您好,欢迎来到九壹网。
搜索
您的当前位置:首页插板法

插板法

来源:九壹网


分享】“插板法”的条件模式隐藏运用分析

在说这2 道关于“插板法”的排列组合题目之前,我们需要弄懂一个问题:

插板法排列组合是需要什么条件下才可以使用?这个问题清楚了,我们在以后的答题中 就可以尽量的变化题目使其满足这个条件。

这个条件就是: 分组或者分班等等 至少分得一个元素。 注意条件是 至少分得1个元素!

好我们先来看题目,

例题1:某学校四、五、六三个年级组织了一场文艺演出,共演出18个节目,如果每个年级至少演出4个节目,那么这三个年级演出节目数的所有不同情况共有几种?

-------------------------------

【解析】

这个题目是Q友出的题目,题目中是不考虑节目的不同性 你可以视为18个相同的节目 不区分!

发现3个年级都是需要至少4个节目以上! 跟插板法的条件有出入, 插板法的条件是至少1个,这个时候对比一下,我们就有了这样的思路 ,为什么我们不把18个节目中分别给这3个年级各分配3个节目。

这样这3个班级就都少1个,从而满足至少1个的情况了

3×3=9 还剩下18-9=9个

剩下的9个节目就可以按照插板法来解答。 9个节目排成一排共计8个间隔。分别选取其中任意2个间隔就可以分成3份(班级)!

C8取2=28

练习题目:

有10个相同的小球。 分别放到编号为1,2,3的盒子里 要使得每个盒子的小球个数不小于其编号数。那么有多少种放法?

-------------------------------------------

【解析】

还是同样的原理。 每个盒子至少的要求和插板法有出入 那么我们第一步就是想办法满足插板法的要求。

编号1的盒子是满足的 至少需要1个,

编号2至少需要2个,那么我们先给它1个, 这样就差1个

编号3至少需要3个,那么我们先给它2个, 这样就差1个

现在三个盒子都满足插板法的要求了 我们看还剩下几个小球 ?

10-1-2=7

7个小球6个间隔 再按照插板法来做 C6,2=15种!

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务