数 学 试 卷(七)
*考试时间120分钟 试卷满分150分
一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1.2的相反数是( ) A.2 B.2 C.2 2 D.
2 2m232.反比例函数y的图象位于( )
xA.第一、三象限 C.第二、三象限
B.第二、四象限 D.第一、二象限
3.从2、3、4、5这四个数中,任取两个数p和qpq,构成函数ypx2和yxq,并使这两个函数图象的交点在直线x2的右侧,则这样的有序数对p,q共有( ) A.12对
4.把多项式2x8x8分解因式,结果正确的是( ) A.2x4
2 B.6对 C.5对 D.3对
2
B.2x4
2
C.2x2
2
D.2x2
2
5.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为( ) A.9cm B.12cm C.15cm D.12cm或15cm
6.一次函数ykxb(k,b是常数,k0)的图象如图所示,则不等式kxb0的解集是
A.x2;B.x0; C.x2; D.x0
xyxy7.若a0且a2,a3,则a的值为( )
y ykxb
2 A.1
B.1 C.
2 3D.
3 22
0 x
1
二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处. 8.将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .
9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.
10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.
11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m,
他在阳光下的影长是1.2m,在同一时刻测得某棵树的影长为3.6m,则这棵树的高度约为 m. C 12.如图所示的半圆中,AD是直径,且AD3,AC2,
B
sinB则的值是 . D A
13.某个圆锥的侧面展开图形是一个半径为6cm,圆心角为120的扇形,则这个圆锥的底面半径为______________cm.
三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)
114.计算:16(2)3(πtan60)023cos30.
3
15.先化简,再求值:
211x122,其中x31. x1x1x2x1 2
Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)
16.如图,线段AB与⊙O相切于点C,连结OA,OB,OB交⊙O于点D,已知OAOB6,
AB63.
(1)求⊙O的半径; (2)求图中阴影部分的面积.
17.响应“家电下乡”的惠农,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.
(1)至少购进乙种电冰箱多少台?
(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?
3
A
C O D
B
18.甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答问题:
(1) 他们在进行 米的长跑训练,在0<x<15的时段内,速度较快的人是 ;
(2) 求甲距终点的路程y(米)和跑步时间 x(分)之间的函数关系式; (3) 当x=15时,两人相距多少米?在15<x<20的时段内,求两人速度之差.
y(米)
50004000
3000乙 甲A2000
1000
O51015 Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)
20x(分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝
下放在桌面上.
(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?
(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字
后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.
4
20.如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得DAB30,然后沿河岸走了100m到达B处,测得CBF60,求河流的宽度CF的值(结果精确到个位).
a
D C
b A
E
B
F
21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:
甲厂 乙厂 丙厂 7 7 7 8 7 7 9 9 8 9 9 8 9 10 8 11 10 12 13 12 13 14 12 14 16 12 15 17 13 16 19 14 17 试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众
数)进行宣传?
(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.
5
Ⅳ(本题满分8分)
22.如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移动) . (1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由; .... (2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.
AADEDENBBMFC·MF CN图① 图②
6
A
D· ·E
B ·F
C
图③
Ⅴ(本题满分14分)
,为圆心,2为半径作圆,交x轴于A,B两点,23.如图,在平面直角坐标系中,以点C(11)开口向下的抛物线经过点A,B,且其顶点P在C上.
(1)求ACB的大小;
(2)写出A,B两点的坐标; (3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
7
y D C(11), A O B x 中考模拟题(七) 数学试题参及评分标准
一、选择题(本大题共7小题,每小题4分,共28分) 题号 答案 1 A 2 B 3 B 4 C 5 C 6 A 7 C 二、填空题(本大题共6小题,每小题4分,共24分) 8.(0,0);9.152;10.210;11.4.8;12.
2 ;13.4 3三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×
3„„„„„„„„2分 2=9+2+1-3.„„„„„„„„„„„„„„4分 =9 „„„„„„„„„„„„6分
11(x1)215.解:原式 ······································································ 2分 x1(x1)(x1)x1 1x1(x1)(x1) ······························································· 4分 22x1(x1)(x1) 2 ········································································································ 5分
(x1)2 当x31时,原式22 ··································································· 6分 23(311)Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)
16.(1)连结OC,则 OC⊥AB. „„„„„„„„„„„„„„„„„„„1分
∵OAOB, ∴ACBC11AB6333. „„„„„„„„„„„„„„„2分 2222在Rt△AOC中,OCOAAC62(33)23.
∴ ⊙O的半径为3. „„„„„„„„„„„„„„„„„„„„„„3分 (2)∵ OC=
1OB, ∴ ∠B=30o, ∠COD=60o. „„„„„„„„„„„„„„5分 2∴扇形OCD的面积为
8
60π323=π. „„„„„„„„„„„„„5分 S扇形OCD=
2360阴影部分的面积为:S阴影=SRtΔOBCS扇形OCD
=
13933OCCB-π=-π.„„„„„„„„„„7分 222217.解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,
丙种电冰箱(803x)台,根据题意,列不等式: ································································ 1分
12002x1600x(803x)2000≤132000. ···························································· 3分
解这个不等式,得x≥14. ·································································································· 4分 ···························································································· 5分 至少购进乙种电冰箱14台. ·
(2)根据题意,得2x≤803x. ····················································································· 6分 解这个不等式,得x≤16. ·································································································· 7分 由(1)知x≥14. 14≤x≤16. 又x为正整数, x14,15,16. ···················································································································· 8分 所以,有三种购买方案:
方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.
解:(1)5000„„„„„„„„„„„„„2分
甲 „„„„„„„„„„„„4分
(2)设所求直线的解析式为:
y =kx+b(0≤x≤20), „„„5分
由图象可知:b=5000,当x=20时,y=0, ∴0=20k+5000,解得k= -250. „7分
即y = -250x+5000 (0≤x≤20) „„„„„7分
(3)当x=15时,y = -250x+5000= -250×15+5000=5000-3750=1250. „„„8分 两人相距:(5000 -1250)-(5000-2000)=750(米)„„„„„„9分 两人速度之差:750÷(20-15)=150(米/分)„„„„„11分
9
Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P(抽到牌面数字是4)1; ········································································ 2分 3(2)游戏规则对双方不公平. ················································································· 5分 理由如下:
开始 3 4 5 3 4 5 3 4 5 3 4 5 (3,3)(3,4)(3,5)(4,3)(4,4)(4,5)(5,3)(5,4)(5,5) „„„„„„ 8分
或
由上述树状图或表格知:所有可能出现的结果共有9种. 小李 小王 3 4 5
5 (3,5) (4,5) (5,5) „„„„„„„„„„8分
3 (3,3) (4,3) (5,3) 4 (3,4) (4,4) (5,4) 31, 9362P(抽到牌面数字不相同)=.
93P(抽到牌面数字相同)=
∵
12
,∴此游戏不公平,小李赢的可能性大. ············································ 12分 33
(说明:答题时只需用树状图或列表法进行分析即可)
20.解:过点C作CE∥AD,交AB于E CD∥AE,CE∥AD ····································································································· 2分
····························································································· 4分 四边形AECD是平行四边形 ·
AECD50m,EBABAE50m,CEBDAB30 ···························· 6分
又CBF60,故ECB30,CBEB50m ···················································· 8分 ······································· 11分 在Rt△CFB中,CFCBsinCBF50sin6043m ·
答:河流的宽度CF的值为43m. ······················································································ 12分
10
21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分 乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分 (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分 Ⅳ.(本题满分8分) 22.(1)判断:EN与MF相等 (或EN=MF),点F在直线NE上, ········ 2分 (2)成立. ······························ 3分 证明:
法一:连结DE,DF.
∵△ABC是等边三角形, ∴AB=AC=BC. 又∵D,E,F是三边的中点,
∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°. 又∠MDF+∠FDN=60°, ∠NDE+∠FDN=60°, ∴∠MDF=∠NDE.
在△DMF和△DNE中,DF=DE,DM=DN, ∠MDF=∠NDE, ∴△DMF≌△DNE. 8
∴MF=NE. ·························· A A
D E D E
N
N
B
M
F
C
B
M
F
C
法二:
延长EN,则EN过点F.
∵△ABC是等边三角形, ∴AB=AC=BC.
又∵D,E,F是三边的中点, ∴EF=DF=BF. ∵∠BDM+∠MDF=60°, ∠FDN+∠MDF=60°, ∴∠BDM=∠FDN.
又∵DM=DN, ∠ABM=∠DFN=60°, ∴△DBM≌△DFN.∴BM=FN.
∵BF=EF, ∴MF=EN. ··························(3)画出图形(连出线段NE), 6
MF与EN相等的结论仍然成立(或MF=NE成立). ·············· N A
DE
11 BFCM分
分 分
6 6 8
Ⅴ.(本题满分14分) 23.解:(1)作CHx轴,H为垂足, CH1,半径CB2 ·························································· 1分
y P BCH60,ACB120 ········································· 3分
(2)
CH1,半径CB2
A C(11), O H B x ··············································· 5分 HB3,故A(13,0),··············································································· 6分 B(13,0) ·
(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1······································ 7分 ,3) ·设抛物线解析式ya(x1)23 ·························································································· 8分 把点B(13,············································································· 9分 0)代入上式,解得a1 ·············································································································· 10分 yx22x2 ·
(4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形 ·········· 11分 PC∥OD且PCOD.
PC∥y轴,点D在y轴上. ····················································································· 12分
又
PC2,OD2,即D(0,2).
22)满足yx2x2, 又D(0,·············································································································· 13分 点D在抛物线上 ·
2)使线段OP与CD互相平分. ·所以存在D(0,································································· 14分
12
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务
