使得f{f[f(x)]}=8x+7
3、设二次函数f(x)满足f(x-2)=f(-x-2),且在y轴上的截距为1,在x轴截得的线段长为,求f(x)的解析式
4、
5、
6、已知f(x)为二次函数, f(x-1)= -4x,解方程f(x+1)=0
8、若,且,
求值.
.
10、已知f(x+)=x3+,求f(x)的解析式。
11、已知,求;
14、已知满足,求.