foraWideRangeofSands
NobutakaYamamoto1;MarkF.Randolph2;andItaiEinav3
Abstract:Thispaperpresentsanumericalinvestigationoftheeffectoffoundationsizeontheresponseofshallowcircularfoundationsonsiliceousandcalcareoussands.ThestudyisbasedonthepredictivecapabilitiesoftheMIT-S1soilmodelforsimulatingboththecompressionandshearbehaviorsofnaturalsandsoverawiderangeofdensities,K0valuesandconfiningpressures.Thepaperhighlightsthevariationsinthedeformationmechanismsforthesiliceousandcalcareoussandscases.Theassessmentofthebearingcapacityfactor,N␥,isexamined,showingadramaticdecreaseinthevalueswithincreasingfoundationsizeforthecaseoffootingsoncalcareoussands,eventuallyconvergingtoaterminalN␥value.Atthisstagethesandresistanceisinsensitivetovariationsininitialdensityandfoundationsizebecausethesandtendstolooseitsinitialcharacteristicsduetograincrushing,leadingthematerialrapidlytowardultimateconditions.Inthesilicioussandcase,itisfoundthat,eventually,forextremelylargefootingdiameters,thedeformationmechanismprogressestowardapunchingshearmechanism,ratherthantheclassicalrapturepatternaccompaniedbysurfaceheaveasemployedincurrentbearingcapacityequations.Adimensionaltransitionbetweenthefailuremechanismscanclearlybedefined,referredtoasa“criticalsize”intheN␥–Drelationship.
DOI:10.1061/͑ASCE͒1090-0241͑2009͒135:1͑37͒
CEDatabasesubjectheadings:Sand;Calcareoussoils;Silica;Shallowfoundations;Sizeeffect;Finiteelementmethod;Numericalanalysis.
Introduction
Thebearingcapacityoffoundationsongranularmaterialshasbeenstudiedextensivelyasoneofthefundamentalproblemsofgeotechnicalengineering.ThemostcommonmethodtoestimatethebearingcapacityistheclassicalTerzaghiequationthatin-cludesthreefactors:theNcfactorforcohesion,theNqforembed-mentdepth,andtheN␥fortheself-weightcomponent.Thesedifferentfactorsaremodifiedfortheparticularloadingconditionandmaterialcaseinhand.TheN␥factorisofprimaryimportanceforshallowfoundationsonsandsbutitisextremelysensitivetovariationsinthematerialproperties.Earlyexperimentalstudiesofthisfactorinsandweremainlyconcernedwithrelativelysmallmodelfoundations,testedinnatural1gconditions.Itwasreal-izedthatN␥decreaseswithincreasingfootingwidthordiameter,andthisisnowwidelyrecognizedasthe“foundationsizeeffect”͑DeBeer1963͒.DeBeerreasonedthatthefoundationsizeef-fectresultsfromthefactthatthestrengthcriterionofsands
Engineer,AdvancedGeomechanics,4LeuraSt.,Nedlands,WA,6009,Australia;formerly,Ph.D.Student,CentreofOffshoreFoundationSystems,Univ.ofWesternAustralia,Crawley,WA6009,Australia.E-mail:nobutakay@ag.com.au2
Professor,CentreforOffshoreFoundationSystems,Univ.ofWesternAustralia,35StirlingHighway,Crawley,WA6009,Australia.E-mail:randolph@civil.uwa.edu.au3
SeniorLecturer,SchoolofCivilEngineeringJ05,Univ.ofSydney,Sydney,NSW2006,Australia.E-mail:I.Einav@civil.usyd.edu.au
Note.DiscussionopenuntilJune1,2009.Separatediscussionsmustbesubmittedforindividualpapers.ThemanuscriptforthispaperwassubmittedforreviewandpossiblepublicationonMarch15,2007;ap-provedonApril30,2008.ThispaperispartoftheJournalofGeotech-nicalandGeoenvironmentalEngineering,Vol.135,No.1,January1,2009.©ASCE,ISSN1090-0241/2009/1-37–45/$25.00.
1shouldbenonlinear,withthefrictionangledecreasingwithin-creasingstresslevel,ratherthanlinearasintheconventionallinearMohr–Coulombcriterion.Thenonlinearfailureenvelopearisesfromthestressdependencyofdilation,whichbyitselfarisesfromparticlerearrangementandcrushing͑LeeandSeed1967;Bolton1986͒.
Thereareseveralnumericalapproachesforassessingthein-fluenceofN␥usingnonassociatedconstitutivemodels͑i.e.,mod-elsthatincorporateadilationanglethatisnotequaltothefrictionangle͒.FrydmanandBurd͑1997͒andEricksonandDrescher͑2002͒studiedtheeffectofthedilationangleonN␥forstripandcircularfootings,respectively,usinganonassociatedMohr–Coulombmodel.Theyfoundthattheeffectofdilationangleisnegligibleatlowfrictionangles,butquiteimportantforfrictionanglesgreaterthan35°,especiallyforthecaseofroughcircularfootings.However,thesepreviousnumericalstudiesarelimitedbythefactthattheMohr–Coulombmodelcannotcapturesuffi-cientlywellthestressanddensitystatedependencyofsandbe-haviororthecompressibilityofsands.
Theintentionoftheworkreportedherewastoperformamorecomprehensivenumericalstudythataccountsformanymorebe-havioralaspectsofsand.ForthatpurposetheMIT-S1constitutivemodel͑PestanaandWhittle1999͒wasadoptedasthatmodelhassufficientcomplexitytosimulatebothcompressionandshearbe-haviorsofnaturalsandsoverawiderangeofdensities,K0values,andconfiningpressuresusingasinglesetofmodelparametersofagivensandtype.
Insummary,thispaperpresentsanumericalinvestigationofthefoundationsizeeffectinthecaseofshallowcircularfootingsonsiliceousandcalcareoussandsusingtheMIT-S1model.Fol-lowingabriefdescriptionontheMIT-S1model,thestrengthcharacteristicsofsiliceousandcalcareoussandsarediscussedinthecontextofdrainedtriaxialsheartestresults.Theeffectsare
JOURNALOFGEOTECHNICALANDGEOENVIRONMENTALENGINEERING©ASCE/JANUARY2009/37
Downloaded 26 Mar 2009 to 222.66.175.213. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright
Table1.IndexPropertiesofSoils
Siliceous
Property
Toyourasand
Goodwynsand
DogsBaysanda
Calcareous
GoodwynsiltCalciumcarbonate͑94%͒
Skeletalgrain
2.770.03452.401.21
MineralogyQuartz,feldspar,magnetiteCalciumcarbonate͑94%͒Calciumcarbonate͑98%͒GrainshapeSubangularSkeletalgrainSkeletalgrain
2.652.722.75Specificgravity,Gs
0.16–0.200.1–0.20.2Meanparticlesize,D50͑mm͒
1.3–1.710–152.06Coefficientofuniformity,Cu
0.982.32–1.972.21–1.83Maximumvoidratio,emax
0.61–0.581.41–0.941.48–0.98Minimumvoidratio,emin
aPropertiesofDogsBaysandwerereassessedanddifferentfromthevalueprovidedbyPestana͑1994͒.
thentranslatedtoexplainthefoundationproblemforbothtypesofsand,followedbyadiscussionofthefoundationsizeeffectintermsoftheN␥factor.
ModelingSandsUsingtheMIT-S1Model
FulldetailsoftheMIT-S1modelcanbefoundinPestanaandWhittle͑1999͒.AccordingtoPestanaetal.͑2002͒,themodeliscapableofsimulatingmanybehavioralcharacteristicsofsandbehavior,includingnonlinearityofthecompressioncurvesandcriticalstatelinesone–lnpЈplots,thedilatancybehaviorofsands,andthevariationofpeakfrictionangleasafunctionofstresslevelanddensity.Themodelcancapturearangeofdifferentcharacteristicsofbothcompressibleandincompressiblegranularmaterialsthroughappropriateadjustmentofthemodelparameters.
TheMIT-S1modelrequires13inputparameterstomodelthebehavioroffreshlydepositedsand͑whichisthetypeofsandthispaperisconcernedwith͒.AccordingtoPestanaandWhittle͑1999,2002͒theseparameterscanbedeterminedfromstandardlaboratorytests.
Thispaperfocusesontwodifferenttypesofsands,Toyourasiliceoussand͑fromJapan͒,andGoodwyncalcareoussand͑fromtheNorthWestShelfofAustralia͒.ThemodelparametersforthesesandsweredeterminedinPestanaetal.͑2002͒andYamamotoetal.͑2008͒.ThemodelparametersforDogsBay
Table2.MIT-S1ModelParametersforVariousSoils
calcareoussandandGoodwyncalcareoussiltarealsoprovidedtoenableacompletediscussiononthefoundationsizeeffect.ThephysicalpropertiesofthesandsandthesiltaresummarizedinTable1,andthemodelinputparametersaregiveninTable2.TheparticlesizedistributionsforToyourasiliceoussand͑Ishihara1993͒,DogsBaycalcareoussand͑Coop1990͒,Goodwyncalcar-eoussand͑Ismail2000͒,andGoodwyncalcareoussilt͑Finnie1993͒areshowninFig.1.Asmaybeseen,theDogsBaycalcar-eoussandhaslargerparticlesthantheToyourasiliceoussand.Further,itisnotedthattheGoodwynsandisrelativelywellgradedwith30%finescontent.CompressionBehavior
Fig.2showstheMIT-S1predictionsofthecompressioncurvesofbothsiliceousandcalcareoussands.Theinitialdensitiesandcur-vatureofthecompressioncurvesvarysignificantly,butthemodelcapturesthesevariationswell.Calcareoussandshavehigherini-tialvoidratiosandgreaterreductionofvolumethansiliceoussands.Thecriticalstatelinesofthesandsarealsosignificantlydifferent,butagainthemodelpredictsthemnicely.ShearBehavior
Fig.3showstheMIT-S1predictionsfordrainedisotropicallyconsolidatedsheartestsonsiliceousandcalcareoussandswithdifferentinitialdensitiesbutthesameconfiningstress͑100kPa͒.
Siliceous
TesttypeCompressiontest
SymbolcprefЈK0NC0ЈcsmrЈnpmCbs
Physicalmeaning
Compressibilityatlargestresses͑LCCregime͒
ReferencestressatunityvoidratiofortheH-LCC͑kPa͒
Firstloadingcurvetransitionparameter
K0intheLCCregime
Poisson’sratio
ParameterfornonlinearPoisson’sratio
Criticalstatefrictionangle͑°͒
Peakfrictionangleasafunctionofvoidratio͑°͒
ConstantofpeakfrictionangleGeometryofboundingsurfaceRateofevolutionofanisotropySmallstrainstiffnessparameterSmallstrainnonlinearityparameter
Toyourasanda0.3705,500
0.2000.4900.2331.0031.028.52.450.5550.07502.50
GWsandb0.3502,500
0.9000.4900.1502.0039.660.02.000.3550.04503.00
Calcareousb
DBsandb0.3504,000
0.4000.5100.2001.0046.080.02.000.5550.07502.50
GWsiltb0.2502,000
0.9000.4500.2002.0040.072.02.000.3050.04503.0
K0consolidationtest
Sheartest
Sheartestwithlocalmeasurementsystems
ab
Pestana͑1994͒.
GW=Goodwyn;DB=DogsBay.
38/JOURNALOFGEOTECHNICALANDGEOENVIRONMENTALENGINEERING©ASCE/JANUARY2009
Downloaded 26 Mar 2009 to 222.66.175.213. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright
100500
SiliceoussandsToyourasand(Ishihara,1993)CalcareoussandsDogsBaysand(Coop,1990)Goodwynsand(Ismail,2000)Goodwynsilt(Finnie,1993)Line
400Deviatoricstress,q(kPa)80Percentagefiner60300
e00.950.900.800.700.60
40200
20100
01E-41E-30.010.11SandFineMediumCoarse10Grainsize(mm)ClaySiltGravel00
(a)
CIDtests
Toyourasiliceoussandp'0=100kPa
5
10
15
20
25
30
ASTM(D422;D653)Shearstrain,Hs(%)
500
CIDtestsGoodwyncalcareoussandp'0=100kPaTriaxialTeste0=1.1(Finnie,1993)Fig.1.Particlesizedistributionsforsands
Deviatoricstress,q(kPa)Insiliceoussand,densersamplesexhibitaclearpeakstressatrelativelysmallstrainlevels,whereasnopeakstressisfoundforloosersamples.Ontheotherhand,allcalcareoussamplesshowcontractivebehavior,althoughtheexperimentalresponsefromFinnie͑1993͒forrelativedenseGoodwynsandshowsaslightpeakatsmallstrainlevels.
SensitivityStudyoftheMIT-S1Parameters
Asmentionedearlier,theMIT-S1modelrequires13modelpa-rameterstodefinethebehaviorofsand.Althoughtheparametersshouldbespecifiedprecisely,theparticularshallowfootingprob-leminthispapertendstobedominatedbyonlyafewparameters.Yamamoto͑2006͒carefullyinvestigatedtheeffectofthedifferentmodelparametersontheresponseofshallowcircularfootingsonsiliceousandcalcareoussands.Asummaryofthesesensitivity
400
300
200
Line100
00(b)
e01.901.751.601.451.301.1030510152025Shearstrain,Hs(%)
Fig.3.Triaxialdrainedsheartestsresultsforsiliceousandcalcareoussands:͑a͒siliceoussand;͑b͒calcareoussand
2MIT-S1predictionVoidRatio,e10.90.80.70.60.50.40.310100100010000100000MeanEffectiveStress,p'(kPa)SiliceousconsolCalcareousconsolSiliceousCSLCalcareousCSLanalysesisgiveninTable3.Thecompressionparameters,prefЈand,andtheshearparameter,m,arethemostsignificant,whereastheremainingparametershavelesseffect.Itisfoundthattheshearparameters͑apartfromm͒havelittleeffectontheresultsforcalcareoussand,implyingthatthebearingresponseoncalcar-eoussandisdominatedmorebythecompressioncomponentthanbyshear.Hence,fortheshallowfootingproblemtherelativelylargenumberof13parameterswasreducedtoamoremanageablestudyinvolvingthreesignificantparameters.
EffectsofStressLevel,Density,and
CompressibilityontheStrengthCharacteristicsofSands
Theeffectsofstresslevel,density,andcompressibilityareofgreatimportanceforassessingthebehaviorofsands.Theeffectscanbecapturedthrougharelationshipbetweenthepeakfrictionangle,Ј0,andvoidp,theinitialmeaneffectivestressatfailure,pЈratio,e.
Fig.4illustratestherelationshipbetweenЈ0andeforthep,pЈ
Fig.2.Consolidationcurvesandcriticalstatelinesforsiliceousand
calcareoussands
JOURNALOFGEOTECHNICALANDGEOENVIRONMENTALENGINEERING©ASCE/JANUARY2009/39
Downloaded 26 Mar 2009 to 222.66.175.213. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright
Table3.SignificanceoftheMIT-S1ModelParametersintheShallowFoundationAnalysisSymbolSiliceoussandCalcareoussandϫ᭺᭺—ϫϫϫ⌬ϫ᭺ϫϫϫϫc᭺prefЈ᭺—K0NCϫ0Јϫϫcs᭺mrЈ᭺np᭺mϫCb⌬⌬sNote:᭺=significant,⌬=slight,ϫ=negligible.14CIDtests1210I'p-I'cs(deg.)PredictionSiliceousSandCalcareousSandTriaxialTest(Goodwyn)e0=1.1e0=1.40.6=e0820101.3=e01.451.60.91000.80.7100010000ToyourasiliceousandGoodwyncalcareoussands.Thepeakfric-tionanglesatlowerstresslevelsforToyourasiliceoussandareinitiallyonlyweaklydependentontheincreaseinpressure,butthisdependencythenstrengthenstoarapidreductionwithin-creasingconfiningpressure.Athigherstresslevels,thepeakfric-tionangleseventuallyconvergetothecriticalstatevalues͑i.e.,ЈЈ͒at“criticalstresses,”assuggestedbyVesicandCloughp=cs
͑1968͒.Itisnoticedthatthecriticalstressdecreasesasthedensitydecreases.Thepeakfrictionanglesforcalcareoussandsalsode-pendonthecombinedinfluenceofeandpЈ0.However,theyre-ducerapidlywithincreasingpЈ0,evenatlowstresslevel.Thecriticalstressesforcalcareoussandsaresignificantlylowerthanforsiliceoussands.ThreetriaxialcompressiontestresultsusingGoodwynsandareplottedinFig.4,onefore0=1.1͓fromFinnie͑1993͔͒andtwoothersfore0=1.4͓fromSharma͑2004͔͒.TheMIT-S1predictionsunderestimatethepeakfrictionanglesforthesedata,whichisconsistentwiththeslightpeakindeviatorstressobservedintriaxialtests͑Fig.3͒.
Thevariationofpeakfrictionangleraisesquestionsontheapplicabilityofconventionalbearingcapacitytheories,whicharebasedonconstantfrictionanglewithdepth͑normalizedbyfoun-dationsize͒.Forexample,ananalysisofa10mdiameterfoun-dationwithpracticalsettlementlimitsof5–10%offoundationdiameter͑orwidth͒maybebasedoninitialstressesof40kPa͑multiplyinghalfofthediameter,5m,byasoileffectiveunitweightof8kN/m3͒.However,whenthesamesettlementlevelisappliedtoa100mdiameterfoundation,thecorrespondingstresslevelissimplytentimes͑400kPa͒thatforthe10mdiameterfooting.Atthatstresslevel,thepeakfrictionanglesarenolongerconstantwithdepth.Thepeakfrictionanglesforcalcareoussandsareobviouslynotconstantat40kPa,thusforthissandthecon-ventionalbearingcapacityformulasdonotfitevenforamoderatefoundationsize.
Initialmeaneffectivestress,p'0(kPa)
Fig.4.Peakfrictionangleandinitialstaterelationshipsforsiliceousandcalcareoussands
hasbeentakententimeshigher,avoidingtheneedtomodifythefinite-elementmeshes.Thustheincreaseinthefoundationsizeissimulatedsimplybyincreasingtheinitialstressgradient.Pressure–DisplacementCurves
Fig.5͑a͒showsN␥and␦/Drelationshipsfor100mdiametersmoothandroughfootingsonsiliceoussand,withthe10mdi-ameterresultsalsoplottedforcomparison.Thebearingresponseofthelargescaleroughfootingshowsnopeakvaluebutratherincreasescontinuouslywithincreasingpenetrationdepth.Thisisbecausethecompressioncomponentofthematerialdominatesthebearingresponseasthefoundationsizeincreases.Forthe100mdiametersmoothfootingcase,however,anultimatebear-ingcapacityisstillobservedalthoughitneedsmuchlargerverti-caldisplacementthanforthesmallfooting.Thisappearstobebecausethedeformationmechanismforsiliceoussandprogres-sivelyshiftstowardpunchingshearwithincreasingsizeoffoun-dation.Itisworthnotingthattheeffectofroughnessforlargerfoundationsismuchsmaller.
Thebearingresponsesoncalcareoussandwithdifferentfoun-dationsizesshowsimilartrendsbutthe100mdiameterfounda-tionshowsamorelinearresponse͓Fig.5͑b͔͒,andthemobilizedN␥forthe100mcaseissmaller.DeformationMechanisms
Asdescribedearlier,atransformationinthemechanismsfromsmalltolargefoundationsmaybeseen,inparticularforroughfootingsonsiliceoussand.Fig.6͑a͒showsthatatapenetrationof10%ofthediametertheamountofsurfaceheavereducessignifi-cantlywithincreasingdiameter.However,forthesmoothfootinganalysis͓Fig.6͑b͔͒,aclassicalrupturefailurepatternwithsurfaceheaveisstillevidentforthe100mdiametercalculationsalthoughmoreobviousdownwarddeformationsareexhibitedatshallowerpenetration.
Theincrementaldisplacementvectorsfor10and100mdiam-eterfootingsoncalcareoussandshowalmostidenticaldefor-
ResponsesofShallowFoundationsonSandsThefollowingdescribesnumericalresultsfortheresponseof10and100mdiameterfootingsonsiliceousandcalcareoussands.Initialvoidratiosatthegroundsurface,e0,andeffectiveunitweights,␥Ј,are0.8͑dense͒and8kN/m3forthesiliceoussand,and1.3͑mediumdense͒and7kN/m3forthecalcareoussand.Tocarryoutthe100mdiameteranalyses,theeffectiveunitweight
40/JOURNALOFGEOTECHNICALANDGEOENVIRONMENTALENGINEERING©ASCE/JANUARY2009
Downloaded 26 Mar 2009 to 222.66.175.213. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright
MobilizedBearingResistance,NJ=2qb/J'D100
80
ShallowfoundationanalysisToyourasiliceoussandK0=1.0,e0=0.8J'=8kN/m3SmoothRough60
D=10m40
20
D=100m005101520(a)
Displacement/Diameter,G/D(%)
100
ShallowfoundationanalysisGoodwyncalcareoussanddense(e0=1.3),K0=1.0J'=7kN/m3MobilizedBearingResistance,NJ=2qb/J'D80
60
SmoothRoughFig.6.Incrementaldisplacementvectorsafterapenetrationof10%ofthediameter:͑a͒siliceoussand,rough,D=10m͑left͒,100m͑right͒;͑b͒siliceoussand,smooth,D=10m͑left͒,100m͑right͒;and͑c͒calcareoussand,smooth,D=10m͑left͒,100m͑right͒
40
D=10m20
D=100malsoallowsapossibledeductionofthedimensionaltransitionbetweendilativeandcontractiveresponsesofthesoil.
200051015SiliceousSand
Fig.7summarizesthebearingresponsefromanalyseswithdif-ferentfootingsizesoffullysmoothshallowcircularfootingsonsiliceoussand,byplottingtheN␥–␦/Drelationshipsfore0=0.8͑loose͒,andN␥-␦/Dfore0=0.65͑dense͒,where␦denotesthefootingdownwarddisplacement.TheeffectofthefoundationsizehasbeenrecognizedexperimentallywiththemobilizedN␥de-creasingwithincreasingdiameter͑e.g.,DeBeer1963͒,butwithexperimentalevidenceonlyoverarelativelysmalldiameterrange.ThenumericalpredictionsusingtheMIT-S1modelsuggestthatthefoundationsizeeffectexistsforlargerfoundationsaswell.
Moreover,asexpected,atransitionfromdilativetocontractivedeformationscanbeseenasthefoundationsizeincreases.Thesmallerfootingstendtoshowdilativebehaviorwithclearpeakstress,whereasthelargerfoundationspresentcontractivere-sponseandexhibitlowermobilizedN␥values.Thisisalsore-flectedfromtheresultsofdrainedtriaxialtestswithdifferentinitialvoidratiosasshowninFig.3.Fig.8showsN␥–Drela-tionshipsforlooseanddensesiliceoussands.TwoN␥valuesareshown,onecorrespondingtothepeakbearingresistance͑ifoneexists͒andtheothercorrespondingto␦/D=10%͑shownonlyifN␥keepsincreasingfor␦/Dgreaterthan10%͒.Thetwo
(b)
Displacement/Diameter,G/D(%)
Fig.5.Shallowfoundationresponsesforsiliceousandcalcareoussands:͑a͒siliceoussand;͑b͒calcareoussand
mationpatternsatallpenetrationlevels͓Fig.6͑c͔͒.Thesoilbe-neaththefootingscompressalmostinaone-dimensionalverticalmanner.
EffectofFoundationSizeonBearingCapacityFactor,N␥
Thefollowingexplorestheeffectoffoundationsizeonthemo-bilizedbearingresistancefactor,N␥.Thiseffectoffoundationsizehasbeenexplainedpreviouslyasduetothestressdependencyofgranularmaterials͑DeBeer1963;HettlerandGudehus1988;Kusakabeetal.1991͒,ormorepreciselyonthestressdependencyofthepeakfrictionangles.ThenumericalinvestigationusingtheMIT-S1modelprovidesfurtherexplanationsofthiseffectand
JOURNALOFGEOTECHNICALANDGEOENVIRONMENTALENGINEERING©ASCE/JANUARY2009/41
Downloaded 26 Mar 2009 to 222.66.175.213. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright
MobilizedBearingResistance,NJ=2qb/J'DCircularfootingToyourasiliceoussand57J'=8kN/m3MobilizedBearingResistance,NJ=2qb/J'D100
2001801601401201008060402001e0=0.8PeakG/D=10%e0=0.6580
K0=0.49e0=0.65SmoothCircularfoundationsToyourasiliceoussandCentrifugetests(Okamuraetal.,1997)3e0=0.65,J'=9.7kN/m60
15102030406070100Diameter(m)40
CriticalsizeDcr20
Dcr10100005101520(a)
100
Displacement/Diameter,G/D(%)CircularfoundationsToyourasiliceoussand80
Diameter,D(m)
Fig.8.N␥andDrelationshipsforsiliceoussand
MobilizedBearingResistance,NJ=2qb/J'DJ'=8kN/m3K0=0.49e0=0.8Smooth60
Diameter(m)540
ceoussandperformedbyOkamuraetal.͑1997͒.Unfortunately,thefinite-elementresultscouldnotbeobtainedforsmalldiam-etersowingtonumericalinstabilityforthehighdilationratesassociatedwithshearingatlowstresslevels.However,bothre-sultsshowthereductionofN␥withincreasingdiameter.CalcareousSand
103020
2040507080100005101520(b)
Displacement/Diameter,G/D(%)
Fig.7.Effectoffoundationsizeforshallowcircularfootingsonsiliceoussand:͑a͒dense;͑b͒loose
N␥valuesmergeatabout20mdiameterforloose͑e0=0.8͒samplesand60mdiameterfordense͑e0=0.65͒samples͑indi-catedbyarrows͒andthiswillbedefinedasthetransitiondiam-eterpointfromdilativetocontractiveresponse.Thisdiametermaybereferredtoasa“criticalsize,”Dcr,whichbasicallyfol-lowsthesameconceptbehindthedefinitionofthe‘criticalstress’byVesicandClough͑1968͒,asdescribedbefore.
Kimuraetal.͑1985͒suggestedthattheN␥valuereduceswithreductionindensity.Fig.8showsthegreatvariationwithdensityoverawiderangeoffoundationsize.Thefactordiminishesrap-idlywithincreasingfoundationdiameterforsmalldiameters,buttheeffectreducesatlargerdiameters͑notingthelogarithmicscaleoftheplot͒.
Fig.8alsocomparesthenumericalresultswithcentrifugemodeltestsforcircularfootings͑D=1.5–3m͒onToyourasili-
Fig.9showsbearingresponsesoffullysmoothshallowcircularfootingsoncalcareoussandwithK0=1fortworepresentativedensities͑e0=1.3fordenseore0=1.9forloose͒,appliedoverawiderangeofdiameters͑1–100m͒.Itisnoticedthattheeffectoffoundationsizeanddensityareverystrongforsmallerdiameters.Fig.10plotsN␥–Drelationshipsforcalcareoussand.AdditionalanalysestothoseinFig.9wereundertakenwithidenticalsoilparametersapartfromtakingK0=0.49,andthoseresultsareshowninFig.10alongsidethoseforK0=1.TherateofdecreaseofN␥withincreasingfoundationsizebecomesgraduallylowerforlargerfoundationsizesandforloosesamplestheN␥valuesbecomenearlyconstantfordiametersofmorethan30m.Physi-calmodelresultsfromFinnieandRandolph͑1994͒arealsoshown,andthoughtheseshowsomedecreaseinN␥withincreas-ingfoundationsize,therateofdecreaseisnotasdramaticasforthenumericalresults.Itmayalsobeseenthatthenumericalre-sultsgivehigherN␥values,foragivenvoidratio,thanthosereportedbyFinnieandRandolph,inspiteofgivinglowerpeakfrictionanglesfortriaxialtests͑seeFigs.3and4earlier͒.Again,thisemphasizestheimportanceofthesoilcompressibilityinthebearingresponse.
InFig.9,noneoftheanalysesexhibitsaclearultimatestate.Thecalculationfora1mdiameterfoundationondensecalcare-oussandwasterminatedatabout15.5%normalizeddisplace-ment,atwhichstagetheincrementaldisplacementvectorswereasshowninFig.11.Theseindicateasignificantcomponentofsurfaceheaveadjacenttothefooting,asinaclassicalrupturefailurepattern.Itmaybeconcludedthatthecriticalfoundationsizeforthedensecalcareoussandmaybeestimatedasabout1m.
42/JOURNALOFGEOTECHNICALANDGEOENVIRONMENTALENGINEERING©ASCE/JANUARY2009
Downloaded 26 Mar 2009 to 222.66.175.213. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright
MobilizedBearingResistance,NJ=2qb/J'D150
100
ShallowfoundationanalysisGoodwyncalcareoussand80
J'=7.0kN/m3MobilizedBearingResistance,NJ=2qb/J'DShallowfoundationanalysisGoodwyncalcareoussande0=1.3(Dense)K0=1.0100
Diameter(m)1J'=7kN/m31.523SmoothG/D=10%e0=1.3Centrifugetest(Finnie,1993)e0=1.3K0=1.0K0=0.4960
40
e0=1.950
5710301002070155020
0051015200110100(a)
150
Displacement/Diameter,G/D(%)ShallowfoundationanalysisGoodwyncalcareoussande0=1.9(Loose)K0=1.0100
Diameter,D(m)
Fig.10.N␥andDrelationshipsforcalcareoussand
MobilizedBearingResistance,NJ=2qb/J'DJ'=7kN/m3Diameter(m)50
11.52357151030207050100152000510surface.Thevaluesreducestronglywithincreasingdiameter,butstilllieabovethecomputedvaluesfortheoverlappingdiameterrangeof2–3m.Thus,althoughthegeneraltrendsaresimilarfortheexperimentalandnumericalresults,itisdifficulttodemon-stratecompleteconsistency.
ThecalcareoussiltanalysesarebasedonextremelylowprefЈandvaluesandleadtoverylowN␥valuesevenforsmallfoundationsizes͑seeFig.13͒.TheN␥valuesforloosesamples͑e0=2.7͒,inparticular,areessentiallyindependentofthefounda-tionsize.Physicalmodelresults͑FinnieandRandolph1994͒liebetweenthenumericalpredictionsoflooseanddensestates.TheexperimentaldataalsorevealedthattheN␥valuesforcalcareoussiltareinsensitivetothefoundationsize.
TheN␥–Dcurvesforalltheabove-presentedmaterialsarecomparedinFig.13.Forsmalldiameters,DogsBaysandhasthehighestbearingcapacity,whereastheGoodwynsiltgivesthelow-est,althoughitshouldbenotedthatresultsforToyourasandare
(b)
Displacement/Diameter,G/D(%)
Fig.9.Effectoffoundationsizeforshallowcircularfootingsoncalcareoussand:͑a͒dense;͑b͒loose
N␥–DRelationshipforVariousSands
Theinvestigationoftheeffectoffoundationsizehasalsobeenconductedwithrespecttotwoothertypesofcalcareoussoils,namelyDogsBaycalcareoussandandGoodwyncalcareoussilt.TheMIT-S1modelparametersforthesandandsiltaretabulatedinTable1.Effectiveunitweightsweresetto7kN/m3fortheDogsBaysandand6kN/m3fortheGoodwynsilt.
TheN␥valuesfromtheanalysesforDogsBaysandareshowninFig.12.Thecomputedfactorishighforsmalldiameters,evenincomparisonwiththoseforsiliceoussandshowninFig.8.ThisappearsrelatedtothehighervaluesofmrЈandnp͑i.e.,higherfrictionangles͒andhigherprefЈ͑i.e.,higherstiffness͒.Thecom-putedresultsarestillmuchlowerthantheexperimentalresultsfromKlotzandCoop͑2001͒,althoughthesearetakenfromtheend-bearingresistanceofjackedpiles,extrapolatedbacktothe
Fig.11.Incrementaldisplacementvectorsfor1mdiameterfootingondensecalcareoussand͑␦/D=15.5%͒
JOURNALOFGEOTECHNICALANDGEOENVIRONMENTALENGINEERING©ASCE/JANUARY2009/43
Downloaded 26 Mar 2009 to 222.66.175.213. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright
MobilizedBearingResistance,NJ=2qb/J'D800
Dense(e0=1.4)ShallowfoundationanalysisDogsBaycalcareoussandCentrifugetests(Klotz&Coop,2001)3Jdry=16.0kN/mMobilizedBearingResistance,NJ=2qb/J'D1000100
Shallowfoundationanalysis80
DogsBaysandGoodwynsand60
Toyourasand40
Goodwynsilt20
SmoothG/D=10%K0=1.0Dense600
Medium(e0=1.5)400
Loose(e0=1.7)1.6e0=1.9110Diameter,D(m)
200
NumericalanalysisK0=1.0J'=7.0kN/m300110100100(a)
Diameter,D(m)
100
Shallowfoundationanalysis80
DogsBaysandSmoothG/D=10%K0=1.0Loosenotavailableatsmallerdiameters.Thedifferenttrendsofthecalcareousmaterialsareevidentandresultfromchangesinthecompressionparameters,prefЈand,whichprimarilycontrolthebearingresponseforcalcareousmaterials͑seeTable3͒.ItisalsofoundthattheN␥valuesfordifferentcalcareousmaterialsanddensitiesreducewithincreasingdiameterandmergetoasome-whatuniformN␥͑intherange5–10͒,independentofthedensity,foundationsize,andmaterialtype.Ontheotherhand,theN␥valuesforlargefoundationsonsiliceoussandaresignificantlylargerthanthoseforcalcareoussoils͑Fig.14͒.
MobilizedBearingResistance,NJ=2qb/J'DFig.12.N␥andDrelationshipsforDogsBaycalcareoussand
60
40
GoodwynsandToyourasand20
Goodwynsilt0110100100MobilizedBearingResistance,NJ=2qb/J'DShallowfoundationanalysisGoodwyncalcareoussiltJ'=6.0kN/m3(b)
Diameter,D(m)
80
Fig.14.N␥andDrelationshipsfordifferenttypesofsoils:͑a͒dense;͑b͒loose
K0=1.0G/D=10%60
Centrifugetests(Finnie,1993)e0=2.2-1.7Limitations
Theprincipallimitationoftheanalysesconductedisthatthefinite-elementresultsforsmallerdiameterfoundationsonsili-ceoussandcouldnotbeobtainedduetocalculationinstability.Onepossiblereasonisthehighlydilativeresponseofsilicasandatloweffectivestresslevels,inconjunctionwithextremelylargedeformationsattheedgeoffootingsduringloading.Duetotherupturetypeoffailurepattern,neighboringelementimmediatelyinsideandoutsidethefootingshowdownwardandupwarddefor-mations,respectively,whichledtoterminationofthesolutionduetotheextremelyhighdisplacementgradient.Thesmallerthefoundationsize͑soloweffectivestresses͒,themoresignificantthisissuebecame.Bycontrast,thefailuremechanismforcalcar-eoussandsgavedownwarddeformationsjustbeyondtheedgeofthefootings.
40
e0=1.720
e0=2.70110Diameter,D(m)
Fig.13.N␥andDrelationshipsforGoodwyncalcareoussilt
10044/JOURNALOFGEOTECHNICALANDGEOENVIRONMENTALENGINEERING©ASCE/JANUARY2009
Downloaded 26 Mar 2009 to 222.66.175.213. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright
Conclusions
Thispaperhaspresentedanumericalexaminationoftheeffectoffoundationsizeonshallowfoundationresponses.Thedefor-mationpatternsbeneaththefootingwereexaminedbasedonfinite-elementanalysesusingtheMIT-S1model,highlightingthekinematicdifferencesbetweentheresponseofsiliceousandcal-careoussands,withaclassicalrupturefailurepatternfortheformer,butapunchingshearfailurepatternforthelatter.Theinvestigationintermsofthebearingcapacityfactor,N␥,indicatesthatthecalculatedN␥valuesforlooseGoodwyncalcareoussandandsiltarefoundtoberelativelyconstant,independentofthefoundationdiameter,whereasfordenseGoodwynsandandsiltandDogsBaysand,N␥wasfoundtodecreasemarkedlywithincreasingfoundationsize.TheN␥valuesforcalcareousmaterialseventuallyconvergetoaterminalvaluewithinarelativelynarrowrange.
Itwasalsofoundthatthedeformationmechanismforsiliceoussandtransformsslightlytowardapunchingshearmechanismforverylargefoundationsizes.Atransitiondiametersizebetweendeformationmechanismscorrespondingtocontractiveordilativebehaviors,i.e.,acriticalsizeDcr,wasidentifiedforbothsiliceousandcalcareoussands.Thestudysuggeststhattheconventionalbearingcapacityanalysesmaybeapplicableforfoundationsizeslessthanthecriticalsize,whereasalternativeapproaches,focus-ingmainlyonthesoilcompressibility,areneededforshallowfoundationsgreaterthanthecriticalsize.AlternativeapproacheshavebeenproposedinthethesisofYamamoto͑2006͒andwillbesummarizedinaseparatepaper͑Yamamotoetal.2008͒.
Acknowledgments
Theworkpresentedinthispaperformspartoftheresearchac-tivitiesoftheCentreforOffshoreFoundationSystems͑COFS͒,establishedundertheAustralianResearchCouncil’sResearchCentresProgram.Thewriterswouldliketogratefullyacknowl-edgeProfessorAndrewWhittlefromMITforsupplyinganimple-mentedversionoftheMIT-S1modelinABAQUS.
References
Bolton,M.D.͑1986͒.“Thestrengthanddilatancyofsands.”Geotech-nique,36͑1͒,65–78.
Coop,M.R.͑1990͒.“Themechanicsofuncementedcarbonatesands.”Geotechnique,40͑4͒,607–626.
DeBeer,E.E.͑1963͒.“Thescaleeffectintranspositionoftheresultsofdeepsoundingtestsontheultimatebearingcapacityofpilesand
caissonfoundations.”Geotechnique,13͑1͒,39–75.
Erickson,H.L.,andDrescher,A.͑2002͒.“Bearingcapacityofcircularfootings.”J.Geotech.Geoenviron.Eng.,128͑1͒,38–43.
Finnie,I.M.F.͑1993͒.“Performanceofshallowfoundationsincalcare-oussoil.”Ph.D.thesis,Univ.ofWesternAustralia,Crawley,WA,Australia.
Finnie,I.M.F.,andRandolph,M.F.͑1994͒.“Bearingresponseofshallowfoundationsinuncementedcalcareoussoil.”Centrifuge94,Vol.1,Balkema,Rotterdam,TheNetherlands,535–540.
Frydman,S.,andBurd,H.J.͑1997͒.“Numericalstudiesofbearingca-pacityfactor,N␥.”J.Geotech.Geoenviron.Eng.,123͑1͒,20–29.Hettler,A.,andGudehus,G.͑1988͒.“Influenceofthefoundationwidthonthebearingcapacityfactor.”SoilsFound.,28͑4͒,81–92.
Ishihara,K.͑1993͒.“Liquefactionandflowfailureduringearthquakes.”Geotechnique,43͑3͒,351–415.
Ismail,M.A.͑2000͒.“Strengthanddeformationbehaviourofcalcite-cementedcalcareoussoils.”Ph.D.thesis,Univ.ofWesternAustralia,Crawley,WA,Australia.
Kimura,T.,Kusakabe,O.,andSaitoh,K.͑1985͒.“Geotechnicalmodeltestsofbearingcapacityproblemsinacentrifuge.”Geotechnique,35͑1͒,33–45.
Klotz,E.U.,andCoop,M.R.͑2001͒.“Aninvestigationoftheeffectofsoilstateonthecapacityofdrivenpilesinsands.”Geotechnique,51͑9͒,733–751.
Kusakabe,O.,Yamaguchi,H.,andMorikage,A.͑1991͒.“ExperimentandanalysisonthescaleeffectofN␥forcircularandrectangularfootings.”Centrifuge91,Vol.1,Balkema,Rotterdam,TheNether-lands,179–186.
Lee,K.L.,andSeed,H.B.͑1967͒.“Drainedstrengthcharacteristicsofsands.”J.SoilMech.andFound.Div.,93͑SM6͒,117–141.
Okamura,M.,Takemura,J.,andKimura,T.͑1997͒.“Centrifugemodeltestsonbearingcapacityanddeformationofsandlayeroverlyingclay.”SoilsFound.,37͑1͒,73–88.
Pestana,J.M.͑1994͒.“Aunifiedconstitutivemodelforclaysandsands.”ScDthesis,MassachusettsInstituteofTechnology,Cambridge,Mass.Pestana,J.M.,andWhittle,A.J.͑1999͒.“Formationofaunifiedconsti-tutivemodelforclaysandsands.”Int.J.Numer.Analyt.Meth.Geo-mech.,23͑12͒,1215–1243.
Pestana,J.M.,Whittle,A.J.,andSalvati,L.A.͑2002͒.“Evaluationofaconstitutivemodelforclaysandsands:Part1—Sandbehaviour.”Int.J.Numer.Analyt.Meth.Geomech.,26͑11͒,1097–1121.
Sharma,S.S.A.͑2004͒.“Characterisationofcyclicbehaviourofcalcitecementedcalcareoussoils.”Ph.D.thesis,Univ.ofWesternAustralia,Crawley,WA,Australia.
Vesic,A.S.,andClough,G.W.͑1968͒.“Behaviourofgranularmaterialsunderhighstresses.”J.SoilMech.andFound.Div.,94͑SM3͒,661–688.
Yamamoto,N.͑2006͒.“Numericalanalysisofshallowcircularfounda-tionsonsands.”Ph.D.thesis,Univ.ofWesternAustralia,Crawley,WA,Australia.
Yamamoto,N.,Randolph,M.F.,andEinav,I.͑2008͒.“Simpleformulaefortheresponseofshallowfoundationsoncalcareoussands.”Int.J.Geomech.,8͑4͒,230–239.
JOURNALOFGEOTECHNICALANDGEOENVIRONMENTALENGINEERING©ASCE/JANUARY2009/45
Downloaded 26 Mar 2009 to 222.66.175.213. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务