分享】“插板法”的条件模式隐藏运用分析
在说这2 道关于“插板法”的排列组合题目之前,我们需要弄懂一个问题:
插板法排列组合是需要什么条件下才可以使用?这个问题清楚了,我们在以后的答题中 就可以尽量的变化题目使其满足这个条件。
这个条件就是: 分组或者分班等等 至少分得一个元素。 注意条件是 至少分得1个元素!
好我们先来看题目,
例题1:某学校四、五、六三个年级组织了一场文艺演出,共演出18个节目,如果每个年级至少演出4个节目,那么这三个年级演出节目数的所有不同情况共有几种?
-------------------------------
【解析】
这个题目是Q友出的题目,题目中是不考虑节目的不同性 你可以视为18个相同的节目 不区分!
发现3个年级都是需要至少4个节目以上! 跟插板法的条件有出入, 插板法的条件是至少1个,这个时候对比一下,我们就有了这样的思路 ,为什么我们不把18个节目中分别给这3个年级各分配3个节目。
这样这3个班级就都少1个,从而满足至少1个的情况了
3×3=9 还剩下18-9=9个
剩下的9个节目就可以按照插板法来解答。 9个节目排成一排共计8个间隔。分别选取其中任意2个间隔就可以分成3份(班级)!
C8取2=28
练习题目:
有10个相同的小球。 分别放到编号为1,2,3的盒子里 要使得每个盒子的小球个数不小于其编号数。那么有多少种放法?
-------------------------------------------
【解析】
还是同样的原理。 每个盒子至少的要求和插板法有出入 那么我们第一步就是想办法满足插板法的要求。
编号1的盒子是满足的 至少需要1个,
编号2至少需要2个,那么我们先给它1个, 这样就差1个
编号3至少需要3个,那么我们先给它2个, 这样就差1个
现在三个盒子都满足插板法的要求了 我们看还剩下几个小球 ?
10-1-2=7
7个小球6个间隔 再按照插板法来做 C6,2=15种!