A(MNLTEXstylefilev1.4)
Ontheeffectofcoronaloutflowonspectraformationin
galacticblackholesystems
˙A.Janiuk,B.Czerny,P.T.Zycki
NicolausCopernicusAstronomicalCenter,Bartycka18,00-716Warsaw,Poland
arXiv:astro-ph/0007070v1 6 Jul 20001February2008
ABSTRACT
Wepresenttheresultsofbothanalyticalandnumericalcalculationsoftheamplitude
ofthereflectioncomponentinX-rayspectraofgalacticblackholesystems.WetakeintoaccounttheanisotropyofComptonscatteringandthesystematicrelativisticbulkmotionofthehotplasma.InthecaseofsinglescatteringapproximationthereflectionfromthediscsurfaceissignificantlyenhancedduetotheanisotropyofComptonscattering.OntheotherhandthecalculationsofmultiplescatteringobtainedusingtheMonteCarlomethodshowthattheanisotropyeffectismuchweakerinthatcase.Therefore,theenhancedbackscatteredfluxmayaffecttheobservedspectraonlyifthediscsurfaceishighlyionized,whichreducestheabsorptionintheenergybandcorrespondingtothefirstComptonscattering.
Keywords:accretion,accretiondiscs–blackholephysics–galaxies:active–X-rays:galaxies–X-rays:stars
1INTRODUCTION
HardX-rayspectraofthegalacticblackholesystemsarewelldescribedbyapowerlawprimaryemissionalongwiththepronouncedreflectedcomponent,whichcausestheob-servedflatteningofthespectrum.TheprimaryemissionislikelytobeproducedbyComptonupscatteringofsoftpho-tonsonthermalelectronsinhot,opticallythinmediumclosetoarelativelycoldaccretiondisc,beingthesourceofseedphotonsforComptonization(seee.g.reviewinPoutanen1998).Afractionoftheupscatteredphotonsisdirectedto-wardsthediskandcanbereflectedfromitssurface,giv-ingtherisetoreflectedcontinuumandfluorescentironlineemission(Lightman&White1988;George&Fabian1991).ObservationaldataforCygX-1andotherblackholesystemsintheirhard/lowstateshowoftenratherhardspec-tra(photonspectralindexΓ∼1.5−1.9;Poutanenetal.1997;Gierli´nskietal.1997;Doveetal.1997;seealsoPouta-nen1998),whiletheamplitudeofreflectionRcoversthebroadrangeofvaluesbetween0and2.Moreover,RandΓarecorrelated(Zdziarski,Lubi´nski&Smith1999;Revnivt-sev,Gilfanov&Churazov1999),inthesensethattheharderthespectrum,thesmallertheamplitudeofreflection.Thecorrelationexistsbothwithinthelow/hardstateandwhen
˙sourceschangetheirspectralstate(Zycki,Done&Smith
1998).
Theseobservationscannotbeexplainedbythemodelinwhichstatic,continuouscoronacoversthecoldaccretiondisc,asitpredictsthepowerlawslopeΓ2(i.e.rathersoft
c0000RAS
spectra)andthereflectionamplitudeR∼1.0.Amongthe
possiblemodels,whichcouldreproducethereflectionam-plitudeintherangeR=0−1therearetwocompetitive:(i)colddiscdisruptedintheinnerpart(e.g.Poutanen,Krolik&Ryde1997;Esin,McClintock&Narayan1997)and(ii)ahighlyionized,non-disrupteddisc(Nayakshin,Kazanas&Kallman2000;Ross,Fabian&Young1999).Detailedshapeofthereflectedcontinuumdependsonthegeometry,ion-izationstateandabundancesofelementsinthescatteringmedium.However,spectralfittingdoesnotalwaysallowtoconstraintheseparametersindependently.ItispossibletoexplaintheobservedspectraofGBHintermsofweaklyion-ized,orneutralreflectionfromthediscwhichinnerradius
˙isoftheorderof50Rg(e.g.Done&Zycki1999forthehard
stateofCygX-1),aswellaswithhighlyionizedreflectionfromthediscextendingtothemarginallystableorbit(assuggestedbyRossetal.1999forthehardstateofCygX-1;seealsoDone&Nayakshin2000).
Thethirdpossiblemodel,inwhichboththereflectionamplitudesR>1andR<1arepossible,isamildlyrel-ativisticoutflow/inflowinthecorona(Beloborodov1999).RelativisticaberrationreducesthehardX-rayfluxscatteredtowardsthedisc,whichleadstoreductionofthereflectedcomponentandthesoftfluxfromreprocessingenteringthecorona.Inordertoobtainquantitativeagreementwithob-servedspectralindicesandreflectionamplitudes,themodelrequiresadditionalreductionofthesoftfluxinterceptedbythehotplasma.Thisleadstothe’activeregions’geome-try(e.g.magneticflaresabovethedisc;Haardt,Maraschi&
2
A.Janiuk,B.Czerny,P.T.Zycki
˙Ghisellini1994)ratherthanacontinuouscorona.However,thecoronaloutflowmayreproducethereflectionamplitudeR<1andinordertoobtainR>1aninflowoftheplasmamustbepostulated.
Inthisarticlewereanalyzethenon-staticcoronamodel,withplasmamovingatrelativisticspeedinthedirectionper-pendiculartothediscsurface.Westudythedependenceoftheamplitudeofthereflectioncomponentonthebulkmo-tionvelocity,takingintoaccountthethermalmotionofelec-tronswithintheplasmadeterminedbytheelectrontemper-atureTeandwediscusstheresultingshapeofthespectra.Wealsocheckifhighreflectionamplitudes(R>1)mightbeexplainedintheframeoftheoutflowmodelbuttak-ingintoaccountpossiblehighionizationofthediscsurfaceandtheanisotropyofComptonscattering.WeemphasizetheimportanceofthefirstComptonscattering,whichplayscrucialroleatlowerenergies.Forhighlyionizeddiscsurfacetheeffectofabsorptionbyheavyelementsisreducedandthereflectedspectrummakesasubstantialcontributiontothetotalspectruminthe∼0.5−5keVband.Thereforewepresentfirstlythesemi-analyticalcalculationsintheap-proximationofsinglescattering,andafterthatweperformnumericalsimulationsofmultiplescattering,whichisre-sponsibleforthepowerlawshapeofthehardX-raytail.
Thecontentsofthepaperisasfollowing.InSection2weanalyzesemi-analyticallytheamplitudeofthereflectioninasinglescatteringapproximation(afterGhisellinietal.1991)buttakingintoaccountanisotropyofscatteringwithintherestframeoftheelectron,describingthethermalmotionwithouttheassumptionofhighlyrelativisticbeamingandincorporatingthesystematicbulkmotion(outflow)ofthecorona.Sincetheeffectofmultiplescatteringisessentialinarealsituation,inSection3werepeatthecomputationsforacoronaofagivenopticaldepthandanelectrontemperatureusingaMonteCarlomethodforbothoutwardsandinwardsdirectionsofbulkvelocity.ThedependenceofthereflectionamplitudeontheoutflowvelocityispresentedinSection3.1.ThespectraresultingfromMonteCarlocomputationsarepresentedinSection3.2.ThediscussionoftheresultsisgiveninSection4.
2
SINGLESCATTERINGAPPROXIMATIONFORTHEAMPLITUDEOFREFLECTION
Inthissectionwegeneralizethedeterminationoftheampli-tudeofthereflectioncomponentderivedbyGhisellinietal.(1991)foraslabgeometryofahotcoronaandanisotropicsoftphotoninputfromunderlyingdisc.Thoseresultswereobtainedassumingisotropicelectronscatteringintherestframeofanelectronandrelativisticchaoticmotionofelec-trons.WeintroducesubsequentlytheanisotropyoftheThomsoncross-section(Section2.1),werelaxtheassump-tionthatthethermalmotionoftheplasmaisrelativistic(Section2.2),andfinallyweintroducethesystematicbulkmotionofthecorona(Section2.3).
Weshow,thatincludingtheeffectofanisotropicsoftphotondistributioninComptonscatteringprocessthere-flectionamplitudeR2canbeobtained.It’svalueissomewhatlargerwhentheangulardependenceofThom-soncross-sectionistakenintoaccount.Ontheotherhandforlowelectronvelocities(γ<2)theangulardistributionof
scatteredradiationbecomesimportantandthevalueofRis
reduced.Addingthesystematiccoronaloutflowreducestheanisotropyeffectonlyintherangeofhighbulkvelocities.Howeveralltheseresultsstandmostlyforthefirstscatter-ing,whileforthemultiplescatteringinthecloudofopticaldepthτ∼1thereflectionisweaker(seeSection3).
2.1
TheeffectofangulardependenceoftheThomsoncross-section
InthissectionwecalculatethepowerofComptonradia-tionscatteredbyelectronswithisotropicrelativisticveloc-ityfieldv=βc,β∼1.Thisapproachisappropriateforanon-thermalplasma.Theradiationfieldisanisotropicandincomingphotonssubtendarestrictedsolidangle.Weas-sumethegeometryisthesameasinGhisellinietal.(1991).However,inourcalculationswetakeintoaccounttheangu-lardependenceofThomsoncross-section(Rybicki&Light-man,1979).Thereforetheemittedpowerisgivenby
3
2π−φmin
P(α,γ)=
(1+β2/3)
dφ
φmin
θmax
(1−βcosθ)2(1+cos2θ)sinθdθ
(1)
θmin
HerePisoisthepowerofisotropicemissionandP(α)isthepowerofradiationscatteredbyelectronoftheangleαbetweenitsvelocityandtheaxisofsymmetryofincomingphotons.Thelimitsθmin,θmaxandφminarefunctionsofαandaregivenbyequations(seeGhisellinietal.,1991):θmin=max(0,α−π/2)θmax=min(α+π/2,π)
(2)
for0<θ<π/2−αφmin=
0
or3π/2−α<0<πarccos[(tanθtanα)−1]otherwise
HerewefollowtheassumptionofGhiselliniet.al(1991),thatallphotonsareemittedinthedirectionofelectron’svelocity.Thisisjustifiedinthecaseofγ≫1,whenthedirectionofthemotionofanelectron(i.etheangleα)canbeidentifiedwiththeviewingangle.InFigure1weplottheratioofthetotalpoweremittedbyelectronsmovingdownwardstothatofelectronsmovingupwards:R(γ)=
π
π/2
P(α)sin(α)dα
Ontheeffectofcoronaloutflowonspectraformationingalacticblackholesystems3
Figure1.Theratioofthetotalpoweremittedbyelectronsmov-ingdownwardstothatofmovingupwardsasafunctionofelec-tron’sLorentzfactorγ.
Figure2.Theratioofthetotalpoweremittedbyelectronsmov-ingdownwardstothatofelectronmovinginoneparticulardirec-tion,asafunctionofelectrontemperaturekT[keV],foranincli-nationangleα=30◦,undertheassumptionofefficientbeaming
(dashedline),andforthesameinclinationangle(i=30◦)butav-eragedoverthewholerangeofelectron’svelocitydirection(solidline).
π
R(α,kT)=
π/2
P(α)sin(α)dα
c0000RAS,MNRAS000,000–0002γ4(1+βcosΘout)3
(5)
whereΘout=πmeansscatteringinthedirectionofelec-tron’smovement.Theaccretiondiscreceivesafractionofscatteredradiationthatdependsonthedirectionandveloc-ityofelectron
Pdisc(
α,γ)=
Θmaxout
φminout
P(α,γ,Θout)sinΘoutdΘoutdφout(6)
Θminout
2π−φminout
whereΘmaxout,Θminoutandφmin
outaregivenbyequations(2).
Theviewingangleiinthiscasecannotbeidentifiedwiththedirectionofelectronmotiongivenbyα.Instead,wehavearelation
cosΘout=−(sinisinϕsinα+cosicosα).(7)
Hereαandϕdeterminetheelectron’svelocityvectordirec-tion:
v=v(cosϕsinα,sinϕsinα,cosα)
(8)
InFigure3weshowtheassumedgeometryscheme.Note,thattheangleΘoutismeasuredfromthevector−vtothedirectionofemittedphoton,andthereforewekeepthein-tegrationlimitsgivenbyequations(2)unchanged(seealsoFig.1andFig.2inGhisellinietal.1991).
Wecalculatethereflectionamplitudeaveragedoverthewholerangeofαandϕasafunctionofelectronvelocityandviewingangle,accordingtotheformulaR(γ,i)=
1
InFigure4weπplot2π
0
0
P(α,γ,Θout(α,ϕ,i))sinαdαdϕ
.(9)
thereflectionamplitudeasafunctionofγforthreedifferentvaluesofviewingangle.Theplotforaninclinationi=60oroughlycorrespondstothevalueaver-agedoverallinclinations,aspresentedinFigure1fornon-thermalplasma.Weseethattheanisotropyisonlyslightlyreducedifthetotalcollimationassumptionisrelaxed.ThiseffectismostlyseeninFigure2wherewepresentwiththesolidcurvelowvelocity(moderatetemperature)tailofthedistribution.2.3
Mildlyrelativisticbulkmotion
Inthissectionweassumethatbulkvelocityvectorisperpen-diculartothediscsurfaceanddirectedoutwards.Wecalcu-latethenetelectronvelocityasasumofthermalchaoticmo-tionandsystematic(bulk)outflow.Theanglebetweenthenetvelocityvectorandverticalaxis,α′,isconnectedwithangleαviarelativisticvelocitytransformation.ThereforethenetLorentzfactor,γ′,dependsontheangleα′aswell
4
A.Janiuk,B.Czerny,P.T.Zycki
˙zivayQoutjx-vFigure3.Theassumedgeometryscheme.Theelectronisinthe
centerofthereferenceframeandhasthevelocityvatthein-clinationαtothesymmetryaxisofthediscandattheangleϕmeasuredinthediscplane.Thephotonisemittedattheangleitothediscaxis,andattheangle(Θout−π)totheelectron’svelocityvector.
Figure4.Thereflectionamplitudefortheviewinganglei=0(solidline),30◦(short-dashedline)and60◦(long-dashedline)asafunctionofelectron’sLorentzfactorγincaseofpurethermalmotion.
asonbulkandthermalvelocities.Inthiscasetheamountofreflectionisgivenby:R(β1
bulk,βtherm,i)=
InπFigure2π
0
0
P(α′,βbulk,βtherm,Θout(α′,i))sinα′dα′dϕ′
(.10)
5weplotthedependenceoftheamountofreflectiononthebulkvelocitytothelightvelocityratio,βbulk,fordifferentvaluesofelectrontemperatureβthermand
Figure5.Thereflectionamplitudefortheviewinganglei=0◦(boxes)andi=45◦(triangles)asafunctionofβbulkforelectrontemperatureβtherm=0.63(toppanel)andβtherm=0.72(bottompanel).
viewinganglei.Theelectrontemperaturecorrespondstoasinglevalueofelectronvelocity,asforvelocitydistributiontheanalyticapproximationwouldnotwork.
Inthecaseofvtherm=0weobtainthesamesolutionasinBeloborodov(1999).InFigure6weplotthissolution,calculatedfordifferentviewingangles.
ThecomparisonofFigures6and5showsthatsinglescatteringapproachpredictsverystrongdependenceoftheamplitudeofreflectionontheplasmatemperatureduetoanisotropyoftheComptonscattering.Whenthethermalmotionsareimportant(vtherm/c≈βbulk)thefirstreflectionissignificantlyenhanced,byafactorofatwo,andthehigherthetemperaturethestrongertheeffect.Thevaluesoftheamplitudeofreflectioncoverthewholerangebetween0and∼2foroutflowsolutions(βbulk>0).
Theeffectofreflectionenhancementdropsrapidlywhenthebulkvelocityisdominant(βbulk>vtherm/c).Inthiscasethemaximumangleα′ismuchsmallerthanπandtheintegrationlimitsintheequation(10)mustbechanged.Thereflectionamplitudeincreasesthenwiththevalueofassumedviewinganglei,whileinthecaseofmoresignificantthermalmotionthetrendisopposite.
3
REFLECTEDSPECTRAFROMMONTE
CARLOSIMULATIONS
Theroughlypowerlawshapeoftheprimaryemissioncom-ponentinX-rayspectrainGBHismostlikelyduetotheeffectofmultiplescatteringswithinthehotplasma.
ItiswellknownfromanalyticalsolutionsandMonte
c0000RAS,MNRAS000,000–000Ontheeffectofcoronaloutflowonspectraformationingalacticblackholesystems5
Figure6.Thereflectionamplitudefortheviewinganglei=0◦(solidline),30◦(short-dashedline)and60◦(long-dashedline)asafunctionofβbulkforpurebulkmotion.
Carlosimulationsthatthecontributionofthefirstscat-teringtothetotalspectrumisratherspecific(seeSternetal.1995,Svensson1996,Haardt,Maraschi&Ghisellini1997).Itmeans,thatwhenthehardX-rayspectrumformsviamultiplescatterings,onlythefirstoneisinfluencedbytheanisotropyofseedphotondistribution.Thisistherea-sonwhyanyanisotropyeffectsarepresentinthelowen-ergypartofthespectrum.Inthethermalmedium,evenforsmallopticaldepths,thepowerlawspectrumisshapedbymultiplescatterings.Thereforethesemi-analyticalcompu-tations,dealingwiththefirstscatteringprocess,inthecaseofboththermalandsystematicbulkmotionoftheelectronswithinthecoronacanonlyserveasaguideandahelptounderstandthenumericalresults.ThefullyreliableanswercanonlybeprovidedbyfullMonteCarlosimulationsoftheComptonizationprocesswithinthecorona.
InthisSectionwecomputetheamplitudeoftheComp-tonreflectedcomponentusingaMonteCarlocomptoniza-tioncodeandweshowthecorrespondingspectra.Wecon-centrateonhighlyionizedreflector,astheapproximationsusedinBeloborodov(1999)maynotbevalidinthatcase.ThecodeemploysstandardalgorithmsforsimulatingtheinverseComptonscattering,anditwaswrittenfollowingdescriptionsbyPozdnyakov,Sobol&Sunyaev(1983)andG´orecki&Wilczewski(1984).Modificationstothecodenec-essarytoimplementthebulkmotionaredescribedinAp-pendixA.FollowingBeloborodov(1999)weassumethatthecomptonizingregionasawholeisstationaryanditsgeom-etryisthatofaslab.3.1
Reflectionamplitude
Thebulkvelocityvectorisassumedperpendiculartotheplaneofthediscbutthedirectionofthevelocitycanbebothoutwardsandtowardsthedisc.Thediscisasourceofsoftphotonsforthecomptonization.Photonsbackscat-teredfromthecloudformradiationilluminatingthedisc.TheusualComptonreflectionprocessisthensimulatedanotherMonteCarloroutine(Zycki˙by
&Czerny1994),as-sumingtheabundancesgiveninMorrison&McCammon
(1983).Theopacitieswerecomputedusingthecodede-
Figure7.AmplitudeoftheCompton-reflectedcomponentasafunctionofthebulkoutflowvelocity,βbulk,computedusingtheMonteCarlomethodformultiplescatteringintheplasmaofopticaldepthτes=0.8andelectrontemperaturekTe=100keV.Opentrianglesindicatetheresultsfortheinclinationanglecosi=0.3,starsmarktheresultsforcosi=0.9,andsolidsquaresresultfromtheangleaveragedspectrum.
scribedinDoneetal.(1992)fortheionizationparameterξ≡FX/(ner2)=104.Furtherscatteringofthereflectedphotonsinthehotcomptonizingcloudisnotconsidered,sincetheinterceptedfractionwouldbegeometry-dependent(e.g.factorµsinBeloborodov1999).
ThereflectionamplitudeRisdefinedhere(cf.Be-loborodov1999andSection2.3),astheratiooftheenergyintegratedfluxes:R(βFbulk)=
back(βbulk)
6
A.Janiuk,B.Czerny,P.T.Zycki
˙Figure8.ComptonizedspectraresultingfromtheoutflowingcoronamodelobtainedbyMonteCarlosimulations.Parameterswerechosensothatthespectracorrespondtotypicalspectraoflow/hardstateofGBH:kTe=100keV,τes=0.8.Thebulkve-locityisβbulk=0.3.Thedashedlinerepresentsthesoftphotoninput,solidlineshowsthecomptonizedcontinuumscatteredto-wardstheobserver(angleaveraged),theshort-dashedlineshowsthebackscatteredspectrumandtheshort-long-dashedlinerep-resentsthereflectedspectrumforionizationparameter,ξ=104.
wardsthediscarestillnecessaryinsomecasesinordertoexplainfullrangeoftheΓ–RrelationfoundbyZdziarskietal.(1999),astheenhancementoffluxtowardsthediscduetoplasmabulkmotionisrequiredtoexplainR>1seeninsomesources.3.2
Radiationspectraofoutflowingcorona
InFigure8wepresentanexampleoftheoverallspec-trumcalculatedfromthemodeloftheoutflowingcorona.Wechoosethefollowingvaluesforthemodelparameters:kTe=100keV,τ=0.8,kT0=0.1keVandthebulkvelocityβbulk=0.3.Adoptedsoftphotontemperaturecorrespondstoatypicalvalueforgalacticblackholes.Suchaparameteri-zationisconvenientifwedonotconsidertheenergybalancewithinthecorona.Weassumethatthecoronaisacontin-uousmedium,i.e.weneglecttheclumpinessofthecoronadescribedbytheparameterµsinthemodelofBeloborodov(1999)sincewealsoneglectthesecondaryreprocessingofthereflectedcomponentthroughthecorona.
Thecontinuouslineshowstheradiationemittedto-wardsanobserver(averagedovertheentirehemisphere,roughlycorrespondingtoaninclinationof60◦)whiletheshort-dashedlineshowsthecomponentbackscatteredto-wardsthedisk.SincethefirstscatteringdominatessoftX-raybandforgalacticsources,thebackscatteredradiationinthisbandisenhanced,aspredictedbyanalyticalresultspre-sentedinSection2.However,hardX-raypartisdominatedbymultiplescatteredphotons,anisotropyeffectissmearedoffandthebackscatteredcomponentisnotenhancedinthisband.Theneteffectisthereforethesystematicdifferencebetweenthespectralslopeoftheback-scatteredradiation
andforward-scatteredradiation.Thiseffectwasdiscussed
foracoronawithoutabulkmotioninanumberofpapers(e.g.Sternetal.1995).Therefore,thecontinuumformedinthecoronaandemittedtowardsanobserverisslightlycurved,particularlyinthesoftX-rayband,insteadofbeingasimplepowerlawwithahighenergycut-off,asfrequentlyassumedinspectralanalysisofthedata.
Thebackscatteredcontinuumissubsequentlyreflectedbythedisksurfacewhichinourcalculationsisassumedtobeionized(ξ=104).WeshowthisspectralcomponentintheFigure8.
Thereflectedcomponentintheoutflowingcoronamodelisagainpartiallyreprocessedbythecorona.Theef-fectdependsonthecoronaclumpinesssinceonlyafractionofradiationµs(followingthenotationofBeloborodov,1999)wouldpassagainthroughthehotplasma.Inthepresentpa-perweneglectthissecondaryreprocessingsinceitisessen-tialonlyifµsiscloseto1andtheopticaldepthiscloseto1.However,indetailmodelingthiseffectshouldberathertakenintoaccount.
4DISCUSSION
ItisgenerallyassumedthatingalacticX-raysourcesandactivegalacticnucleisoftX-rayradiationoriginatesfromthegeometricallythinandopticallythickaccretiondiscwhilethehardfluxisproducedbyComptonizationinopticallythinplasmaoutsidethedisc.PartofthehardX-rayfluxthatisdirectedtowardstheobserverisdetectedintheformofpowerlawcontinuumandthepartofthefluxscatteredbacktothediscsurfaceproducessocalled’reflectionhump’inthespectrumover10keV(Lightman&White1988;Poundsetal.1990;Doneetal.1992)aswellastheironKαlinenear
6.4keV(Zycki˙&Czerny1994).
Theobservedvaluesoftheamplitudeofthereflec-tioncomponentcoverbroaderrangethaninitiallyexpected(R∼1forAGNinPoundsetal.1990).ForsomeX-raysourcestheobservedreflectionseemstobeweak,whichwasmodelledeitherbythedisruptionoftheinnerdiscandX-rayirradiationofitsouterparts,orbythehighionizationstateofilluminatedmedium,whichresultsinsteepeningofthereflectedcontinuumandmakesitindistinguishablefromtheprimarypowerlaw(Rossetal.1999).
Bothinterpretationscanexplaintheobservedcorrela-tionbetweenRandΓ.Inthemodelwithadisruptedcolddiscpartiallyoverlappingtheinnermosthotflowtheob-servedcorrelationisduetoradiativecouplingofthetwocomponents,astheamountofoverlapvaries(Zdziarskietal.1999).Inthemodelwithstronglyionizeddiscsurfacethecorrelationisgovernedbythevariableopticaldepthoftheionizedscatteringlayer(Nayakshinetal.2000),whichdeterminestheeffectivealbedoofthediscandthesoftfluxfromthermalizedfractionoftheilluminatingX-rays.BothmodelscanexplainthereflectionamplitudevaluesR1.
However,thestrengthofreflectionwasforsomesourcesfoundtobeR>1,whichmayeitherindicatethatreflectingmediumsubtendsasolidanglelargerthan2π,orthattheradiationdirectedtowardsthediscisenhanced.Thelatterispossiblewhenthescatteringprocessisanisotropicormaybeduetothevelocityofsystematicbulkmotiondirectedtowardsthedisc.
c0000RAS,MNRAS000,000–000Ontheeffectofcoronaloutflowonspectraformationingalacticblackholesystems
7
Inthisarticleweshowthattheanisotropyeffectisim-portantmostlyforthefirstscatteringandweakensinnumer-icalMonteCarlosimulationsperformedformultiplescatter-ingintheplasmaparameterizedbyopticaldepthandelec-trontemperature.ThemaximumamplitudereachedinthecaseofhighlyionizedreflectorisonlyR∼1.1.Therefore,thesystematicmildly-relativisticmotiontowardsthedisc,orthe’coronalinflow’,isrequiredtoexplainthehighervaluesofR.Ontheotherhand,inordertoproduceR>1inthedisrupteddiscmodelitwouldbenecessarytoallowforre-flectionfromouterregionsofathickeneddisc(e.g.Shakura&Sunyaev1973)and/orfromthedusty/moleculartorusaroundcentralblackholesofAGN.SincetheabsorptionofirradiatingX-raysbelow∼5keVisreducedforahighlyionizeddiscsurface,thereflectedphotonsmaycontributetothesoftX-rayexcessesobservedinthespectraofGBHinthehard/lowstate(CygX-1;DiSalvoetal.1999,andinpreparation).Weshowthatthiscontributionishigherwhentheradiationbackscatteredtothediscisenhancedasaresultoftheanisotropyofthefirstscattering.
Thehardtolowstatetransitioncharacteristicformanyaccretingblackholesystemsisinthe’discplussphere’modelconnectedwiththechangeoftheinnerradiusofthecolddisc.Inthehardspectralstatethecolddiscispushedout-wardwhilethehotinnerplasmaisresponsibleforhardX-rayradiation.Inthesoftstatethethermaldiscemissiondominatesasthecolddiscextendsalmosttothemarginallystableorbit.However,thephysicalmechanismofsuchbe-haviouriscurrentlyunclear.Intheoutflowingcoronamodeltheoutflowvelocityisthebasiccontrolparameter.Thehardspectralstatewouldthencorrespondtorapidcoronalex-pansion,whilethespectrumwithdominatingsoftcompo-nentwouldbeproducedduringtheverticalcollapseofthehotgas.Againthephysicalmechanismofsuchdependenceisunclear,andinparticularitisunclearhowtherequiredchangesofeitherRinorβbulkcouldbedrivenbychangingaccretionrate.
Inconclusion,thebasicpredictionsofalltheproposedmodelsaresimilarandonlydetailedcomputationsofspec-tralandtemporalbehaviourandcomparisonwiththehighqualitydata,asexpectedfromChandraandXMM,mayallowforadistinctionbetweenthem.
ACKNOWLEDGMENTS
Thisworkwassupportedinpartbygrant2P03D01816,2P03D01718and2P03D01519ofthePolishStateCommit-teeforScientificResearch.
REFERENCES
BeloborodovA.M.,1999,DiSalvoT.,DoneC.,Zycki˙ApJ,510,L123
P.T.,BurderiL.,RobbaN.R.,1999,
AstrophysicalLettersandCommunications,38,261
DoneC.,MulchaeyJ.S.,MushotzkyR.F.,ArnaudK.A.,1992,
ApJ,395,DoneC.,Zycki˙275
P.T.1999,MNRAS,305,457
DoneC.,NayakshinS.2000,ApJ,submitted
c0000RAS,MNRAS000,000–000DoveJ.B.,WilmsJ.,MaisackM.,BegelmanM.C.,1997,ApJ,
487,759
EsinA.A.,McClintockJ.E.,NarayanR.,1997,ApJ,4,865GeorgeI.M.,FabianA.C.,1991,MNRAS,249,352
GhiselliniG.,GeorgeI.M.,FabianA.C.,DoneC.,1991,MNRAS,
248,14Gierli´nskiM.,ZdziarskiA.A.,DoneC.,JohnsonW.N.,Ebisawa
K.,UedaY.,HaardtF.,PhlipsB.F.,1997,MNRAS,288,958Gierli´nskiM.,ZdziarskiA.A.,PoutanenJ.,CoppiP.S.,Ebisawa
K.,JohnsonW.N.,1999,MNRAS,309,496G´oreckiA.,WilczewskiW.,1984,ActaAstron.,34,141HaardtF.,MaraschiL.,GhiselliniG.,1994,ApJ,432,L95HaardtF.,MaraschiL.,GhiselliniG.,1997,ApJ,476,620
Janiuk,A.,Zycki,˙P.T.,Czerny,B.,2000,MNRAS(inpress)
LightmanA.P.,WhiteT.R.,1988,ApJ,335,57MorrisonR.,McCammonD.,1983,ApJ,270,119
NayakshinS.,KazanasD.,KallmanT.,2000,ApJ,inpress,
(astro-ph/9909359)
PoundsK.A.,NandraK.,StewardG.C.,GeorgeI.M.,Fabian
A.C.,1990,Nat.,344,132
PoutanenJ.,KrolikJ.H.,RydeF.,1997,MNRAS,292,L21PoutanenJ.,1998,inAbramowiczM.A.,Bj¨ornssonG.,Pringle
J.E..eds,TheoryofBlackHoleAccretionDiscs,CambridgeUniv.Press,p.100
PozdnyakovL.A.,SobolI.M.,SunyaevR.A.,1983,ASPR,2,1PressW.H.,TeukolskyS.A.,VetterlingW.T.,FlanneryB.P.1992,
“NumericalRecipesinFortran”,CUP
RevnivtsevM.,GilfanovM.,ChurazovE.,1999,A&ALetters,
submitted,(astro-ph/9910423)
RybickiG.B.,LightmanA.P.,1979,“RadiativeProcessesinAs-trophysics”,Wiley,NewYork
RossR.R.,FabianA.C.,YoungA.J.,1999,MNRAS,306,461ShakuraN.I.,SunyaevR.A.,1973,A&A,24,337
Stern,B.E.,Poutanen,J.,Svensson,R.,Sikora,M.,Begelman,
M.C.,1995,ApJ,449,L13
Svensson,R.,1996,ApJS,120,475ZdziarskiA.A.,Lubi´nskiP.,SmithD.A.,1999,MNRAS,303,L11Zycki˙P.T.,CzernyB.,1994,MNRAS,266,653Zycki˙P.T.,DoneC.,SmithD.,1998,ApJ,496,L25
APPENDIXA:THEMONTECARLOCODEOurinitialcomptonizationcodewaswrittenfollowingcloselydescriptionsgivenbyPozdnyakov,Sobol&Sunyaev(1983)andG´orecki&Wilczewski(1984),andappliedtomodelX-rayspectraofaccretiondiscwithaccretingtivecoronabyJaniuk,Zycki˙advec-&Czerny(2000).Inorderto
includetheeffectofbulkmotionoftheplasma,weneededtomaketwomajormodifications.
Firstly,theaveragescatteringcrosssectionhastobemodified.Theescapeprobabilityofaphotonisgivenbyd
P(d)=exp−
Neσdl,
0
(A1)
whereNe=N(v)d3vistheelectrondensity,N(v)isthe
electronvelocitydistribution,disthedistancetothecloudboundaryalongthedirectionofphotonmotion,Ω,andσ=
1
m(1−v·Ω/c)(A3)
ec2
γ8
A.Janiuk,B.Czerny,P.T.Zycki
˙istheenergyofanincomingphotonintheelectronrest
frame,γistheLorentzfactorandσ(x)istheKlein-Nishinacrosssection.ForanisotropicN(v)e.g.Maxwelldistribu-tion,σisafunctionofphotonenergyonly(foragivenkTe).
Withthenon-zerobulkvelocitywecannotusethemethodpresentedbyPozdnyakovetal.(1983)toevaluatetheintegralinEq.(A2),sinceN(v)isnolongerisotropic.Thepresenceofthespecificdirection–thebulkvelocityvectorβ–introducesanadditionalangulardependenceofσ.WenowhavetocomputetheintegralasinEq.(A2)butwithvinthedot-productv·Ωreplacedbytotalelectronvelocity,u.Hereuisthesum(inthesenseofLorentztrans-formation)ofthethermalvelocityandthebulkvelocity.Wecomputethis3-Dintegralnumerically.Introducingacoor-dinatesystemwiththez-axisalongthebulkvelocityandthex-axisalongthedirectionofphotonmotionweobtainΩ=(sinθ,0,cosθ),whereθistheanglebetweenΩandβ.ApplyingtheLorentztransformationweobtaintheelectronvelocity
inthediscframe,u=
vx
c
withγ=(1−β2)−1/,
vy
z+βc
,(A4)
c
2,andvx,vy,
vc
andvz–componentsoftheelectron’sthermalvelocity.Thisenablestocomputeu·Ωandcalculatetherequiredintegral,whichisnowadditionallyafunctionofphoton’sdirectionofmotion,θ.Weusedtheprocedurequad3dfromPressetal.(1992)toevaluatetheintegral.
Thesecondmodificationconcernsthescatteringevent.Sincethisismodeledintheelectronrestframe,weintro-ducedapairofadditionalLorentztransformationsofapho-ton’smomentum:fromthedisc/coronaframetotheframecomovingwiththebulkvelocitybeforesimulatingthescat-teringevent,andthereversetransformationafterthescat-teringevent.
Thispaperhasbeenprocessedbytheauthorsusingthe
BlackwellScientificPublicationsLATEXstylefile.
c0000RAS,MNRAS000,000–000
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务