教学目标:
1、知识与技能:探索并掌握积的变化规律(一个因数不变),能将这一规律恰当地运用于计算和解决简单的实际问题中。初步了解变化规律(两个因数都变)。
2、过程与方法:初步获得探索和发现数学规律的基本方法和经验。
3、情感与态度:通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
教学重点:发现并运用积的变化规律。
教学难点:积的变化规律的探究策略。
教学过程:
一、创设情境
(课件出示情境)水果超市里的杨梅进行活动大促销,促销价是每千克6元,爸爸买了2千克杨梅,需付多少钱?(指名口头列式计算)妈妈也买了20千克杨梅做杨梅酒,需付多少钱?(指名口头列式计算)后来活动结束了,回到了原价:每千克12元,小张的单位搞活动,买了20千克杨梅,需付多少钱?(指名口头列式计算)
二、师生探究,发现规律
1、下面我们观察这三道算式,你发现了什么?
引导学生观察得出:①从上往下看,第一道与第二道之间是第一个因数6不变,另一个因数乘10,积也乘10。②从上往下看,第二道与第三道之间是第二个因数20不变,另一个因数乘2,积也乘2。
(教师根据学生的回答,标出相应的符号。)
2、小结得出:一个因数不变,另一个因数乘几,积也乘几。
3、我们研究数学问题一般不匆忙下结论,要多举例子,看看是否能得出相同的结论。那么这里是否每个算式都有这样的规律呢?每个同学都自己写一组乘法算式,将其中一个因数不变,另一个因数乘几,看看积是怎样变化的。
①学生动手写。
②投影反馈,两生介绍,重点引导计算的结果是多少,乘一个数后的积是多少,是否相等?
③小结:研究了那么多的算式,我们可以得出一个什么结论?(根据回答板书:一个因数不变,另一个因数乘 几,积也乘 几。
4、师:因数可以乘一个数,还可以怎样变?(除以一个数)除以一个数有什么规律呢:
引导学生猜测,得出一个因数不变,另一个因数除以几,积也除以几。
师:这个结论对不对,我们一起用验算第一个结论的方法也写一组乘法算式,将其中一个因数不变,另一个因数除以几,看看积是怎样变化的。
①学生动手写。
②一生板书到黑板上,并介绍自己是如何验证的。
③小结:通过验证,我们刚才猜的结论是正确的。谁能把结论再说一说。
5、谁能把刚才得出的两条结论连起来说。(根据回答板书:一个因数不变,另一个因数乘(除以)几,积也乘(除以)几。
6、让学生观察例题中的第一道与第三道之间的关系。
引导得出第一道与第三道之间是第一个因数乘2,第二个因数乘10,积乘20。再观察自己举出的例子里也是否存在两个因数的变化引起积的变化。
三、巩固练习
运用我们刚才得出的规律来解决下面的一些问题。
1、课件出示:我会填
15×12=180 15×48=
15×24= 15×60=
15×24= 15×60=
先在作业纸上完成第一列,核对后说说你是怎样想的。再完成其他题。引导学生用积的变化规律完成。
560平方米
8米
2、课件出示:这块长方形绿地的宽要增加到 24米 ,长不变。扩大后的绿地面积是多少?
先解释图意,再让学生用多种方法解答。
3、小游戏。
师:很多同学都下过围棋,自己走一下,对方走一下。我们也来学这种形式,我说一半,你说一半。
①出示:a×b=20,(a○ )×=
师生互说在同桌互说。
②(a○ )×(8○ )=
师生互说在同桌互说。
四、课堂小结
今天我们学了什么?你知道了什么?我们在学习因数末尾有0的乘法时是怎样算的?如12×30,为什么在计算12×3=36后可以在末尾再添一个0。(引导学生用今天的知识讲就是因数3乘10,那么积36也乘10得360。我们早就在运用这个规律了。)
《积的变化规律》反思
茅珠丹
由于这次的教研主题是要体现“个性化”的教学设计,所以不管在目标或例题的处理上都溶入了一些自己的想法,做了一些新的尝试。下面谈谈几点主要的感想:
1、教材的目标是让学生认识并掌握一个因数不变的规律就可以了,但我在这堂课中特地渗透了“两个因数都变”的思想。是基于以下思考的。这堂课中的配套练习中第5题提供了“两个因数都变化时的一种情况,即:一个因数乘几,另一个因数除以几,积不变。让学生相对完整地研究因数与积之间的关系。使学生能够更多地体会到事物间的密切相关,受到辨证思想的启蒙教育,另一个也是为了应试教育。
2、创设情境,探究新知。我创设了买杨梅的情境,目的是让学生在感情趣的氛围中来感受新知识。这也符合我们县市提倡的要算用结合。
3、新知的探究素材我进行了处理,将书本中的都是 “第二个因数不变,第一个因数变化”改为再一组算式里既有第一个因数不变也有第二个因数不变,这样便于学生直接得出结论,还能观察到两个因数都变的规律。
4、有关积的变化规律,也就是根据几道相关的算式让学生说说你有什么发现,教材里,作业中都已经有铺垫,学生并不陌生。于是我将:“一个因数不变,另一个因数除以几,积也除以几。”的规律探究过程改为猜想→验证→归纳→应用。
5、在练习中,将教材中的根据16×17,思考16×34、16×51等题做了改动,主要是考虑到学生还没有学习除数是两位数的除法,还不能马上就看出17与34、51等数之间的倍数关系,不少人会选择笔算。改为如下一组题:15×12=180 15×48=
15×24= 15×60=
15×24= 15×60=
这样12与24、36等数之间的倍数关系更加明显,学生就会感受到学了这堂课后能使某些计算简便。
6、在小结的时候沟通联系,加深理解简便算法的算理。使学生明白应用积的变化规律,可以使因 数末尾有0的笔算乘法计算简便。