2019级资阳市高三数学第一次诊断性考试
理科数学参和评分意见
评分说明:
1. 各阅卷组阅卷前组织阅卷教师细化评分细则。 2. 本解答只给出了一种解法供参考.如果考生的解法与本解答不同,可根据试题的主要
考查内容比照评分参考制定相应的评分细则。 3. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内
容和难度,可视影响程度决定后继部分的给分,但不得超过该正确部分解答得分的一半;如果后继部分的解得有严重错误,就不再给分。 4. 只给整数分。选择题和填空题不给中间分。 一、选择题:本题共12小题,每小题5分,共60分。
1.C 2.A 3.C 4.B 5.A 7.B 8.D 9.B 10.C 11.D 二、填空题:本题共4小题,每小题5分,共20分。
413.1 14.5 15.511 16.
3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 (一)必考题:共60分。 17.(12分)
3113···································· 2分 sin2xcos2xcos2xsin2x ·
2222π·························································· 4分 3sin2xcos2x2sin(2x). ·6π令f(x)0,即sin(2x)0,
6π1π则2xkπ,kZ,得xkπ,kZ, ······································ 6分
21265π11π由于x[0,;令k2,得x. ·························· 7分 ],令k1,得x12125π11π所以,f(x)在[0,,. ················································ 8分 ]上的零点为
1212ππ2π(2)由x[,],则2x[,]. ················································ 9分
446333π所以,······························································· 11分 ≤sin(2x)≤1, ·
262]. ·故f(x)在[,]上的取值范围是[3,············································· 12分
4418.(12分)
6.C 12.D
(1)f(x)(1)由Snan(n1)2, 得Sn1an1n2,
两式相减,得an1an1an2n1,
理科数学答案 第1页(共4页)
所以,an2n1. ················································································ 4分
1352n1(2)由题Tn23n,
2222111352n1两边同乘以,有Tn234n+1, ······································ 6分
222222两式相减,得
1122222n1TnTn234nn+1
222222211(1n1)12n132n32················································· 10分 24n+1n+1. ·
12222122n3所以,Tn3n. ··········································································· 12分
219.(12分)
π(1)由bsinAasin(B),
3π根据正弦定理,有sinBsinAsinAsin(B), ··········································· 2分
3π13即有sinBsin(B)sinB················································ 3分 cosB, ·
322则有tanB3,又0Bπ,
π所以,B. ····················································································· 4分
3π2π(2)由(1),B,则AC,又△ABC为锐角三角形,
33π2ππ所以,0A且0A,
2323ππ所以A,于是tanA. ···························································· 6分
3622π31sin(A)cosAsinAcsinC31322则······················· 8分 2. asinAsinAsinA2tanA2311又, 2tanA22c1所以,的取值范围是(,2). ································································ 12分
a220.(12分)
12(1)由题可知a≠0,所以函数f(x)2ax2x1的对称轴为x,
2a由于yf(x1)是偶函数,
2所以f(x1)f(x1),即f(x)2ax2x1关于x=1对称, ····················· 2分
理科数学答案 第2页(共4页)
111,即a. 2a22所以f(x)x2x1. ·········································································· 4分 所以
mmexf(x)有三个不同实数根. x有三个不同的实数根,即方程ex2x令g(x)ef(x),由(1)有g(x)(x2x1)e, (2)方程f(x)2x所以g(x)(x1)e,令g(x)0,则x1或x1.
当x1时,g(x)0;当1x1时,g(x)0;当x1时,g(x)0. ······ 6分
故当x1时,g(x)单调递增;当1x1时,g(x)单调递减;当x1时,g(x)单调递增.
4;当x1时,g(x)取得极小值g(1)0. e ·········································································································· 8分 所以,当x1时,g(x)取得极大值g(1)又由于g(x)≥0,且当x时,g(x)0;当x时,g(x).
4x所以,方程mef(x)有三个不同实数根时,m的范围是(0,). ·················· 12分
e21.(12分)
a(1)f(x)2(1a)xb,由题f(1)a2(1a)b0,
x······························································ 2分 解得ab2,由a=1,得b=1.
1(x1)因为fx的定义域为(0,),所以f(x)1,
xx故当x(0,1)时,f(x)0,fx为增函数,
············································ 4分 当x(1,)时,f(x)0,fx为减函数, ·(2)由(1)知b=2-a,
a2(1a)x2(a2)xa2(1a)xa(x1). 所以f(x)2(1a)x(2a)xxx·············· 5分 (i)若a1,则由(1)知fxmaxf(1)0,即fx≤0恒成立. ·
aa2(1a)x(x1)0, ii()若a1,则且2(1a)xa(x1)2(1a)2(1a)f(x)xx故当x(0,1)时,f(x)0,fx为增函数, 当x(1,)时,f(x)0,fx为减函数,
fxmaxf(1)0,即fx≤0恒成立. ··················································· 7分
a2(1a)x2(x1)且a1, 2(1a)xa(x1)(iii)若a1,则2(1a)2(1a)3f(x)xx故当x(0,1)时,f(x)0,fx为增函数,
理科数学答案 第3页(共4页)
a)时,f(x)0,fx为减函数,
2(1a)a,)时,f(x)0,fx为增函数, 当x(2(1a)当x(1,e22e1由题只需fe≤0即可,即a(1a)e(2a)e+1≤0,解得a≥2,
ee1e22e12(e2)21e22e12e20,且2120, 而由2ee133e3e3ee1ee12e2e1··········································································· 9分 ≤a1. ·得2ee122(x1)20,fx为增函数,且f10, (iv)若a,则f(x)33x····································· 10分 所以x(1,e),f(x)f10,不合题意,舍去; ·
a21,f(x)在x(1,e)上都为增函数,且f10, (v)若a,则
2(1a)32所以x(1,e),f(x)f10,不合题意,舍去;
e22e1·················································· 12分 ,). 综上所述,a的取值范围是[2ee1(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
(1)直线l的普通方程为yx1. ························································· 2分
422222222sin4xyy4x2y4, 由2,得,则有,即
1sin2x2y2则曲线C的直角坐标方程为·················································· 5分 1. ·
423(2)将l的参数方程代入x22y24,得t222t20,设两根为t1,t2, ··· 7分
242则t1,t2为M,N对应的参数,且t1t2,
3tt22所以,线段MN的中点为Q对应的参数为12. ······························· 9分
2322所以,|OPOQ||PQ|. ······························································· 10分
323.[选修4-5:不等式选讲](10分)
(1)(abc)2abc2ab2bc2ca
≤abc(ab)(bc)(ca)≤3(abc)3. 1当且仅当abc取“=”.所以,abc的最大值为3. ············ 5分
3111abcabcabc(2)(1)(1)(1)(1)(1)(1)
abcabc理科数学答案 第4页(共4页)
2bc2ac2abbcacab≥8. abcabc1当且仅当abc取“=”. ······························································ 10分
3理科数学答案 第5页(共4页)