叶莘1,韦
钢1,周利骏2,张永超1
(1.上海电力学院电气工程学院,上海200090;
2.上海合泽电力工程设计咨询有限公司,上海200090)
摘要:随着分布式电源渗透率的不断提高,配电网对供电能力评估变得更加困难。本文考虑到分布式电源出力的随机性,构建了配电网对供电能力的评估指标,利用两点估计方法的特点将研究对象的随机性转化为确定性并进行计算,然后利用重复潮流法计算出供电功率样本值,通过柯尼斯-费希尔级数计算供电功率概率分布函数并建立概率密度模型,提出了含分布式电源的配电网供电能力的概率评估方法。通过IEEE33节点算例与蒙特卡罗方法对比分析,该方法在可行性和快速性方面具有优势,可以有效评估含分布式电源配电网的供电能力。关键词:分布式电源;供电能力;两点估计法;重复潮流法;柯尼斯-费希尔级数中图分类号:TM715
文献标志码:A
文章编号:1003-30(2019)04-0099-07
DOI:10.3969/j.issn.1003-30.2019.04.014
ProbabilisticEvaluationonPowerSupplyCapabilityofDistributionSystemwith
DistributedGenerations
YEShen1,WEIGang1,ZHOULijun2,ZHANGYongchao1
(1.CollegeofElectricPowerEngineering,ShanghaiUniversityofElectricPower,Shanghai200090,China;
2.ShanghaiHezeElectricPowerEngineeringDesignConsultingCo.,Ltd.,Shanghai200090,China)
Abstract:Theincreasingpenetrationofdistributedgenerations(DGs)makestheevaluationonthepowersupplycapa⁃bilityofdistributionnetworkmorecomplicated.WiththeconsiderationofoutputuncertaintiesofDGs,theevaluationindexesforthepowersupplycapabilityofdistributionnetworkareproposed.Byusingthetwo-pointestimatemethod,therandomnessoftheresearchobjectcanbechangedintoadeterministicproblem,thentherepeatpowerflow(RPF)algorithmisusedtocalculatethesupplypowerofsamples.AccordingtoCornish-Fisherexpansion,theprobabilisticdis⁃tributionfunctionsofsupplypowerarecalculated,andamodelofprobabilitydensityisestablished.Afterwards,aprob⁃abilisticevaluationmethodforthepowersupplycapabilityofdistributionnetworkwithDGsisproposed.Basedonanu⁃mericalexampleofanIEEE33-bussystem,theproposedmethodiscomparedwithMonteCarlosimulation;theanaly⁃sisresultsshowthattheproposedmethodhasadvantagesinfeasibilityandrapidness,whichcaneffectivelyevaluatethepowersupplycapabilityofdistributionnetworkwithDGs.(RPF)algorithm;Cornish-Fisherexpansion
Keywords:distributedgeneration(DG);powersupplycapability;two-pointestimatemethod;repeatpowerflow
随着多元化电源加入配电网,使得配电网对供电能力评估的任务变得更加艰巨。如何合理地评价配电网的供电能力成为了一个亟待思考的课题[1]。
目前许多研究者已经在供电能力评估方面做出了大量的研究。文献[2]以变压器的配变容量来评估配电网的供电能力[2];文献[3]计及网络拓扑结文献[4]研究了实时供电能力计算方法。近年来出现了在可靠性准则和主变互联关系的约束下计算
收稿日期:2018-05-10;修回日期:2018-12-03
配电网最大供电能力的方法[5]。然而对分布式电源的影响并未作足够的讨论,使DG接入网后供电能力的评估方法不尽合理。
DG(distributedgeneration)接入配电网对供电能力
由于绝大多数研究者在对含DG的配电网供电能力进行相关研究时,很少针对DG输出的随机性代入计算,这样失去了普遍性原则,并且大部分学者在计算供电功率是假设在极端条件情况下进行
构对供电能力的影响,并建立了网络最大潮流法;进行研究。有些学者将DG的典型日连续出力曲线
基金项目:上海绿色能源并网工程技术研究中心资助项目(13DZ2251900)
·100·
电力系统及其自动化学报第4期
(即DG出力达到最大值或最小值时)。这样导致计算只能获取几个特殊点对应的离散供电功率,不能得到连续的供电功率状态,更不能取得随机变化的供电功率概率分布值。目前针对此类随机性与不确定性的问题归纳起来主要有以下3类:①蒙特卡罗法MCS(MonteCarlosimulation)可以对各种不确定模型进行合理地模拟,但是在模拟过程中需要大量抽样[6-7];②解析法利用繁琐的数学推导针对研究对象进行高效地解析;③近似法通过研究对象的概率分布并利用统计学方法计算其统计特性值[8]。
本文通过利用两点估计方法的特点将研究对象的随机性转化为确定性并进行计算,然后利用重复潮流RPF(repeatpowerflow)法计算出供电功率样本值,通过柯尼斯-费希尔(Cornish-Fisher)级数[9]计算供电功率概率分布函数并建立概率密度模型,利用相关指标通过算例对比分析验证所提方法的合理性与可行性。
1DG随机模型
定。本文将应用DG接入配电网,DG的概率模型对使得评估对象变得随机不确DG出力的随机性进行模拟,从而更加客观地评估含DG配电网的供电能力。
1.1风电随机输出模型
目前风速概率分布模型基本采用双参数的威布尔分布[10-11],其概率密度函数fWfW(v)=KC(Cv)K-1expé(v)为
êævöKùë-èCøúû
(1)式中:v为风速;K为形状参数,K=(σ/vˉ)
-1.086
;C为尺度参数,C=vˉéêæëΓè
1+K1öùøúû,vˉ为平均风速,σ为标准差,
Γ为Gamma函数。本文以一般的恒频变速风力发电机为例,其功率输出PW与风速v的关系模型可近似表示为ìPïW(v)=ï0
íav+aï2vv≤vciïP1ciWNvî0N≤v≤vN
(2)常数vco≤式中:a,≤vav≤vco
1、a2为1v=PWN/(vN-vci),a2=PWN定风速;
ci/(vci-vvN);PWN、vN分别为风机的额定功率与额
当vco、vci分别为风机的切出风速与切入风速。函数表示为
ci≤v≤vN时,风力发电机输出功率的概率K-1
f(PW)=æP-aö
expéæPK
aK1CçWèaC2êê-çW1÷ø
a-a2öù1C÷úëèøú(3)
û
当风机的功率因素为cosφ时,其无功功率QW
可表示为
QW1-cos2φW=P=PWtanφ(4)
1.2光伏发电随机输出模型
cosφ光伏电池输出功率的关键在于太阳辐射强度,光电转化效率以及太阳电池板的覆盖面积。光伏的有功功率输出rηA
PS可表示为
PS式中:
r=为太阳的辐射强度;η为全局的光电转化(5)
效率;
A为光伏电池覆盖总体面积。一般阳光辐射强度r在特定时间段内大致符合Beta分布[12],其概率密度函数fα
S(rβ)-可以表示为ærö1
fS(r)=Γ(Γ(αα)Γ(+ββ))æçrö
èrmax÷ø
çè
1-rmax÷ø(6)式中:r的形状参数。
max为最大辐射强度;
α、β分别是Beta分布将光伏发电输出功率函数以及阳光辐射强度概率函数合并可得光伏发电的输出功率概率函数为
fS(r)=Γ(Γ(αα)Γ(+ββ))æçPα
β-1
SöæPSèPmax÷øçè
1-öPmax÷ø(7)式中,Prmax为光伏发电机输出的最大功率,Pmax=
maxηA。
2供电能力评估指标
供电能力是配电网对负荷承受能力的一种体
现,在概率评估方法的体系下,本文提出了评价供
电能力的指标。1)最大供电功率STsp
talsupply配电网供电功率定义为最大供电功率power),用STSP(to⁃TSP表示。通过计算确定配电网DGTSP随机出力状态下对应的可信系数记为TSP可表示为TSP出现对应的概率。
BTSP,该指标表示在∑nb
nSb
TSP=S0i+∑λSN,i(8)i=1i=1式中:STSP为评估对象所能承受的最大负荷,即配
电网所能提供的TSP;n为配电网节点数;S为节
点i当前负荷供应量;
λb为节点负荷增长的倍数;0i
SN,i为节点负荷增长基准值。
指标STSP反映了约束条件下,任意支路不出现
越限的最大负荷限度。
2E)TSP期望ETSP
TSP表示在DG随机出力的情况下,TSP期望可
第31卷叶莘等:含分布式电源配电网供电能力的概率评估
·101·
表示为
ETSP=∑N
Sii=1TSPBi
TSPN(9)式中:N为蒙特卡罗随机抽样次数;SiTSP为第i次抽样所对应的最大供电功率;Bi
TSP为第i次抽样对
应的可信值。指标ETSP反映了配电网供电功率在DG随机出力情况下对负荷平均承受的裕度。3TSP)TSP偏离度偏离度DDZ
间的偏差程度,DZ表示样本对应的STSP与ETSP之
DZ=∑Z可表示为Ni=1(SiTSP-ETSP)2N(10)
指标D样计算所得Z反映了本次抽样对应的TSP对于总体抽TSP均值的偏离度。该指标反映了配电网供电功率在DG随机出力的情况下的离散程度。综上,TSP能反映配电网的负载容量。TSP期望和TSP偏离分别反映DG随机出力情况下配电网负载容量的期望与离散程度。3供电能力评估方法
本文针对DG的随机性,供电功率的计算以及
概率密度函数的问题分别应用了两点估计法,RPF法以及Cornish-Fisher展开进行解决。3.1
两点估计法的应用
针对研究对象的随机性,本文提出利用两点估计法[13]将随机性转化为确定性计算。
本文针对含有k个DG的系统,对每个DG分别构造2个样本点,根据数学统计学,所有DG样本点组成的离散分布的前3阶矩与待求DG的3阶矩相等,通过求取待求DG的前3阶矩,得以计算出其概率分布函数。
构造每个DG对应的两个样本点,每个分量的取值为
ìíxk,1îx==μμk+ξk,1σk(11)
k,2
k+ξk,2σ
k式中:k=1,2,3,…,n;
σk、μk分别为xk的标准差与一阶原点矩;xk,1、xk,2是第k个DG(xk)的两个样本点;ξk,1、ξk,2为样本点xk,1、
xk,2的位置参数。每个样本点对应的权重参数ωk,i与位置参数ξl
k,i
分别满足下列方程:
ìn
ïïk,i
íï∑ωk,iξl=λk,ll=1,2,3k=1n(12)ïî∑ωk,ik=1=1ni=1,2式中,λk,l为l阶中心矩Ml(xk)与σk的l次方的比
值,即
λMk,l=l(xkσl)l=1,2,3…(13)
k
式中:λ1,l量概率分布对于正态分布的偏差;
=0;λ2,l=1;λ3,l为xk的偏度,对应研究变
λ4,l为xk的峰度,对应研究变量概率分布在均值附近的斜率大小。
通过两点估计法,每个DG随机出力问题都可通过式(11)的两个样本点及其对应的位置参数与权重系数得以解决。3.2TSP计算
本文在计算TSP时采用RPF法[15-16],由于该方法能全面考虑各种约束条件且计算量小。原理为同时均匀增加系统的负荷,并重复进行潮流计算,
直到有约束条件出现越限则停止增加负荷。RPF法的核心是不断逼近约束条件下的最大值。本文选定的目标函数为最大供电功率S式(8)所示。
TSP,如
约束条件包括:
nPbD,i-PL,i-Vi∑Vjj=1(Gijcosδij+Bijsinδij)=0(14)nQb
D,i-QL,i-Vi∑Vjj=1
(Gijsinδij-Bijcosδij)=0(15)
Vi_min≤V(16)Vi≤Vi_maxVj_min≤j≤Vj_max(17)Sij≤Sij_max(18)Si≤Si_max
(19)
式中:
i和j分别表示第i和第j个节点;QD,i和PD,i分别为接在第i个节点的DG输出的无功功率与有功功率;
QL,i和PL,i分别为节点i的无功负荷与有功负荷;
Gij为网络支路电导矩阵元素;Bij为网络支路电纳矩阵元素;δij为网络支路电压相角差;
Vi和Vj分别为节点i和j的电压值;Vi_min和Vi_max分别为节点i的电压下限值和上限值;Sij和Sij_max分别为线路ij输送的电量和该线路允许通过的输送极限值;
Si和Si_max分别为第i个节点处变压器支路输出的电量和容许输出极限值。
计算流程具体如下。
·102·电力系统及其自动化学报第4期
步骤1在给定负荷节点的初始值S估计法取出2n个样本数据,确定DG出力概率分布。
0i,根据两点
步骤2确定负荷增长值SN,i以及负荷增长速度(即步长)λ步骤3
以0,同时给定收敛精度ε。
S=S0i+λ0SN,i作为每个节点的新的
负荷值重新开始潮流计算,判断约束条件越限。若没有越界,则重复步骤3;若越界,则进行步骤4。
步骤4以S=S0i步骤5
-λ0SN,i为下次计算负荷量。
判断λ0是否小于ε,若λ0小于ε,则进行步骤7);若λ0大于ε,则进行步骤6。
步骤6
减小步长λ为λ0,使负荷的增长量λt变
t=λ0/2。令S=S+λtSN,i作为新的负荷值重新潮流计算,判断是否出现约束条件不满足(潮流越界)的情况。若没有越界,则返回步骤5;若越界,则先令S=S-λtSN,i,再返回步骤5继续运算。
步骤7此时输出2n个DG样本值对应的供电
功率,并根据式(13)得出供电功率的统计特征值。
3.3
概率密度的计算
由于Cornish-Fisher级数是一种可以合理表达非正态分布函数的级数展开形式[17]
nish-Fisher展开公式,其同时运用了半不变量原理,本文应用Cor⁃及标准正态分布公式。
在确定供电功率统计量的各阶原点矩时,根据
半不变量理论,即随机变量y的t阶原点矩μ(yt其t阶半不变量γ具有以下关系:
)与ìïγí1=μ(y)ïî
γt+1
=μ(yt+1)-∑t
t-!j)!μ(yj)γ(20)t-j+1j=1j!(t式中:γt+1为t+1阶半不变量,t=1,2,⋯;利用Cor⁃nishy(ϕ)
-[18]
Fisher,设ϕ展为供电功率开公式求取y分位数,随机变近似表示为
量的概率密度y(ϕ)=ξ(ϕ)+ξ2(ϕ)-1γ2ξ33(ϕ)-5ξ(ϕ)+ξ3(ϕ)-3ξ(ϕ)γγ263+ξ4(ϕ)-6ξ2(ϕ24)+34-(21)γ4式中,ξ(ϕ36)=Φ-1概率分布函数。
(ϕ),Φ为标准正态分布120+N(⋯
0,1)的根据y(ϕ)=F-1的概率分布F(ϕ),最终通过求导得到供电功率(ϕ)的关系,可以求得供电功率y的y
概率密度函数。3.4
供电能力的评估流程
供电能力是配电网对负荷供应能力的一种体现,利用概率评估方法对供电能力进行评估,评估
流程如图1所示。
开始统计n个随机变量的统计特征值计算2n个样本点的位置参数与权重系数i=1利用牛顿拉弗逊法进行潮流计算按指定模式增长负荷基于变化后的负荷进行潮流计算减小增长幅度否判断是否小于精度?是得到第i个样本的供电功率样本值i=i+1i>2n?否是计算供电功率的各阶原点矩利用Cornish-Fisher级数求出供电功率的概率密度函数结束图1
供电能力概率评估流程
Fig.1
Flowchartofprobabilisticevaluationonpower
supplycapability
首先,通过不同DG的输出功率概率密度函数,分别计算各阶中心矩。然后,
针对不同DG,采用两点估计法分别计算其对应样本点的位置参数和权重系数。根据两点估计法计算样本对应的值,RPF通过
阶中心矩。最后,法计算出配电网供电功率对应样本值以及各通过供电功率对应样本值以及各阶中心矩利用Cornish-Fisher级数求供电功率分布并建立概率密度函数模型。
4算例
算例采用IEEE33节点配电网进行分析,网络结构如图2所示,其电压等级为12.66kV,基准负荷为(3715+2300j)kV·A,详细参数可参考文献[19]。将光伏发电系统接在节点22,将风力发电机1、2、3分别接在节点18、25、29。分布式发电设备相关参数如表1~表4所示。
第31卷
叶莘等:含分布式电源配电网供电能力的概率评估
·103·
223DG242
253
262728291DG230313233
S
1234567
8
9
1011121314151
DG1718
2
1920DG211
22
图2
33节点配电网结构
Fig.2
Structureof33-busdistributionnetwork
表1
风机的相关参数
Tab.1
Relatedparametersofwindturbine
额定容量MW/
切入风速-1/额定风速/(m·s)
(m·s-1)K
C/(
m·s-1)0.700.603.04.014.01.40.704.015.01.87.015.01.87.06.0表2
光伏发电的相关参数
Tab.2
Relatedparametersofsolarpowergeneration
覆盖总面积m2
/
光电转化效率/
最大辐射度%
-2/(W·m)
α
β
1000148002.21.6表3
DG输出功率的统计特征值
Tab.3
StatisticalcharacteristicvaluesofDGoutputpower
风电DG期望方差偏度峰度1风电20.2660.025风电30.23470.01900.7433.573光伏
0.22840.0680.017630.45270.00060.50283.1211-0.24166
3.22182.19263表4
样本点的权重系数及位置参数
Tab.4
Weightingcoefficientsandlocationparametersofsamplepoints
样本点1位置参数
权重系数
2(0.4940,0.2344,0.2286,0.08)0.0813(0.1569,0.2344,0.2286,0.08)0.16844(0.2667,0.47,0.2286,0.08)0.06765(0.2667,0.1491,0.2286,0.08)6(0.2667,0.2344,0.4552,0.08)0.18267(0.2667,0.2344,0.1522,0.08)0.06348(0.2667,0.2344,0.2286,0.0872)0.1870(0.2667,0.2344,0.2286,0.03)
0.14000.11000首先通过DG模型计算得到不同DG出力的统计特征值,分别分析全局负荷均匀增长模式和某一区域负荷均匀增长模式下评估配电的供电能力。采用本文方法、蒙特卡罗法(n=103)以及文献[20]中的方法进行对比分析,全局增长模式下配电网供电
功率如表5所示,其供电功率的概率密度函数模型如图3所示。
表5
全局增长模式下配电网供电能力指标Tab.5Indexesforpowersupplycapabilityof
distributionnetworkinglobalgrowthmode
方法E7.220TSPDZ本文文献MCS[20]3.08130.1067.247130.00290.169872.5
MCS度2.0Cornish-Fisher
密率1.5概1.00.506.66.87.0供电功率7.27.4/MW
7.67.88.0图3全局增长模式下供电功率的概率密度函数Fig.3
Probabilitydensityfunctionofsupplypoweringlobalgrowthmode
计算结果表明,本文方法针对DG出力不确定情况能有效地计算配电网供电功率的概率分布函数与建立概率密度模型。
从表5可以看出,以蒙特卡罗法的计算结果视为基准,本文方法在计算供电功率均值时准确性较高,其相对误差为0.37%,标准差绝对误差为0.06。本文提出方法结果精度高,3电能力的概率密度函数,可知,Cornish-Fisher级数可以求出整个配电网供且偏离程度较小。通过图相对于蒙特卡罗法所求得的模型,由于本文方法开始时就对DG出力随机性进行约束,因此供电功率的概率分布较为集中。
26~33本算例分析了区域1(节点1~18)区域2(节点法可以精确地求得配电网局域的负荷供电功率。)的供电能力,从实验结果表明,采用本文方通过表6和表7数据分析可得,区域1供电功率标准差的绝对值不超过0.0025,均值的相对误差不大于0.0020.62区域26%供电功率的概率密度函数曲线如图,均值的相对误差不超过;区域2供电功率标准差绝对值不超过0.61%。区域4和图1和5所示。通过Cornish-Fisher级数展开得到的供电功率概率分布精度较高。
表6区域1在负荷局部增长模式下供电能力指标Tab.6IndexesforpowersupplycapabilityofArea1in
localgrowthmodeofload
方法ETSP本文文献3.08000.003DZMCS[20]3.0813.081190.00200.00584·104·
电力系统及其自动化学报第4期
表7
区域2在负荷局域增长模式下供电能力指标Tab.7IndexesforpowersupplycapabilityofArea2in
localgrowthmodeofload
方法E本文文献3.528TSP0.001DZMCS[20]3.51273.550340.00280.0045460度50密40MCS率概30Cornish-Fisher20103.0550
3.0603.0653.070供电功率3.0753.080/MW
3.0853.0903.0953.100图4区域1局域增长模式下供电功率的概率密度函数Fig.4Probabilitydensityfunctionofsupplypowerfor
Area1inlocalgrowthmode
8
度7
密6MCS率5Cornish-Fisher概43210
3.303.353.403.45供电功率3.503.55/3.60MW
3.653.703.753.80图5
区域2局域增长模式下供电功率的概率密度函数Fig.5Probabilitydensityfunctionofsupplypowerfor
Area2inlocalgrowthmode
通过表8和表9比较可以看出本文方法与蒙特卡罗法求取的速度,采用蒙特卡罗法(n=103)求取全局供电功率的时间大约是本文方法的234倍,求取区域节点供电功率的时间大约是本文方法的205倍。
表8全局负荷增长模式下计算时间比较
Tab.8Comparisonofcomputingtimeinglobalgrowth
modeofload
方法
时间本文文献[20]300.121.28/sMSC298.97表9
区域增长模式下计算时间比较
Tab.9
Comparisonofcomputingtimeinlocalgrowth
mode
方法时间/s本文文献MSC[20]295.1301.436293.820具体分析如下:
(1)从两种增长模式上来看,根据蒙特卡罗方法求取ETSP相比于本文方法的结果偏小。这是由
于蒙特卡罗法在求取ETSP时,DG出力完全是随机
取值的,而事实上风电概率密度函数对应的风电期望值较小,因此造成了其作为一种随机值导致E偏离;
TSP(2)从3组数据对比结果可以看出,蒙特卡罗法求解出的D散度更大。由于本文方法在计算时,Z更大,说明处于该理论下的数据离对随机变量利用概率密度以及点估计方法降低了“随机性”的影响。从而使得计算所得值偏离程度低,而蒙特卡罗法并未对偶然性进行约束,导致DZ偏大。
5结语
本文通过DG输出功率的概率模型,运用点估计法确定样本值,利用RPF法计算概率潮流,利用半不变量理论与Cornish-Fisher级数展开得到供电功率概率密度函数,构造供电能力相关评价指标,对配电网供电能力进行评估。其中,两点估计法针对n个随机DG的网络,只需进行2n次的计算,对评估速度大大提升。采用Cornish-Fisher级数展开可较准确地求出研究对象概率密度函数。通过对比配电网全局供电功率与局域供电功率不同算例的结果表明,本文方法能够有效精确地评价含DG的配电网供电能力,为供电能力评估工作提供了依据。
参考文献:
[1]
肖Yue峻思路).,李振生,张跃(XiaoJun,LiZhensheng,Zhangtribution(基于最大供电能力的智能配电网规划与运行新Anovel力系统自动化networksplanningbasedandontotaloperationsupplymodecapabilityforsmart)[J].dis⁃[2]
2012韩俊,,36(13):(8-Automation14,ofElectricPowerSystems)电,yun构优化建模,et刘洪,al).面向供电能力提升的主变压器站间联络结葛少云,31.等(HanJun,LiuHong,GeShao-ofpowermain(Optimizationmodelingforcontactstructuresupplytransformerscapabilitybetween)[J].substationswithimproved[3]
肖俊,tionofElectricPowerSystems电力系统自动化),2013,37(7):42(-Automa⁃47.Xiaodan谷文卓,,etal).郭晓丹,配电系统供电能力模型等(XiaoJun,Gu(AWenzhuosupply,Guo(bilityAutomationmodelforofdistributionElectricPowersystemsSystems)[J].)电力系统自动化capa⁃,2011,35([4]
李振坤,47-52.24):ying分,Liu陈星莺,Haoming刘皓明,等(LiZhenkun,ChenXing-capability析(Online,etal).配电网供电能力的实时评估)[J].assessment电力系统自动化ofdistribution(Automationnetworkloading[5]
王成山,PowerSystemszhang,Xiao罗凤章,),2009Jun,et肖峻,,33(6):36-39,62.ofElectrical).基于主变互联关系的配电系统
等(WangChengshan,LuoFeng⁃第31卷叶莘等:含分布式电源配电网供电能力的概率评估
·105·
供电能力计算方法ply(Anevaluationmethodterconnectionscapabilityof报ofdistributionsystembasedonforanalyzingpowersup⁃
in⁃[6]
马(Jingchao建Proceedings伟,孙芊,ofmain张the景CSEEtransformers超()Ma,2009)Jianwei,[J].29(中国电机工程学,Sun13):Qian86-91.,Zhang式可再生能源配电网调度策略etal).计及预测可信度时段差异性的含分布distrbutionconsideringnetworkwithdistrbuted(Dispatchingstrategyfor电力系统及其自动化学报forecastingcredibility(Proceedingsintervalrenewableofdifferenceenergiesthe)[J].[7]
丁明,SA),2018,30(5).CSU-EP⁃(gbin).李生虎,吴红斌(DingMing,LiShenghu,WuHon⁃bilityIntegrated电力系统概率充分性和概率稳定性的综合评估)[J].中evaluationofpowersystemadequacyandsta⁃[8]
王敏,CSEE)静态电压稳定概率评估丁明,2003国电机工程学报(Proceedingsofthe(,Wing23(3)Min:20,Ding-25.Ming).考虑分布式电源的ictionvoltage(Probabilisticevaluationofstat⁃)[J].中国电机工程学报stabilitytakingaccount(Proceedingsofdistributedofthegenera⁃[9]
王敏,2010,30(25):17-22.CSEE),系统的极限传输容量概率计算丁明(WangMin,DingMing)tion(.Probabilistic含大型太阳能发电calcula⁃park[10]
Systems)of[J].totaltransfercapabilityincludinglarge-scalesolar姚国平,),电力系统自动化2010,34(7(AutomationofElectricPowerWang余岳峰,王志征():31-35.YaoGuoping,YuYuefeng,发电量计算Zhizhengtion(Wind).如东沿海地区风速数据分析及风力dataanalysisandwindpowergenera⁃[11]
周建华,tomationcalculation系统的袁越Equipment)[J].(Zhou)电力自动化设备Jianhua,2004,24,Yuan(4):Yue12(-Electric14.PowerAu⁃).含风电场电力loadCornish-Fisher级数概率潮流计算(Probabilistic(forElectricpowerflowcalculationPowersystemAutomationwithbasedwindonfarmCornish-FisherexpansionEquipment)[J].电),力2011自动,31化(设12)备:[12]
Karaki68-71.
manceSversionassessmentH,Chedidsystems[J].ofRB,RamadanR.Probabilisticperfor⁃IEEEautonomousTransonsolarEnergy-windConversionenergycon⁃,[13]
周玮,1999,14bo定概率评估,et姜汀,(3):al).基于两点估计法的交直流混合系统电压稳胡姝博,766-772.等(ZhouWei,JiangTing,HuShu⁃ofod)AC/DC[J].电力系统保护与控制hybrid(Probabilisticsystemsbasedassessmentononvoltagestability(Powertwo-pointSystemestimateProtection
meth⁃[14]丁平,andControlJianfeng周孝信,),2015严剑峰,,43(5等)(:8Ding-13.
Ping,ZhouXiaoxin,线传输极限计算,etal).考虑合理安全原则的大型互联电网在Yan
pability(Calculationofonlineandsecurityinbulktotaltransferca⁃principleinterconnectedgridintegratingrationality[15]HillingsofGoftheW,CSEE),2010)[J].,30中国电机工程学报(22):1-6.(Proceed⁃[16]ticsCornish国,1968,-Davis39FisherA(4):type[J].W.Generalized12-AnnalsofasymptoticMathematicalexpansions
Statis⁃Yuncheng宗,韦率动态优化,钢et,al郭)运城1273.,等(GuoZong,WeiGang,Guo
erty)in[J].distribution(Dynamic.面向供电能力提升的配电网储能功optimizationofenergystoragepow⁃电力系统保护与控制networkbased(onPowerpowerSystemsupplycapaci⁃[17]UsaolaandControl),2015,43(19):1ProtectioncertaintyJ.Probabilisticloadflow-8.
withwindproductionun⁃
[J].[18]SystemsInternationalusingcumulants马瑞,,2009,31(Journal9):474ofand-481.ElectricalCornish-FisherPower&expansionEnergyal).考虑风电随机模糊不确定性的电力系统多目标优康仁,姜飞,等(MaRui,KangRen,JiangFei,et
化power调度计划研powersystemconsidering究(Multi-objectivethestochasticdispatchplanningof[19]Outionand)[J].Control电力系统保护与控制),2013,41(1):150(-Powerand156.SystemfuzzyProtec⁃windandYmargins[J].,SinghC.Assessmentofavailabletransfercapability
[20](张嘉堃,2):463-468.IEEETransonPowerSystems,2002,17Lan韦钢,朱兰,等(ZhangJiakun,WeiGang能力评估,etal),Zhu
bilitygeneratorsevaluation(.Blind基于盲数模型的含分布式电源配电网供电-ofnumberdistributionmodelbasednetworkspowerwithsupplydistributedcapa⁃———Power——Systems)[J].———)电力系统自动化,2016,40(8):(-70.AutomationofElectric作者简介:叶莘(1991—),男,硕士研究生,研究方向为配电网规划。Email:daybreakegale@163.com
韦
钢(1958—),男,通信作者,硕士,教授,研究方向为电力系统运行分析与计算、新能源与电力系统规划等。Email:wg5815@sohu.周利骏(1972—com
),男,本科,工程师,研究方向为电力系统规划,新能源技术等。Email:shhzdl@126.com
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务