您好,欢迎来到九壹网。
搜索
您的当前位置:首页转载初三数学几何的动点问题专题训练集锦

转载初三数学几何的动点问题专题训练集锦

来源:九壹网
初三动点问题专题训练集锦

1、如图,已知△ABC中,ABAC10厘米,BC8厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

△BPD与①若点Q的运动速度与点P的运动速度相等,经过1秒后,

A △CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度B 从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

D Q P C 32、直线yx6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,

4同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.

(1)直接写出A、B两点的坐标;

(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;

48(3)当S时,求出点P的坐标,并直接写出以点

5O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

P x y B O Q A

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,

B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

5在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点

B B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). E (1)当t = 2时,AP = ,点Q到AC的距Q 离是 ;

D (2)在点P从C向A运动的过程中,求△APQ

A C P 的面积S与

图16

t的函数关系式;(不必写出t的取值范围)

(3)在点E从B向C运动的过程中,四边形QBED能否成

为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. ..

6如图,在Rt△ABC中,ACB90°,B60°,BC2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为. A (1)①当 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当 度时,四边形EDBC是直角梯形,此时AD的长为 ;

(2)当90°时,判断四边形EDBC是否为菱形,并说明理由.

A E O  D l C B C O B (备用图)

7如图,在梯形ABCD中,AD∥BC,AD3,DC5,AB42,∠B45.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终

A D 点D运动.设运动的时间为t秒. (1)求BC的长.

(2)当MN∥AB时,求t的值. N (3)试探究:t为何值时,△MNC为等腰三角形.

B C M

8如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60. (1)求点E到BC的距离;

(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx. ①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.

N A A A D D

D N F

C

E B

图1 A E B

F C

B

E P F C B

E P M D F C

图4(备用)

图2

D

M

图3

(第25题) A

E B

图5(备用)

F C

9如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在

第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2)求正方形边长及顶点C的坐标;

(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.

10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E

AEF90,是边BC的中点.且EF交正方形外角DCG的平行线CF于点F,

求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AEEF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

A

D

F

B E C 图1

G

B

E C 图2 A

D

F G

B 图3

C E G

F A

D

OB4.如图,11已知一个直角三角形纸片OAB,其中AOB90°,OA2,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.

y (Ⅰ)若折叠后使点B与点A重合,求点C的坐标;

B

x

O A

(Ⅱ)若折叠后点B落在边OA上的点为B,设OBx,OCy,试写出y关于x的函数解析式,并确定y的取值范围;

B y

x

O A

(Ⅲ)若折叠后点B落在边OA上的点为B,且使BD∥OB,求此时点C的坐标.

y

B

x

O A

12问题解决 F

M D 如图(1),将正方形纸片ABCD折叠,使点B落在CD边A 上一点E(不与点C,D重合),压平后得到折痕MN.当CE1AME 时,求的值.

CD2BN B C 方法指导: N

为了求得AM的值,可先求BN、AM的长,不妨设:AB=2 图(1)

BN

类比归纳

CE1AMCE1AM,,在图(1)中,若则的值等于 ;若则的CD3BNCD4BNCE1AM(n为整数)值等于 ;若,则的值等于 .(用含CDnBNn的式子表示) 联系拓广 如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,DAB1CE1AMm1,,重合),压平后得到折痕MN,设则的值等BCmCDnBN于 .(用含m,n的式子表示) F

M D A

E

B C N

图(2)

1.解:(1)①∵t1秒, ∴BPCQ313厘米,

∵AB10厘米,点D为AB的中点, ∴BD5厘米.

又∵PCBCBP,BC8厘米, ∴PC835厘米, ∴PCBD. 又∵ABAC, ∴BC,

∴△BPD≌△CQP. ································································································· (4分) ②∵vPvQ, ∴BPCQ,

又∵△BPD≌△CQP,BC,则BPPC4,CQBD5, ∴点P,点Q运动的时间t∴vQBP4秒, 33CQ515·················································································· (7分) 厘米/秒. ·

44t3(2)设经过x秒后点P与点Q第一次相遇, 由题意,得解得x15x3x210, 480秒. 380380厘米. ∴点P共运动了3∵8022824,

∴点P、点Q在AB边上相遇, ∴经过

80秒点P与点Q第一次在边AB上相遇. ···················································· (12分) 32.解(1)A(8,0)B(0,6) ·················· 1分 (2)OA8,OB6 AB10

点Q由O到A的时间是

88(秒) 1点P的速度是

6102(单位/秒) ··· 1分 8当P在线段OB上运动(或0≤t≤3)时,OQt,OP2t

St2 ······································································································································ 1分

当P在线段BA上运动(或3t≤8)时,OQt,AP6102t162t,

如图,作PDOA于点D,由

PDAP486t,得PD, ······································ 1分 BOAB51324SOQPDt2t ························································································· 1分

255(自变量取值范围写对给1分,否则不给分.)

(3)P, ····················································································································· 1分

8245582412241224································································· 3分 I1,,M2,,M3, ·

5555553.解:(1)⊙P与x轴相切.

∵直线y=-2x-8与x轴交于A(4,0),

与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k.

在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径, ∴⊙P与x轴相切.

(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P

在线段OB上时,作PE⊥CD于E.

∵△PCD为正三角形,∴DE= ∴PE=13CD=,PD=3, 2233. 2∵∠AOB=∠PEB=90°, ∠ABO=∠PBE,

∴△AOB∽△PEB, ∴

33AOPE4,即=2, ABPB45PB315, 2∴PB∴POBOPB8∴P(0,∴k3158), 2315, 23158. 2当圆心P在线段OB延长线上时,同理可得P(0,-∴k=-315-8, 2315-8), 2315315-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三22角形是正三角形.

∴当k=

4.

5.解:(1)1,;

85

(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴AP3t. 由△AQF∽△ABC,BC52324, 得

QFt4.∴QFt. 4551245B ∴S(3t)t, 即St2t.

(3)能. ①当DE∥QB时,如图4. ∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. AQAP由△APQ ∽△ABC,得, ACAB2565E Q A D P C 图4

B 即t33t9. 解得t. 58Q D A P

E C ②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.

此时∠APQ =90°. 由△AQP ∽△ABC,得

AQAP, ABACt3t15即. 解得t. 538图5

B

(4)t545或t. 214Q G ①点P由C向A运动,DE经过点C.

连接QC,作QG⊥BC于点G,如图6.

34PCt,QC2QG2CG2[(5t)]2[4(5t)]2.

55A P D C(E) B G 534由PCQC,得t[(5t)]2[4(5t)]2,解得t.

25522图6 Q 2②点P由A向C运动,DE经过点C,如图7. 34(6t)2[(5t)]2[4(5t)]2,t45】

5514D C(E)

A P 6.解(1)①30,1;②60,1.5; „„„„„„„„4分 图7 0

(2)当∠α=90时,四边形EDBC是菱形. ∵∠α=∠ACB=90,∴BC//ED.

∵CE//AB, ∴四边形EDBC是平行四边形. „„„„„„„„6分 在Rt△ABC中,∠ACB=90,∠B=60,BC=2,

∴∠A=30.

0

0

0

0

∴AB=4,AC=23.

∴AO=

1AC=3 . „„„„„„„„8分 20

在Rt△AOD中,∠A=30,∴AD=2. ∴BD=2. ∴BD=BC.

又∵四边形EDBC是平行四边形,

∴四边形EDBC是菱形 „„„„„„„„10分

D分别作AKBC于K,DHBC于H,7.解:(1)如图①,过A、则四边形ADHK是矩形

∴KHAD3. ······································································································ 1分

在Rt△ABK中,AKABsin4542.24 2BKABcos45422········································································· 2分 4 ·

2在Rt△CDH中,由勾股定理得,HC52423

∴BCBKKHHC43310 ······························································ 3分 A D A D

N

C B C B K H G M

(图①) (图②)

(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形 ∵MN∥AB ∴MN∥DG ∴BGAD3 ∴GC1037 ·································································································· 4分 由题意知,当M、N运动到t秒时,CNt,CM102t. ∵DG∥MN

∴∠NMC∠DGC 又∠C∠C

∴△MNC∽△GDC

CNCM ·········································································································· 5分 CDCGt102t即 5750解得,t ·········································································································· 6分

17∴

(3)分三种情况讨论:

①当NCMC时,如图③,即t102t ∴t B

10 ·················································································································· 7分 3A

D

N

C

B

(图④)

C

A

D N

M

(图③)

M H E

②当MNNC时,如图④,过N作NEMC于E 解法一:

11MC102t5t 22EC5t在Rt△CEN中,cosc NCtCH3 又在Rt△DHC中,coscCD55t3 ∴t525解得t ·············································································································· 8分

8由等腰三角形三线合一性质得EC解法二:

∵∠C∠C,DHCNEC90 ∴△NEC∽△DHC

NCEC DCHCt5t即 5325∴t ·················································································································· 8分

811③当MNMC时,如图⑤,过M作MFCN于F点.FCNCt

22∴

解法一:(方法同②中解法一)

1tFC3cosC2

MC102t560解得t

17解法二:

∵∠C∠C,MFCDHC90 ∴△MFC∽△DHC ∴

B

A D

N F

H M

C

(图⑤)

FCMC HCDC

1t102t2即 3560∴t

17102560综上所述,当t、t或t时,△MNC为等腰三角形 ···················· 9分

81738.解(1)如图1,过点E作EGBC于点G. ························· 1分

∵E为AB的中点,

A D

1∴BEAB2.

2F E 在Rt△EBG中,∠B60,∴∠BEG30. ·············· 2分

122∴BGBE1,EG213.

B C 2G

即点E到BC的距离为3.··············································· 3分 (2)①当点N在线段AD上运动时,△PMN的形状不发生改变.

∵PMEF,EGEF,∴PM∥EG. ∵EF∥BC,∴EPGM,PMEG3.

同理MNAB4. ······································································································· 4分 如图2,过点P作PHMN于H,∵MN∥AB, ∴∠NMC∠B60,∠PMH30. N

A D ∴PH图1

13 PM.22B

E P H F C

图2

3∴MHPMcos30.

235则NHMNMH4.

222G M 53在Rt△PNH中,PNNH2PH2 7.22∴△PMN的周长=PMPNMN374. ················································· 6分 ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.

当PMPN时,如图3,作PRMN于R,则MRNR.

23. 2∴MN2MR3. ········································································································· 7分 ∵△MNC是等边三角形,∴MCMN3.

此时,xEPGMBCBGMC6132. ············································· 8分

类似①,MR

A E B

P R

G

M 图3

D N F

C

B

A E P

D F N C

B

A E D F(P) N C

G

图4

M G

图5

M

当MPMN时,如图4,这时MCMNMP3.

此时,xEPGM61353.

当NPNM时,如图5,∠NPM∠PMN30.

则∠PMN120,又∠MNC60, ∴∠PNM∠MNC180.

因此点P与F重合,△PMC为直角三角形.

.∴MCPMtan301

此时,xEPGM6114.

综上所述,当x2或4或53时,△PMN为等腰三角形. ·························· 10分 9解:(1)Q(1,0) ············································································································ 1分 点P运动速度每秒钟1个单位长度. ·················································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OFBE4. ∴AF1046.

y 在Rt△AFB中,AB826210 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵ABC90,ABBC ∴△ABF≌△BCH. ∴BHAF6,CHBF8. ∴OGFH8614,CG8412.

∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴

APAMMPtAMMP. . ABAFBF1068DCAMFONQPHGxBE3434 ∴AMt,PMt. ∴PNOM10t,ONPMt.

5555设△OPQ的面积为S(平方单位)

13473∴S(10t)(1t)5tt2(0≤t≤10) ······························································ 5分

251010说明:未注明自变量的取值范围不扣分.

473<0 ∴当t时, △OPQ的面积最大. ································ 6分 36102()104710 ∵a

此时P的坐标为(

9453,) . ························································································ 7分 15105295(4) 当 t或t时, OP与PQ相等. ······························································ 9分

313

10.解:(1)正确.······························································ (1分) 证明:在AB上取一点M,使AMEC,连接ME. (2分)

D A

BMBE.BME45°,AME135°.

F M CF是外角平分线,

DCF45°,

B E C G ECF135°.

AMEECF.

AEBBAE90°,AEBCEF90°, BAECEF.

△AME≌△BCF(ASA). ···················································································· (5分) AEEF. ················································································································ (6分) (2)正确. ··································································· (7分) 证明:在BA的延长线上取一点N. 使ANCE,连接NE. ············································ (8分) N F BNBE. D A NPCE45°. 四边形ABCD是正方形, AD∥BE.

B C E G DAEBEA.

NAECEF.

△ANE≌△ECF(ASA). ··················································································· (10分) AEEF. (11分)

11.解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.

设点C的坐标为0,mm0. 则BCOBOC4m. 于是ACBC4m.

在Rt△AOC中,由勾股定理,得ACOCOA,

22即4mm2,解得m22223. 23········································································································ 4分 点C的坐标为0,. ·

2(Ⅱ)如图②,折叠后点B落在OA边上的点为B, 则△BCD≌△BCD. 由题设OBx,OCy,

则BCBCOBOC4y,

在Rt△BOC中,由勾股定理,得BCOCOB.

2224yy2x2,

212x2 ···················································································································· 6分 8由点B在边OA上,有0≤x≤2,

1 解析式yx220≤x≤2为所求.

8即y 当0≤x≤2时,y随x的增大而减小,

3y的取值范围为≤y≤2. ······················································································· 7分

2(Ⅲ)如图③,折叠后点B落在OA边上的点为B,且BD∥OB. 则OCBCBD.

OCBCBD,有CB∥BA. 又CBDCBD,Rt△COB∽Rt△BOA. OBOC有,得OC2OB. ···················································································· 9分 OAOB在Rt△BOC中,

设OBx0x0,则OC2x0. 由(Ⅱ)的结论,得2x012x02, 8解得x0845.x00,x0845. 8516. ····················································································· 10分 点C的坐标为0,

12解:方法一:如图(1-1),连接BM,EM,BE.

F M A D

B

N 图(1-1)

C E

 由题设,得四边形ABNM和四边形FENM关于直线MN对称.

∴MN垂直平分BE.∴BMEM,BNEN. ··············································· 1分 ∵四边形ABCD是正方形,∴ADC90°,ABBCCDDA2. ∵CE1NC2x.,CEDE1.设BNx,则NEx,

CD2

在Rt△CNE中,NECNCE.

22255,即BN. ···················································· 3分 44 在Rt△ABM和在Rt△DEM中,

AM2AB2BM2, DM2DE2EM2,

············································································· 5分 AM2AB2DM2DE2.2222 设AMy,则DM2y,∴y22y1.

11 解得y,即AM. ······················································································· 6分

44AM1. ∴ ············································································································ 7分 BN55 方法二:同方法一,BN. ················································································ 3分

4 如图(1-2),过点N做NG∥CD,交AD于点G,连接BE.

22 ∴x2x1.解得x2

A M F

G

D

E

B

C N

图(1-2)

∵AD∥BC,∴四边形GDCN是平行四边形.

∴NGCDBC. 同理,四边形ABNG也是平行四边形.∴AGBN5. 4EBCBNM90°. ∵MNBE,

NGBC,MNGBNM90°,EBCMNG.

在△BCE与△NGM中

EBCMNG, BCNG,∴△BCE≌△NGM,ECMG. ·································5分

CNGM90°.∵AMAGMG,AM=∴

类比归纳

511. ··································································· 6分 44AM1. ·········································································································· 7分 BN52249n1 ·(或);; ················································································· 10分 251017n1联系拓广

n2m22n1 ············································································································· 12分

n2m21

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务