您好,欢迎来到九壹网。
搜索
您的当前位置:首页资阳一诊文科数学

资阳一诊文科数学

来源:九壹网
资阳市高中2013级第一次诊断性考试

数 学(文史类)

注意事项:

1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 (选择题 共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有

一项是符合题目要求的。

1.已知集合M={x|-2≤x≤2},N={x| x-1>0},则M∩N=

(A) {x|1<x≤2}

(B) {x|-2≤x<1}

(C) {x| 1≤x≤2}

(D) {x| x≥-2}

12.命题“若x=300°,则cosx=”的逆否命题是

21 (A) 若cosx=,则x=300°

21 (C) 若cosx≠,则x≠300°

2

1(B) 若x=300°,则cosx≠

21(D) 若x≠300°,则cosx≠

23.函数f(x)log2(4x2)定义域为 (A) [2,2] (C) (,2)

(B) (2,2)

(D) (,2][2,)

(2,)

4.已知i是虚数单位,复数 (A) i-2

5i= 2i(B) 2+i (C) -2 (D) 2

5.正项等比数列{an}的前n项和为Sn,若S3=2a3-a1,则该数列的公比为 (A) 2 (C) 4

(B) (D)

1 21 416.已知(0,π),且sin+cos=,则tan的值为

54(A) 

33(C)

47.执行右面的程序框图,则输出的S

3(B) 

44(D)

3(A) 1023 (B) 512 (C) 511 (D) 255

8.已知x0是函数f(x)ex1的一个零点(其中e为自然对数x的底数),若x1(0,x0),x2(x0,),则 (A) f(x1)<0,f(x2)<0 (C) f(x1)>0,f(x2)<0 9.已知a>0,b>0,且(A)522

(B) f(x1)<0,f(x2)>0 (D) f(x1)>0,f(x2)>0

121,则a+2b的最小值为 ab

(B) 82

(C) 5

(D) 9

3sinx,x0,1210.若函数f(x)(其中aR)的值域为[,),则a的取值范围是

2x2a,x0131513) (A) [, (B) [,] (C) [,] (D) [,)

222222311.P是△ABC内一点,△ACP,△BCP的面积分别记为S1,S2,已知CPCACB,其

44S1(0,1)中,则

S21111(A) (B) (C) (D)

2345f(x)x1,下面的12.设函数f(x)是定义在R上的增函数,其导函数为f(x),且满足

f(x)不等关系正确的是 (A) f(x2)f(x1) (C) f(x)>x

(B) (x1)f(x)xf(x1) (D) f(x)<0

第Ⅱ卷(非选择题 共90分)

本卷包括必考题和选考题两部分。第13题第21题为必考题,每个试题考生都必须做答。第22题第24题为选考题,考生根据要求做答。

注意事项:

必须使用0.5毫米黑色墨迹签字笔在答题卡上题目指示的答题区域内作答。作图时可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚。答在试题卷、草稿纸上无效。 二、填空题:本大题共4小题,每小题5分,本大题共20分。

13.已知向量a=(2,–1),b=(m,3),若a∥b,则m的值是_________.

x0,14.不等式组x2y20,表示的平面区域的面积为_________.

yx2015.已知数列{an}满足a1=19,an1an2(nN*),则当数列{an}的前n项和Sn取得最大值

时,n的值为_________.

16.在锐角△ABC中,角A,B,C的对边分别为a,b,c,若b=2,B=2A,则 a 的取值范围是___________. 三、解答题:解答应写出文字说明、证明过程或演算步骤。 17.(本小题满分12分)

22x8,已知命题p:实数x满足不等式组2命题 q:实数x满足不等式

x6x80,(x1)(xa12)0(其中aR).

(Ⅰ) 解命题 p中的不等式组;

(Ⅱ) 若p是q的充分条件,求a的取值范围. 18(本小题满分12分)

sinxcosx)),函数f(x)= ab. 已知向量a(2sinx,2(cosxsinx)),b(2cosx,(Ⅰ) 求yf(x)的单调递增区间;

(Ⅱ) 在给定直角坐标系中,画出函数f(x)在区间[0,π]上的图象.

19.(本小题满分12分)

已知数列{an}的前n项和为Sn,且Sn2ann.

(Ⅰ) 求证:数列{an+1}为等比数列;

(Ⅱ) 令bn=nanlog2(an1),求数列{bn}的前n项和Tn.

20.(本小题满分12分)

某厂生产当地一种特产,并以适当的批发价卖给销售商甲,甲再以自己确定的零售价出售.已知该特产的销量(万件)与甲所确定的零售价成一次函数关系:当零售价为80元/件时,销量为7万件;当零售价为50元/件时,销量为10万件.后来,厂家充分听取了甲的意见,决定对批发价改革,将每件产品的批发价分成固定批发价和弹性批发价两部分,其中固定批发价为30元/件,弹性批发价与该特产的销量成反比.当销量为10万件,弹性批发价为1元/件.假设不计其它成本,据此回答下列问题.

(Ⅰ) 当甲将每件产品的零售价确定为100元/件时,他获得的总利润为多少万元? (Ⅱ) 当甲将每件产品的零售价确定为多少时,每件产品的利润最大? 21.(本小题满分12分)

1已知函数f(x)=lnx-x,g(x)=ax2-ax (其中aR),令h(x)=f(x)-g(x).

2(Ⅰ) 当a>0时,求函数y=h(x)的单调区间;

a)上恒成立,求a的最小整数值. (Ⅱ) 当a<0时,若f(x)<g(x)在x(0,请考生在22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时,请用2B铅笔在答题卡上将所选题目题号的方框涂黑。

22.(本小题满分10分) 选修4-1:几何证明选讲

如图,△ABC的外接圆为⊙O,延长CB至Q,再延长QA至P,使得QC2QA2BCQC.

(Ⅰ) 求证:QA为⊙O的切线;

(Ⅱ) 若AC恰好为∠BAP的平分线,AB=10,AC=15,求QA的长度.

23.(本小题满分10分) 选修4-4:坐标系与参数方程

2x4t,2在平面直角坐标系中,直线l的参数方程为(其y22t2中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为2cos.

(Ⅰ) 写出直线l和曲线C的普通方程;

(Ⅱ) 已知点P为曲线C上的动点,求P到直线l的距离的最大值. 24.(本小题满分10分) 选修4-5:不等式选讲

已知函数f(x)|xa|.

(Ⅰ) 当a2时,解不等式f(x)≥16|2x1|;

2],求证:f(x)f(x2)≥2a. (Ⅱ) 若关于x的不等式f(x)≤1的解集为[0,资阳市高中2013级第一次诊断性考试

数学参及评分意见(文史类)

一、选择题

1.A 2.C 3.B 4.D 5.A 6.A 7.C 8.B 9.D 10.C 11.B 12.D 二、填空题

2313.–6;14.3;15.10;16.(,2).

3三、解答题

17.································································2分 (Ⅰ)由22x8,解得1······································································4分 由x26x80,解得2·······························································6分 所以该不等式组的解集为{x|2(Ⅱ)因为p是q的充分条件,

所以2·······················································8分 即{ x |2(1)当1≥12-a,即a≥11时,不等式(x1)(xa12)0的解为12ax1,不满足(*), (2)当1<12-a,即a<11时,不等式(x1)(xa12)0的解为1x12a, 于是有312a,解得a≤9,

··················································································12分 故a的范围是(-∞,9].

18.由题知f(x)=ab=22sinxcosx2(cosxsinx)(cosxsinx)

=2sin2x2(cos2xsin2x) =2(sin2xcos2x)

π···························································································4分 =2sin(2x-). 4ππππ3π(Ⅰ) 由2kπ2x2kπ,得kπxkπ,其中kZ,

24288π3π··············································6分 所以单调递增区间为[kπ,kπ]其中kZ. ·

88π(Ⅱ)由(Ⅰ)知f(x)= 2sin(2x-).

4列表得

x 0 0 0 2 π 0 -2 π ·················································································································8分 通过描点、连线得 ·················································································································12分 19.··········································1分 (I)由Sn2ann,可得S1=2a1-1,即a1=1, ·又Sn+12an+1(n1),

·····················································2分 相减得an12an+12an1, 即an+12an1, ·

an112an22, 所以

an1an1·····································6分 故{an+1}是以a1+1=2为首项,以2为公比的等比数列. ·

···············································7分 (Ⅱ)由(Ⅰ)得到an+1=2n,所以an2n1, ··················································8分 于是bn=nanlog2(an1)=n+n(2n1)=n×2n, ·Tn=1212223232Tn=122223324(n1)2n1n2n,

(n1)2nn2n1,

相减整理得-Tn=2122232nn2n1,

·············································································12分 所以Tn=(n1)2n12. ·

20.设销量y与零售价x的一次函数关系为y=kx+b;弹性批发价与销量y的反比例函数

a关系为,

y780kb,k0.1,由解得于是y=15-0.1x,

1050kb,b15,10a得a=10,于是. ······································································4分

y1010(Ⅰ)当零售价为100元/件时,销量为15-0.1×100=5(万件),此时的批发价为30+=32

5(元/件),他获得的总利润为5×(100-32)=340(万元). ······································6分 (Ⅱ)设每一件的利润为d,

1010则dx(30)x(30)x30

150.1x0.1x15100···········································································8分 (x150)120,

(x150)150.1x0,而由可得0x0,由1于是d(x150)1001001202(x150)120100,

(x150)(x150)100,即x=140时取“=”. ··············································12分

(x150)121.由题h(x)=lnx-ax2+(a-1)x,且x>0,

21ax2(a1)x1(ax1)(x1)则h(x)ax(a1),

xxx(Ⅰ)当a>0时,(ax1)<0,由h(x)0得01,

·······································4分 所以单调递增区间为(0,1),单调递减区间为(1,+∞).

(Ⅱ)由题知f(x)<g(x)在x∈(0,-a)上恒成立,即h(x)= f(x)-g(x)<0在x∈(0,-a)上恒成立.

当且仅当(x150)1由h(x)0得x1,x2=1,

a1(1)当1即a=-1时,h(x)0在x∈(0,1)上恒成立,则h(x)在(0,1)上为增函数,h(x)

a3···························································6分 <h(1)=<0,所以f(x)<g(x)恒成立. ·

21(2)当1,即-1ax h(x) (0,1) + 1 0 极大值 1(1,) a1(, +) a- 极小值 + 因为-a<1,在区间(0,-a)上,h(x)<h(-a)<h(1)=1(3)当1,即a<-1时,

a1a-1<0. ····························8分 2x h(x) 因为-a>1, 1(0,) a 0 极大值 1(,1) a1 极小值 (1, +) + + - 1111111111()2(a-1)= ln()而h()=ln()-a×-1+= ln()+-1<0, 2aaaaaa2aa2a于是只需考虑h(-a)<0即可,

即h(-a)= ln(-a)-

11a(-a)2+(a-1)(-a)= ln(-a)-a3-a2+a<0, 22下面用特殊整数检验,

若a=-2,则h(2)=ln2+4-6=ln2-2<0; 若a=-3,则h(3)=ln3+

327-12= ln3+>0;

221而当a≤-3时,ln(-a)>0,现说明当a≤-3时,-a3-a2+a>0.

213令u(x)=-x3-x2+x,则u(x)=-x2-2x+1,它在(-∞,-3]为增函数且u(3)<0,

22所以u(x)在(-∞,-3]为减函数,而u(-3)>0,

1则当a≤-3时,-a3-a2+a>0恒成立.

2·······························12分 所以,使f(x)<g(x)在x∈(0,-a)上恒成立的最小整数为-2. ·

22.选修4-1:几何证明选讲 (Ⅰ)因为QC2QA2BCQC,

(QCBC)QA2即QCQBQA2, 所以QCQCQA于是, QAQB所以△QCA∽△QAB, 所以∠QAB=QCA,

根据弦切角定理的逆定理可得QA为⊙O的切线,证毕. ······································5分 (Ⅱ)因为QA为⊙O的切线, 所以∠PAC=∠ABC,

而AC恰好为∠BAP的平分线, 所以∠BAC=∠ABC, 于是AC=BC=15,

所以QC2QA215QC,① 又由△QCA∽△QAB得

QCAC15,② QAAB10联合①②消掉QC,得QA=18. ·······································································10分 23.选修4—4:坐标系与参数方程

(Ⅰ)由题,消去直线l参数方程中的参数t得普通方程为yx2.

又由2cos得22cos,

x=cos,由得曲线C的直角坐标方程为x2y22x0. ··································5分 y=sin(Ⅱ)曲线C:x2y22x0可化为(x1)2y21, 设与直线l平行的直线为yxb,

当直线l与曲线C相切时,有1b2于是当b12时,P到直线l的距离达到最大,最大值为两平行线的距离即

1,即b12,

2(12)2321. 23232,再加上半径1,即为P到直线l距离的最大值1)22 ·················································································································10分 24.选修4—5:不等式选讲

(1)当a2时,不等式为x22x116,

(或先求圆心到直线的距离为当x≤-2时,原不等式可化为-x-2-2x+1≥16,解之得x≤17; 31当-2<x≤时,原不等式可化为x+2-2x+1≥16,解之得x≤-13,不满足,舍去;

21当x>时,原不等式可化为x+2+2x-1≥16,解之得x≥5;

217不等式的解集为{x|x或x5}. ································································5分

3(2)f(x)1即xa1,解得a1xa1,而f(x)1解集是0,2, a10,所以解得a1,

a12,从而fxx1,

于是只需证明fxf(x2)2, 即证x1x+12,

因为x1x+1=1xx+11xx+1=2,

所以x1x+12,证毕. ···········································································10分

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务