您好,欢迎来到九壹网。
搜索
您的当前位置:首页OpenGL入门学习——第二课 绘制几何图形

OpenGL入门学习——第二课 绘制几何图形

来源:九壹网
OpenGL入门学习——第二课 绘制几何图形

一、点、直线和多边形

我们知道数学(具体的说,是几何学)中有点、直线和多边形的概念,但这些概念在计算机中会有所不同。

数学上的点,只有位置,没有大小。但在计算机中,无论计算精度如何提高,始终不能表示一个无穷小的点。另一方面,无论图形输出设备(例如,显示器)如何精确,始终不能输出一个无穷小的点。一般情况下,OpenGL中的点将被画成单个的像素(像素的概念,请自己搜索之~),虽然它可能足够小,但并不会是无穷小。同一像素上,OpenGL可以绘制许多坐标只有稍微不同的点,但该像素的具体颜色将取决于OpenGL的实现。当然,过度的注意细节就是钻牛角尖,我们大可不必花费过多的精力去研究“多个点如何画到同一像素上”。 同样的,数学上的直线没有宽度,但OpenGL的直线则是有宽度的。同时,OpenGL的直线必须是有限长度,而不是像数学概念那样是无限的。可以认为,OpenGL的“直线”概念与数学上的“线段”接近,它可以由两个端点来确定。 多边形是由多条线段首尾相连而形成的闭合区域。OpenGL规定,一个多边形必须是一个“凸多边形”(其定义为:多边形内任意两点所确定的线段都在多边形内,由此也可以推导出,凸多边形不能是空心的)。多边形可以由其边的端点(这里可称为顶点)来确定。(注意:如果使用的多边形不是凸多边形,则最后输出的效果是未定义的——OpenGL为了效率,放宽了检查,这可能导致显示错误。要避免这个错误,尽量使用三角形,因为三角形都是凸多边形)

可以想象,通过点、直线和多边形,就可以组合成各种几何图形。甚至于,你可以把一段弧看成是很多短的直线段相连,这些直线段足够短,以至于其长度小于一个像素的宽度。这样一来弧和圆也可以表示出来了。通过位于不同平面的相连的小多边形,我们还可以组成一个“曲面”。

二、在OpenGL中指定顶点 由以上的讨论可以知道,“点”是一切的基础。

如何指定一个点呢?OpenGL提供了一系列函数。它们都以glVertex开头,后面跟一个数字和1~2个字母。例如: glVertex2d glVertex2f glVertex3f glVertex3fv 等等。

数字表示参数的个数,2表示有两个参数,3表示三个,4表示四个(我知道有点罗嗦~)。 字母表示参数的类型,s表示16位整数(OpenGL中将这个类型定义为GLshort), i表示32位整数(OpenGL中将这个类型定义为GLint和GLsizei), f表示32位浮点数(OpenGL中将这个类型定义为GLfloat和GLclampf), d表示位浮点数(OpenGL中将这个类型定义为GLdouble和GLclampd)。

v表示传递的几个参数将使用指针的方式,见下面的例子。

这些函数除了参数的类型和个数不同以外,功能是相同的。例如,以下五个代码段的功能是等效的:

(一)glVertex2i(1, 3);

(二)glVertex2f(1.0f, 3.0f); (三)glVertex3f(1.0f, 3.0f, 0.0f); (四)glVertex4f(1.0f, 3.0f, 0.0f, 1.0f);

(五)GLfloat VertexArr3[] = {1.0f, 3.0f, 0.0f}; glVertex3fv(VertexArr3);

以后我们将用glVertex*来表示这一系列函数。

注意:OpenGL的很多函数都是采用这样的形式,一个相同的前缀再加上参数说明标记,这一点会随着学习的深入而有更多的体会。 三、开始绘制

假设现在我已经指定了若干顶点,那么OpenGL是如何知道我想拿这些顶点来干什么呢?是一个一个的画出来,还是连成线?或者构成一个多边形?或者做其它什么事情?

为了解决这一问题,OpenGL要求:指定顶点的命令必须包含在glBegin函数之后,glEnd函数之前(否则指定的顶点将被忽略)。并由glBegin来指明如何使用这些点。 例如我写:

glBegin(GL_POINTS);

glVertex2f(0.0f, 0.0f); glVertex2f(0.5f, 0.0f); glEnd();

则这两个点将分别被画出来。如果将GL_POINTS替换成GL_LINES,则两个点将被认为是直线的两个端点,OpenGL将会画出一条直线。

我们还可以指定更多的顶点,然后画出更复杂的图形。

另一方面,glBegin支持的方式除了GL_POINTS和GL_LINES,还有GL_LINE_STRIP,GL_LINE_LOOP,GL_TRIANGLES,GL_TRIANGLE_STRIP,GL_TRIANGLE_FAN等,每种方式的大致效果见下图:

http://blog.programfan.com/upfile/200607/200607311604018.gif

声明:该图片来自www.opengl.org,该图片是《OpenGL编程指南》一书的附图,由于该书的旧版(第一版,1994年)已经流传于网络,我希望没有触及到版权问题。

我并不准备在glBegin的各种方式上大作文章。大家可以自己尝试改变glBegin的方式和顶点的位置,生成一些有趣的图案。

程序代码:

void myDisplay(void) {

glClear(GL_COLOR_BUFFER_BIT);

glBegin( /* 在这里填上你所希望的模式 */ ); /* 在这里使用glVertex*系列函数 */ /* 指定你所希望的顶点位置 */ glEnd(); glFlush(); }

把这段代码改成你喜欢的样子,然后用它替换第一课中的myDisplay函数,编译后即可运行。 两个例子

例一、画一个圆 /*

正四边形,正五边形,正六边形,„„,直到正n边形,当n越大时,这个图形就越接近圆 当n大到一定程度后,人眼将无法把它跟真正的圆相区别 这时我们已经成功的画出了一个“圆”

(注:画圆的方法很多,这里使用的是比较简单,但效率较低的一种)

试修改下面的const int n的值,观察当n=3,4,5,8,10,15,20,30,50等不同数值时输出的变化情况

将GL_POLYGON改为GL_LINE_LOOP、GL_POINTS等其它方式,观察输出的变化情况 */

#include const int n = 20;

const GLfloat R = 0.5f;

const GLfloat Pi = 3.1415926536f; void myDisplay(void) {

int i;

glClear(GL_COLOR_BUFFER_BIT); glBegin(GL_POLYGON); for(i=0; iglVertex2f(R*cos(2*Pi/n*i), R*sin(2*Pi/n*i)); glEnd(); glFlush(); }

例二、画一个五角星 /*

设五角星的五个顶点分布位置关系如下: A E B

D C

首先,根据余弦定理列方程,计算五角星的中心到顶点的距离a (假设五角星对应正五边形的边长为.0) a = 1 / (2-2*cos(72*Pi/180));

然后,根据正弦和余弦的定义,计算B的x坐标bx和y坐标by,以及C的y坐标 (假设五角星的中心在坐标原点) bx = a * cos(18 * Pi/180); by = a * sin(18 * Pi/180); cy = -a * cos(18 * Pi/180);

五个点的坐标就可以通过以上四个量和一些常数简单的表示出来 */

#include

const GLfloat Pi = 3.1415926536f;

void myDisplay(void) {

GLfloat a = 1 / (2-2*cos(72*Pi/180)); GLfloat bx = a * cos(18 * Pi/180); GLfloat by = a * sin(18 * Pi/180); GLfloat cy = -a * cos(18 * Pi/180); GLfloat

PointA[2] = { 0, a }, PointB[2] = { bx, by }, PointC[2] = { 0.5, cy }, PointD[2] = { -0.5, cy }, PointE[2] = { -bx, by };

glClear(GL_COLOR_BUFFER_BIT);

// 按照A->C->E->B->D->A的顺序,可以一笔将五角星画出 glBegin(GL_LINE_LOOP); glVertex2fv(PointA); glVertex2fv(PointC); glVertex2fv(PointE); glVertex2fv(PointB); glVertex2fv(PointD); glEnd(); glFlush(); }

例三、画出正弦函数的图形 /*

由于OpenGL默认坐标值只能从-1到1,(可以修改,但方法留到以后讲) 所以我们设置一个因子factor,把所有的坐标值等比例缩小, 这样就可以画出更多个正弦周期 试修改factor的值,观察变化情况 */

#include

const GLfloat factor = 0.1f; void myDisplay(void) {

GLfloat x;

glClear(GL_COLOR_BUFFER_BIT); glBegin(GL_LINES);

glVertex2f(-1.0f, 0.0f);

glVertex2f(1.0f, 0.0f); // 以上两个点可以画x轴 glVertex2f(0.0f, -1.0f);

glVertex2f(0.0f, 1.0f); // 以上两个点可以画y轴 glEnd();

glBegin(GL_LINE_STRIP);

for(x=-1.0f/factor; x<1.0f/factor; x+=0.01f) {

glVertex2f(x*factor, sin(x)*factor); }

glEnd(); glFlush(); } 小结

本课讲述了点、直线和多边形的概念,以及如何使用OpenGL来描述点,并使用点来描述几何图形。

大家可以发挥自己的想象,画出各种几何图形,当然,也可以用GL_LINE_STRIP把很多位置相近的点连接起来,构成函数图象。如果有兴趣,也可以去找一些图象比较美观的函数,自己动手,用OpenGL把它画出来。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务