您好,欢迎来到九壹网。
搜索
您的当前位置:首页关于感性无功补偿的一些技术问题

关于感性无功补偿的一些技术问题

来源:九壹网
关于感性无功补偿的一些技术问题

电感吸收感性无功,电容发出容性无功。

感性无功,就是常说的消耗无功

容性无功,就是常说的发出无功

电感吸收的是感性无功,但是电容吸收的是容性无功,即发出感性无功。

感性和容性无功产生的原因都是因为电压和电流不是同相位。电压超前电流产生感性无功,电流超前电压产生容性无功。

(1)感性无功功率 在用电设备中,凡是用绕组和磁铁组成的,在交流电路中产生电和磁交变的功能。在能量转换过程中,有部分磁能仍回复到电能,那部分电流没有消耗有功功率,称为感性无功功率。在电感性负载的电路中,电流滞后电压一个角度Ψ,cosΨ称为功率因数。

(2) 容性无功功率 在电容器二块极板间产生充放电,电容电流不消耗有功功率,这个电流引起的功率称为容性无功功率。在电容性负载的电路中,电流超前电压一个角度Ψ,cosΨ也称为功率因数。因此容性无功功率可以抵消感性无功功率而提高功率因数。

(3)无功功率补偿的原理 在交流电路中,纯电阻负载电流IR与电压U同相位;纯电感负载电流IL滞后电压纯电容负载电流IC则超前于电压。也就是说纯电感和纯电容中的电流相位差为,可互相抵消,所以在电源向负载供电时,感性负载向外释放的能量由并联电容器将能量储存起来;当感性负载需要能量时,再由电容将能量释放出来。这样感性负载所需要的无功功率可就地解决,减少负载与电源间能量交换的规模,减少损耗.

无功功率补偿的基本原理是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换。这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是无功功率补偿的基本原理。

有功 无功 感性 容性 母线电压变化 这几个概念的关系

有一个问题我觉得很多电气从业人员会被绕在里面,并且把头脑弄的很乱,当然也包括我。

这个问题就是 有功 无功 感性 容性 母线电压变化 这几个概念的关系

借这个机会发表下个人的观点 如有错误 请指正!

首先什么叫有功 无功

电压和 方向与其一致的电流分量之间的乘积 称之有功

电压和 方向与其垂直的电流分量之间的乘积 称之无功

如果将电压U比喻成力F 而电流I相当于物体的实际位移S

而力与物体移动位移之间的夹角为Φ

由于功就是W=F*S COSΦ

那么有功=U*I CosΦ 这部分功率实实在在做功

无功=U*I SinΦ 这部分功率完全没在做功

而这个cosΦ就是功率因素

有人要问了 既然无功不做功 要它做什么

不错 既然不做功貌似是没什么用 但我们目前将电能转化为机械能最普遍的方法就是电机

而电机是无法直接将电能转化为机械能的 它需要一个中间过程就是磁能

电机将吸收的电能转化为磁能 再将磁能转化为机械能

这个过程可以理解为 输出的机械能在不断削弱电机的磁能 而电能又在源源不断的补充这部分被消耗的磁能

这样形成的电能与机械能之间的不断转换。而这个中间环节磁能一直存在却又不做功,但却担当了电能与机械能转换的重任 它便是无功的产生原因和存在必要性。

无功概念出来后 又有两个新的概念 感性负载和容性负载

所谓感性负载 如果电流与电压在一个方向 电流经过它后电流将滞后于电压

所谓容性负载 如果电流与电压在一个方向 电流经过它后电流将超前于电压

这两个概念有了后 有人会问如果我将电网上添加很多电容补偿 强行将母线功率因素补偿到1 即电压与电流无夹角,是不是

电网中间就没有无功了?

其实不是这样的 母线功率因素为1 只能说线路中的容性无功恰好等于感性无功,类似于电容放电时电感在充电,电感充满电后放电时电容恰好放完电需要充电。这个过程理

解后,有两个概念便很好理解,其一就是“末端补偿效果最好”

所谓末端补偿就是在感性负载的线路最末端并联电容器对母线进行补偿,这样电容与电感两种性质的无功互相充放电时,电流不会经过母线,而仅仅在这条支路上窜动。

其二就是“为什么不把电网功率因素提升到1”

如果将电网功率因素提升到1时,这就组成了一个LC振荡回路,发生振荡时电路会不断的向外界空间辐射电磁波并且产生大小和方向周期性变化的振荡电流,这是一个极其

不稳定的状态,不是我们想看到的。

最后一个问题 母线电压的变化究竟取决于什么

由于大家对感性无功和容性无功有认识后,开始判断感性无功增加使母线电压降低 容性无功增加使母线电压升高。

无可否认在绝大多数情况下电网处于电感性时这句话是对的,但这种判断方法在遇到实际问题时,往往会把自己绕进死胡同。

例如 10KV母线上有一台34MW的同步电动机,过励磁工作(表明电机处于容性工作状态),励磁处于PF调节方式(恒功率因数调节),将电动机的功率因数钳制在0.9(注

意是电动机的功率因数而非母线),此时如果我增加电动机的负荷(即有功增加),母线电压将如何变化?

PF=有功/根号(有功平方+无功平方)(word精简版害人啊 插入对象里居然没有公式),由于恒功率因数控制方式下,有功增加,要保持PF不变,无功也要相应增加,而此

时同步电动机是容性负载,也就是容性无功要增加是不是母线电压也要增加?其实结果并非如此。

因为母线电压U=ξ-IR 其中ξ为发电机端电压 I 为母线线电流 R为线路所有阻抗和

当发电机端电压ξ保持不变情况下,由于R定死,母线线电压完全取决于母线线电流

之所以说感性无功增加使母线电压降低 容性无功增加使母线电压升高,感性无功增加了母线上的无功电流,从而增加了母线线电流使得母线电压降低;而容性无功增加则减

小了母线上的感性电流,从而减小了母线线电流从而使得母线电压升高。

而我举的例子中,同步电动机虽然容性无功增加了减少了母线上的部分无功电流,但同时负荷增加的同时也增加了有功电流。在通常情况下,增加的有功电流将远远大于减小

了的无功电流,所以此时母线线电流总体上还是在增大,所以母线电压在降低。

综上所述,如果要判断母线电压的变化,最直接的方法就是看母线线电流是否增加,而别再那考虑感性还是容性无功增加这些复杂而又繁琐的问题,往往还不正确。

以上是我的理解,才疏学浅,不正确的地方,请各位老师多点评指正,谢谢!

摘 要:概述了电力系统感性无功补偿的发展及其作用,并对工程实践的若干技术问题进行了分析,强调今后应解决好设备制造和工程设计问题。

关键词:感性无功补偿;容性充电功率;并联电抗器

无功补偿是保证电压合格的重要因素,无功补偿又为容性补偿和感性补偿,缺容性无功,电压偏低,缺感性无功,则会出现电压偏高。电力系统的容性无功补偿,从高压到低压,从变电所的集中补偿到用户的分散就地补偿,以及设备制造、运行管理、科研标准化工作,已有全面提高。感性无功补偿是随超高压电网的建立而发展起来的。因此,感性无功补偿起步稍晚一些,在工程应用上,不少技术问题有待进行研究,标准化工作开展得不多。本文从并联电抗器在电网中的作用,并联电抗器在工程应用中的一些问题,提请关注感性无功补偿,加强相关科研和标准化工作。 1 感性无功补偿的发展和作用

20世纪70年代中国开始建立超高压电网,超高压输电线路中有大量的容性充电功率,如500 kV线路每百公里充电功率达11~115 MVA。充电功率起因于架空输电线路的分布电容,所以,它是容性的。容性充电功率的存在,使电力系统产生诸多问题,必须进行感性无功补偿,即吸收充电功率,从而需要在电网中装设并联电抗器。中国并联抗器主要装设在四个电压等级上:35 kV、66 kV、330 kV和500 kV,装设于330 kV和500 kV的并联电抗器,通常叫高抗;而装设于变电所主变压器低压侧35 kV和66 kV侧的电抗器,又通常叫低抗。从以下几个数据中可以看出并联电抗器的发展速度是很快的:据全国统计19年5 070MVA,1990年5 460 MVA,1993年7 730 MVA,1997年12 790 MVA,1998年已达19 000 MVA,现在已超过20 000 MVA。但是,感性无功仍然不足。按部颁标准《电力系统电压和无功电力技术导则》要求,高低压并联电抗器的装设容量,要达到线路充电功率的90%。感性无功补偿不足,致使电网电压偏高是有先例的,1995年东北电网的局部地区,500 kV的最高电压达到556 kV,220 kV的最高电压为257 kV,显然已经超过了设备的最高电压550 kV和252 kV,尽管只是短时,但对电气设备的安全运行仍是不利的。

必须进行感性补偿,吸收充电功率,降低工频电压。感性无功补偿原则也是分层就地平衡,在变电所装设高、低压并联电抗器,以达到对电压的控制,保证电压质量,提高电网运行的稳定性和经济性。高抗和低抗的作用是有区别的,它们在电网中的作用,可以归纳如下: 1.1 高抗的作用

高抗安装在超高压变电所的开关站里,吸收超高压架空线路的容性充电功率,可以起到降低工频暂态过电压和操作过电压的作用,能达到提高系统稳定性和输送能力,减少线路中传输的无功,这样就可以降低有功损耗———线损,提高输电效率;还能降低工频稳态电压利于系统同期;有利于消除同步电机带空载长线可能出现的自励磁现象。

高抗中性点装设小电抗,可以补偿输电线路相间和对地电容,加速潜供电弧熄灭,有利于超高压线路单相快速重合闸的实现。

综合上述,高抗是超高压变压所和开关站里的重要设备,对电网的安全运行起着重要作用。 1.2 低抗的作用

低抗通常分组装设于超高压变电所主要的低压侧,作用是维持无功平衡。当高抗装设容量不足或装设高抗有困难时,装设低抗可以起补足作用,按无功平衡的需要进行分组投切,运行灵活,投入低抗还可以抑制轻负荷时母线电压升高。 2 感性补偿的一些技术问题

感性补偿是利用高、低压电抗器进行的补偿。当然,调相机也可以进相运行,吸收充电功率,但调相机虽有优点(既可以发出感性无功,也可发出容性无功,可以进行无级调节),但也有缺点(旋转机械,结构复杂,噪音大、损耗大、运行维护麻烦、需要的运行和检修人员多),所以,很长时间以来都没有再上调相机,以前装设的调相机也在逐步退出运行,如1990年全国有调相机475 MVA,到1998年仅剩不到300 MVA。电抗器和电容器一样,运行条件非常苛刻,一旦带电即满载运行,这就不像变压器,可以由空载、轻载,逐步过渡到满载。而且,电抗器全年的投运时间很长,据统计,500 kV变电所里的高抗,年投运率达8 000 h以上,装在主变三次侧的低抗,年投运率也接近8 000h。高、低电压抗器在设备制造、工程设计时设备选型、参数确定、电气接线、布置与安装,以及保护、测量和控制方式诸多方面,有不少值得研究的问题,现分述如下:

1)高抗都是油浸铁心式结构,像变压器,它们都有铁心、线圈、绝缘油、油箱、瓷套管以及散热器等。但电抗器与变压器工作原理不同,结构上的区别在于磁路,电抗器的铁心有气隙、磁阻大。电抗器制造的最大技术难点在于对漏磁通的处理。前几年,电抗器运行中经常出现漏磁通在部件中感应产生涡流,引起局部过热,绝缘油分解劣化,含气量增加,部件被烧坏事故时有发生;有的高抗振动和噪音过大,甚至到无法投运的地步。为了研讨相关技术问题,由无功补偿装置分委员会组织,1998年在无锡召开了电抗器运行技术交流会,与会代表提供的会议交流资料,有很多高抗事故例子,故障设备有中国早期产品、也有进口产品,信息不断地反馈到制造厂,国内外厂家根据事故分析,研究出了解决问题的各种措施,从西变厂近期的产品看,质量已经提高。

2)高抗中性点通常经小电抗接地,为了不给高频信号提供入地通路,高抗通常接在变电所的母线侧。要达到这种连接方式,有时在布置上比较困难,甚至会多占地。在阻波器前后如果都可以接电抗器,则布置上就比较方便,特别是扩建时装电抗器,预留场地较方便。把电抗器接在阻波器前,关键在于高频信号衰减后是否能满足载波通信和继电保护的要求。有的工程经计算认为可以满足要求,在哪种情况下不能满足要求,还应给出一个定量的数值范围;这种连接方式,可以使配电装置的间隔长度缩短,达到节约用地的目的。

3)电抗器的额定电压和损耗是两个非常重要的参数,既关系到设备的安全运行和经济性,也涉及到设备价格。电抗器的输出容量与运行电压的平方成正比,当电抗器的实际运行电压与设备额定电压接近时,则电抗器输出达到额定容量。电网的无功平衡就是按实际工作电压下的输出容量来考虑的。如出于保守、追求安全,把设备的额定电压定高了,就会出现容量亏损,不能充分发挥有效出力,这样不经济。相反,如把额定电压定得偏低,忽视了电抗器可能会在最高电压下连续运行,又会出现电抗器过电压,它的损耗、温升都会增加,这样不安全。因此,确定电抗器的额定电压与电容器的额定电压是同一性质的问题。对电抗器的总损耗,既不能太小,也不能太大,损耗值的确定直接关系到电抗器制造的原材料用量,影响设备价格,同时,损耗大小又影响电抗器的年运行费用。因此,应该按照中国现阶段电价和电抗器制造价格,进行综合计算分析,选择合理的总损耗值适用范围,供工程设计时选用。

4)中国电网中运行的低抗有两种产品:干式空心和油浸铁心式。从运行情况看,油浸铁心式事故相对少一些。干式空心电抗器运行几年后,由于污秽引起电抗器表面龟裂,出现树枝状放电,内部出现匝间短路,空心电抗器烧坏事故在东北、华北、华东、中南、西南地区均有发生。1996年原电力部国调中心转发的电力电容器标委会调查文件“关于并联电容器运行情况通报”,

专门提到电抗器的选型问题,认为选油抗或是选干抗值得探讨。1994年东北地区提出,66 kV暂不采用干式空心电抗器。针对这些事故,国内外厂家都对自己的产品进行了改进:加装防护顶帽、加强匝间绝缘、提高绝缘等级、均衡磁路,以及表面使用特殊RTV涂料等。与此同时,运行单位加强维护,定期冲洗表面污秽。制造厂家正在研究对运行中的空心电抗器进行温升监测,防止过热事故发生。

5)干式空心电抗器,线性好、不饱和、无油、噪音低,这些优点使其在电网中应用较普遍。但是,空心电抗器四周存在着强磁场,电抗器表面出现的爬电现象与此有关,电压愈高、影响愈大。处于电抗器四周磁场中的金属部件,会产生涡流,将造成金属部件发热,轻者造成电解损耗,重者即酿成事故。所以,要规定一个防磁范围,在此范围之内,不能使用铁磁性金属部件,因此,电抗器下面的支撑件和支柱绝缘子的金属部件,要采用无磁性金属材料。为了减少涡流,设备安装上也要作些特殊要求,如:电抗器连接到其他设备的导线,采用铝母线时,要立式安装,不宜平放,所有组件的连接螺栓,均采用不锈钢材料。 空心电抗器低式布置落地安装时,为保证人员安全,须在其四周设备围栏,如果设置的是金属围栏,则应满足防磁范围要求。即使这样金属围栏中仍有涡流产生,而且数值很大。东北地区有人作过测量,用钳形电流表在围栏的铁丝网上测感应电流,10 kV并联电抗器达到60 A,66 kV并联电抗器则高达140 A。有的工程已注意到这个问题,用塑料围栏取代金属围栏。空心电抗器的混凝土基础中一般不加钢筋,如有钢筋,则钢筋接点要采用绝缘材料隔离,使之不能形成闭合回路。如果空心电抗器采用高式布置、支撑安装,其支柱不能采用钢筋混凝土圆杆,须用特殊材料的支柱或混凝土平台。华东地区进口的空心电抗器,厂家配套供货玻璃钢支柱。空心电抗器下方的地网,工程中的作法是:地网开环,交叉点隔离,或者除掉下方局部地网。由此可见,由于空心电抗器的自身特点、工程中安装设计花样很多,这些作法需要给予总结,纳入设计标准供大家共同遵循。 6)35 kV空心电抗器,当采用双星形接线时,可以装设中性点不平衡保护,防止线圈匝间故障。但是,每一个单相电抗器,都要并联绕制两个线圈,对两个线圈的制造精度要求很高,有的产品就增加一个调平衡的附加线圈,反而使结构复杂化。运行情况表明,双星形接线的电抗器,仍然有短路烧坏事故发生。究其原因,匝间绝缘击穿事故是制造质量有问题,因为,电抗器运行对匝间承受的电压是较低的,仅几百伏,而匝间绝缘的试验电压为3 kV,正常情况,通过试验的产品,应该在运行中不出问题。采用单星形接线,对空心电抗器的制造和安装布置都比较简单,近期很多工程在采用单星形接线,把线圈绝缘等级由B级提高到F级,这个问题需根据工程实践作进一步总结。

7)低抗回路设备配置和连接,工程中有多种形式:断路器有的接母线侧,有的接中性点侧;抑制操作过电压的金属氧化物避雷器,有的装设,有的又没有装设;电抗器被切除时断路器有截流现象,电抗器储存的能量,在通过电抗器入口等值电容泄放时,会因L-C回路效应而产生振荡,电抗器端部将产生过电压,由于不同型式的断路器开断性能有区别,产生的过电压不一样。如真空断路器的操作过电压高,SF6断路器的操作过电压低。所以,工程中凡采用真空断路器的均装设了避雷器,而采用SF6断路器的多数未装设避雷器。SF6断路器开断短路电流的能力强,通常装在母线侧,真空断路器开断能力低,一般装在中性点侧或装在具有限流能力的电抗器后,当然,限流电抗器的电抗值应计入回路的总电抗值中。 8)其他相关问题

①高抗中性点小电抗,产品型式绝大多数为油抗,但也有例外,个别的用了空心电抗器。小电抗的额定电流值,绝大多数采用30 A,但也有采用20 A的,其对应的额定短时最大电流为300 A和200 A。小电抗的阻抗抽头多数用5%,少数用10%。 ②35 kV并联电抗器回路的电流互感器设置有用两相的,也有用三相的,从继电保护的灵敏度看,两相式低于三相式,但两相式同样可以满足要求,减少了设备,节省了投资,特别是对油浸式铁心电抗器,用的是套管电流互感器,如三相都装电流互感器,制造困难。

③高抗中性点绝缘水平和中性点避雷器额定电压,以前采用180 kV或170 kV,现在已降到了110 kV甚至还可以降到72.5 kV,这对设备制造有好处,同时可以降低设备费用。

总之,并联电抗器的应用问题可以归结为两个方面:一是设备在运行中出现的各种故障和事故,应由生产制造部门研究解决;二是工程安装设计问题,应通过总结实践经验以及科研标准化工作来解决。 3 结束语

电压是电能质量的重要指标之一。电压关系到电网的安全与经济运行,对保证用户安全和产品质量以及电气设备的安全与使用寿命至关重要。无功补偿与无功平衡,是保证电压质量的基本条件。虽然感性无功补偿在总容量上不及容性补偿,但二者都对电压产生重要影响,所以,同等重要不可偏废。

中国的感性无功补偿正处在发展阶段,并联电抗器应用的科研标准化水平有待提高。在工程设计中,为了更好地贯彻国家的技术经济,做到安全可靠、技术先进,经济合理和运行检修方便,需要无功补偿专业人员总结实践经验,开展应用技术

研究和标准化工作,把感性无功补偿向前推进一步!

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务