您好,欢迎来到九壹网。
搜索
您的当前位置:首页直线与圆的方程的应用说课教案

直线与圆的方程的应用说课教案

来源:九壹网
人教版数学必修2 §4.2.3直线与圆的方程的应用

直线与圆的方程的应用(说课教案)

蕲春一中 邵海建

各位专家、老师: 下午好!

我今天说课的内容是人教版数学必修2§4.2.3直线与圆的方程的应用,我讲这节课的方式主要是从这几个方面考虑。

教材分析

直线与圆的方程在生产、生活实践及数学中有着广泛的应用。本小节设置了两道例题,分别说明直线与圆的方程在实际生活中的应用,以及用坐标法研究几何问题的基本思想及其解题的过程。为此我确定了这节的重难点是: • 教学的重点:利用平面直角坐标系解决直线与圆的方程的应用; • 教学的难点:如何构建平面直角坐标系,利用平面直角坐标系与用其它的方法的解决直线与圆的方程的应用问题的优点。

教学目标

• 知识目标:利用平面直角坐标系解决直线与圆的方程的应用; • 能力目标:会用“数学结合”的数学思想解决问题,让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力;

情感目标:通过建立平面直角坐标系解决直线与圆的方程的应用让学生体会到数学的强大与数学的优美。

教法分析

新课程强调教师要调整自己的角色,改变传统的教育方式,要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。基入这个我举出一些生动有趣的问题让学生去探讨得到用坐标法解决问题的步骤,体会成功的快乐。

现代认知学认为,揭示知识的形成过程,对学生学习新知识是十分必要的。同时通过展现知识的发生、发展过程,给学生思考、探索、发现和创新提供了最大的空间,可以使学生在整个教学过程中始终处于积极的思维状态,进而培养他们思考和大胆求索的精神,这样才能全面落实本节课的教学目标。

学情分析

人教版数学必修2 §4.2.3直线与圆的方程的应用

学生在学这节知识前已经了解了在直角坐标系下直线的方程与圆的方程,以及直线与圆的位置关系等知识,但还没有形成用代数的方法去解决几何证明问题及实际应用题。为此我将本节课的内容分为以下几个部分:旧知复习,新课引入,知识探究,举一反三,实战演练,课后练习。

教学过程

一.复习旧知:

• 大家知道确定一个圆需要哪些要素吗? • 前面我们用什么方法研究直线与圆的有关问题?

设计意图是让学生回顾已学过的知识,从而达到温故而知新。并能很好的认识到知识的形成过程。

二.新知引入

某城市中的高空观览车的高度是100m,在离观览车约150m 处有一建筑物

某人在离建筑物100m的地方刚好可以看到观览车,你根据上述数据,如何求 该建筑物的高度?人的身高可以忽略不计。

设计意图是通过一个实际的例子让学生产生兴趣,想通过数学去解决问题从而对本节知识产生兴趣。

三.新知探究

• 问题一.如何将这个实际问题用数学语言来描述? • 问题二.这个问题同学们有什么方法解决呢? • 问题三.能不能用圆的方程来做呢?

设计意图是著名教育家玻利亚说过解决问题是对过去的回忆,让目标调动你的记忆力。这也是本节课的难点,我让学生合作,小组讨论等形式得到答案。从而体会到探究的乐趣,也得到了解决问题新的方法。并看到坐标法的好处及数学的优美。时间要15分钟。

四.举一反三

题一. 图中是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长(精确到0.01) 题二. 已知内接于圆的四边形的对角线互相垂直,求证圆心到一边的距离等于这条边所对边长的一半.

五.课堂演练

1.某圆拱桥的水面跨度20m,拱高4m.现有一船,宽10m,水面以上高3m,这条船能否从桥下通过?

设计意图是通过反复训练让学生对坐标法接受并能很好运用。

人教版数学必修2 §4.2.3直线与圆的方程的应用

六.课后小结

1.用坐标法可以解决很多实际问题,对于几何的研究实现了腾飞; 2.用坐标法解决直线与圆的方程的应用的三个步骤:

第一步:建立适当的平面直角坐标系,用坐标与方程表示问题中的几何元素,将实际问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:把代数运算结果”翻译”成实际表达的含义.

设计意图是课堂小结是对这节课内容的一个总结与回顾,同时也能锻炼学生对知识的归纳并能从归纳中得出新的结论。

七.课后训练

1.看课本P124体会坐标法的价值;

2.课本P133A组第8题与B组第一题,第二题

设计意图是这个课后训练的设置含有两个部分,一部分为阅读材料,让学生通过阅读了解坐标法的发展并体会坐标 法的好处;另一部分则是进一步训练学生掌握坐标法这个方法。

课后反思

根据建构主义理论及新课程标准,学生是学习的主体,同是学生在掌握知识更注重知识的形成过程。本节课是在我的引导下,对已学知识进行归纳、总结,以形成更系统、更完整的体系 ;对已学知识进一步加深理解,强化记忆,是一个再认识,再学习的过程,对已掌握的技能、规律、方法进行深化和进一步熟悉,提高学生分析、理解问题的能力。而在课后和部分学生交流发现学生对本节知识的运用很熟练,但有一些细节地方还待加强,比如如何合理构建直角坐标系,运算的熟练性。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务