1、如图,已知△ABC中,ABAC10厘米,BC8厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
△BPD与①若点Q的运动速度与点P的运动速度相等,经过1秒后,
A △CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度B 从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
D Q P C 32、直线yx6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,
4同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;
48(3)当S时,求出点P的坐标,并直接写出以点
5O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
P x y B O Q A
3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,
B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
5在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点
B B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). E (1)当t = 2时,AP = ,点Q到AC的距Q 离是 ;
D (2)在点P从C向A运动的过程中,求△APQ
A C P 的面积S与
图16
t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成
为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. ..
6如图,在Rt△ABC中,ACB90°,B60°,BC2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为. A (1)①当 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当 度时,四边形EDBC是直角梯形,此时AD的长为 ;
(2)当90°时,判断四边形EDBC是否为菱形,并说明理由.
A E O D l C B C O B (备用图)
7如图,在梯形ABCD中,AD∥BC,AD3,DC5,AB42,∠B45.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终
A D 点D运动.设运动的时间为t秒. (1)求BC的长.
(2)当MN∥AB时,求t的值. N (3)试探究:t为何值时,△MNC为等腰三角形.
B C M
8如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60. (1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx. ①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
N A A A D D
D N F
C
E B
图1 A E B
F C
B
E P F C B
E P M D F C
图4(备用)
图2
D
M
图3
(第25题) A
E B
图5(备用)
F C
9如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在
第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E
AEF90,是边BC的中点.且EF交正方形外角DCG的平行线CF于点F,
求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AEEF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A
D
F
B E C 图1
G
B
E C 图2 A
D
F G
B 图3
C E G
F A
D
OB4.如图,11已知一个直角三角形纸片OAB,其中AOB90°,OA2,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
y (Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
B
x
O A
(Ⅱ)若折叠后点B落在边OA上的点为B,设OBx,OCy,试写出y关于x的函数解析式,并确定y的取值范围;
B y
x
O A
(Ⅲ)若折叠后点B落在边OA上的点为B,且使BD∥OB,求此时点C的坐标.
y
B
x
O A
12问题解决 F
M D 如图(1),将正方形纸片ABCD折叠,使点B落在CD边A 上一点E(不与点C,D重合),压平后得到折痕MN.当CE1AME 时,求的值.
CD2BN B C 方法指导: N
为了求得AM的值,可先求BN、AM的长,不妨设:AB=2 图(1)
BN
类比归纳
CE1AMCE1AM,,在图(1)中,若则的值等于 ;若则的CD3BNCD4BNCE1AM(n为整数)值等于 ;若,则的值等于 .(用含CDnBNn的式子表示) 联系拓广 如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,DAB1CE1AMm1,,重合),压平后得到折痕MN,设则的值等BCmCDnBN于 .(用含m,n的式子表示) F
M D A
E
B C N
图(2)
1.解:(1)①∵t1秒, ∴BPCQ313厘米,
∵AB10厘米,点D为AB的中点, ∴BD5厘米.
又∵PCBCBP,BC8厘米, ∴PC835厘米, ∴PCBD. 又∵ABAC, ∴BC,
∴△BPD≌△CQP. ································································································· (4分) ②∵vPvQ, ∴BPCQ,
又∵△BPD≌△CQP,BC,则BPPC4,CQBD5, ∴点P,点Q运动的时间t∴vQBP4秒, 33CQ515·················································································· (7分) 厘米/秒. ·
44t3(2)设经过x秒后点P与点Q第一次相遇, 由题意,得解得x15x3x210, 480秒. 380380厘米. ∴点P共运动了3∵8022824,
∴点P、点Q在AB边上相遇, ∴经过
80秒点P与点Q第一次在边AB上相遇. ···················································· (12分) 32.解(1)A(8,0)B(0,6) ·················· 1分 (2)OA8,OB6 AB10
点Q由O到A的时间是
88(秒) 1点P的速度是
6102(单位/秒) ··· 1分 8当P在线段OB上运动(或0≤t≤3)时,OQt,OP2t
St2 ······································································································································ 1分
当P在线段BA上运动(或3t≤8)时,OQt,AP6102t162t,
如图,作PDOA于点D,由
PDAP486t,得PD, ······································ 1分 BOAB51324SOQPDt2t ························································································· 1分
255(自变量取值范围写对给1分,否则不给分.)
(3)P, ····················································································································· 1分
8245582412241224································································· 3分 I1,,M2,,M3, ·
5555553.解:(1)⊙P与x轴相切.
∵直线y=-2x-8与x轴交于A(4,0),
与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k.
在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径, ∴⊙P与x轴相切.
(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P
在线段OB上时,作PE⊥CD于E.
∵△PCD为正三角形,∴DE= ∴PE=13CD=,PD=3, 2233. 2∵∠AOB=∠PEB=90°, ∠ABO=∠PBE,
∴△AOB∽△PEB, ∴
33AOPE4,即=2, ABPB45PB315, 2∴PB∴POBOPB8∴P(0,∴k3158), 2315, 23158. 2当圆心P在线段OB延长线上时,同理可得P(0,-∴k=-315-8, 2315-8), 2315315-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三22角形是正三角形.
∴当k=
4.
5.解:(1)1,;
85
(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴AP3t. 由△AQF∽△ABC,BC52324, 得
QFt4.∴QFt. 4551245B ∴S(3t)t, 即St2t.
(3)能. ①当DE∥QB时,如图4. ∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. AQAP由△APQ ∽△ABC,得, ACAB2565E Q A D P C 图4
B 即t33t9. 解得t. 58Q D A P
E C ②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ =90°. 由△AQP ∽△ABC,得
AQAP, ABACt3t15即. 解得t. 538图5
B
(4)t545或t. 214Q G ①点P由C向A运动,DE经过点C.
连接QC,作QG⊥BC于点G,如图6.
34PCt,QC2QG2CG2[(5t)]2[4(5t)]2.
55A P D C(E) B G 534由PCQC,得t[(5t)]2[4(5t)]2,解得t.
25522图6 Q 2②点P由A向C运动,DE经过点C,如图7. 34(6t)2[(5t)]2[4(5t)]2,t45】
5514D C(E)
A P 6.解(1)①30,1;②60,1.5; „„„„„„„„4分 图7 0
(2)当∠α=90时,四边形EDBC是菱形. ∵∠α=∠ACB=90,∴BC//ED.
∵CE//AB, ∴四边形EDBC是平行四边形. „„„„„„„„6分 在Rt△ABC中,∠ACB=90,∠B=60,BC=2,
∴∠A=30.
0
0
0
0
∴AB=4,AC=23.
∴AO=
1AC=3 . „„„„„„„„8分 20
在Rt△AOD中,∠A=30,∴AD=2. ∴BD=2. ∴BD=BC.
又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形 „„„„„„„„10分
D分别作AKBC于K,DHBC于H,7.解:(1)如图①,过A、则四边形ADHK是矩形
∴KHAD3. ······································································································ 1分
在Rt△ABK中,AKABsin4542.24 2BKABcos45422········································································· 2分 4 ·
2在Rt△CDH中,由勾股定理得,HC52423
∴BCBKKHHC43310 ······························································ 3分 A D A D
N
C B C B K H G M
(图①) (图②)
(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形 ∵MN∥AB ∴MN∥DG ∴BGAD3 ∴GC1037 ·································································································· 4分 由题意知,当M、N运动到t秒时,CNt,CM102t. ∵DG∥MN
∴∠NMC∠DGC 又∠C∠C
∴△MNC∽△GDC
CNCM ·········································································································· 5分 CDCGt102t即 5750解得,t ·········································································································· 6分
17∴
(3)分三种情况讨论:
①当NCMC时,如图③,即t102t ∴t B
10 ·················································································································· 7分 3A
D
N
C
B
(图④)
C
A
D N
M
(图③)
M H E
②当MNNC时,如图④,过N作NEMC于E 解法一:
11MC102t5t 22EC5t在Rt△CEN中,cosc NCtCH3 又在Rt△DHC中,coscCD55t3 ∴t525解得t ·············································································································· 8分
8由等腰三角形三线合一性质得EC解法二:
∵∠C∠C,DHCNEC90 ∴△NEC∽△DHC
NCEC DCHCt5t即 5325∴t ·················································································································· 8分
811③当MNMC时,如图⑤,过M作MFCN于F点.FCNCt
22∴
解法一:(方法同②中解法一)
1tFC3cosC2
MC102t560解得t
17解法二:
∵∠C∠C,MFCDHC90 ∴△MFC∽△DHC ∴
B
A D
N F
H M
C
(图⑤)
FCMC HCDC
1t102t2即 3560∴t
17102560综上所述,当t、t或t时,△MNC为等腰三角形 ···················· 9分
81738.解(1)如图1,过点E作EGBC于点G. ························· 1分
∵E为AB的中点,
A D
1∴BEAB2.
2F E 在Rt△EBG中,∠B60,∴∠BEG30. ·············· 2分
122∴BGBE1,EG213.
B C 2G
即点E到BC的距离为3.··············································· 3分 (2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PMEF,EGEF,∴PM∥EG. ∵EF∥BC,∴EPGM,PMEG3.
同理MNAB4. ······································································································· 4分 如图2,过点P作PHMN于H,∵MN∥AB, ∴∠NMC∠B60,∠PMH30. N
A D ∴PH图1
13 PM.22B
E P H F C
图2
3∴MHPMcos30.
235则NHMNMH4.
222G M 53在Rt△PNH中,PNNH2PH2 7.22∴△PMN的周长=PMPNMN374. ················································· 6分 ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.
当PMPN时,如图3,作PRMN于R,则MRNR.
23. 2∴MN2MR3. ········································································································· 7分 ∵△MNC是等边三角形,∴MCMN3.
此时,xEPGMBCBGMC6132. ············································· 8分
类似①,MR
A E B
P R
G
M 图3
D N F
C
B
A E P
D F N C
B
A E D F(P) N C
G
图4
M G
图5
M
当MPMN时,如图4,这时MCMNMP3.
此时,xEPGM61353.
当NPNM时,如图5,∠NPM∠PMN30.
则∠PMN120,又∠MNC60, ∴∠PNM∠MNC180.
因此点P与F重合,△PMC为直角三角形.
.∴MCPMtan301
此时,xEPGM6114.
综上所述,当x2或4或53时,△PMN为等腰三角形. ·························· 10分 9解:(1)Q(1,0) ············································································································ 1分 点P运动速度每秒钟1个单位长度. ·················································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OFBE4. ∴AF1046.
y 在Rt△AFB中,AB826210 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵ABC90,ABBC ∴△ABF≌△BCH. ∴BHAF6,CHBF8. ∴OGFH8614,CG8412.
∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴
APAMMPtAMMP. . ABAFBF1068DCAMFONQPHGxBE3434 ∴AMt,PMt. ∴PNOM10t,ONPMt.
5555设△OPQ的面积为S(平方单位)
13473∴S(10t)(1t)5tt2(0≤t≤10) ······························································ 5分
251010说明:未注明自变量的取值范围不扣分.
473<0 ∴当t时, △OPQ的面积最大. ································ 6分 36102()104710 ∵a
此时P的坐标为(
9453,) . ························································································ 7分 15105295(4) 当 t或t时, OP与PQ相等. ······························································ 9分
313
10.解:(1)正确.······························································ (1分) 证明:在AB上取一点M,使AMEC,连接ME. (2分)
D A
BMBE.BME45°,AME135°.
F M CF是外角平分线,
DCF45°,
B E C G ECF135°.
AMEECF.
AEBBAE90°,AEBCEF90°, BAECEF.
△AME≌△BCF(ASA). ···················································································· (5分) AEEF. ················································································································ (6分) (2)正确. ··································································· (7分) 证明:在BA的延长线上取一点N. 使ANCE,连接NE. ············································ (8分) N F BNBE. D A NPCE45°. 四边形ABCD是正方形, AD∥BE.
B C E G DAEBEA.
NAECEF.
△ANE≌△ECF(ASA). ··················································································· (10分) AEEF. (11分)
11.解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.
设点C的坐标为0,mm0. 则BCOBOC4m. 于是ACBC4m.
在Rt△AOC中,由勾股定理,得ACOCOA,
22即4mm2,解得m22223. 23········································································································ 4分 点C的坐标为0,. ·
2(Ⅱ)如图②,折叠后点B落在OA边上的点为B, 则△BCD≌△BCD. 由题设OBx,OCy,
则BCBCOBOC4y,
在Rt△BOC中,由勾股定理,得BCOCOB.
2224yy2x2,
212x2 ···················································································································· 6分 8由点B在边OA上,有0≤x≤2,
1 解析式yx220≤x≤2为所求.
8即y 当0≤x≤2时,y随x的增大而减小,
3y的取值范围为≤y≤2. ······················································································· 7分
2(Ⅲ)如图③,折叠后点B落在OA边上的点为B,且BD∥OB. 则OCBCBD.
OCBCBD,有CB∥BA. 又CBDCBD,Rt△COB∽Rt△BOA. OBOC有,得OC2OB. ···················································································· 9分 OAOB在Rt△BOC中,
设OBx0x0,则OC2x0. 由(Ⅱ)的结论,得2x012x02, 8解得x0845.x00,x0845. 8516. ····················································································· 10分 点C的坐标为0,
12解:方法一:如图(1-1),连接BM,EM,BE.
F M A D
B
N 图(1-1)
C E
由题设,得四边形ABNM和四边形FENM关于直线MN对称.
∴MN垂直平分BE.∴BMEM,BNEN. ··············································· 1分 ∵四边形ABCD是正方形,∴ADC90°,ABBCCDDA2. ∵CE1NC2x.,CEDE1.设BNx,则NEx,
CD2
在Rt△CNE中,NECNCE.
22255,即BN. ···················································· 3分 44 在Rt△ABM和在Rt△DEM中,
AM2AB2BM2, DM2DE2EM2,
············································································· 5分 AM2AB2DM2DE2.2222 设AMy,则DM2y,∴y22y1.
11 解得y,即AM. ······················································································· 6分
44AM1. ∴ ············································································································ 7分 BN55 方法二:同方法一,BN. ················································································ 3分
4 如图(1-2),过点N做NG∥CD,交AD于点G,连接BE.
22 ∴x2x1.解得x2
A M F
G
D
E
B
C N
图(1-2)
∵AD∥BC,∴四边形GDCN是平行四边形.
∴NGCDBC. 同理,四边形ABNG也是平行四边形.∴AGBN5. 4EBCBNM90°. ∵MNBE,
NGBC,MNGBNM90°,EBCMNG.
在△BCE与△NGM中
EBCMNG, BCNG,∴△BCE≌△NGM,ECMG. ·································5分
CNGM90°.∵AMAGMG,AM=∴
类比归纳
511. ··································································· 6分 44AM1. ·········································································································· 7分 BN52249n1 ·(或);; ················································································· 10分 251017n1联系拓广
n2m22n1 ············································································································· 12分
n2m21
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务