您好,欢迎来到九壹网。
搜索
您的当前位置:首页NumpyAPIAnalysis

NumpyAPIAnalysis

来源:九壹网


histogram

?

>>> a = numpy.arange(5)

>>> hist, bin_edges = numpy.histogram(a,density=False)

>>> hist, bin_edges

(array([1, 0, 1, 0, 0, 1, 0, 1, 0, 1], dtype=int), array([ 0. , 0.4, 0.8, 1.2, 1.6, 2. , 2.4, 2.8, 3.2, 3.6, 4. ]))

?

Analysis:

  • Variable a is [0 1 2 3 4]
  • After call histogram, it will calculate the total count each number in a= [0 1 2 3 4] according to each bins(阈值), for example:
  • bins

    Contains number

    result

    [0.-0.4)

    0

    1

    [0.4-0.8)

    N/A

    0

    [0.8-1.2)

    1

    1

    [1.2-1.6)

    N/A

    0

    [1.6-2.)

    N/A

    0

    [2.-2.4)

    2

    1

    [2.4-2.8)

    N/A

    0

    [2.8-3.2)

    3

    1

    [3.2-3.6)

    N/A

    0

    [3.6-4.]

    4

    1


    [0.-0.4) contains 0, so result is 1

    [0.4-0.8) does not contain any number in [0 1 2 3 4], so result is 0
    [0.8-1.2) contains 1, so result is 1
    [1.2-1.6) does not contain any number in [0 1 2 3 4], so result is 0
    [1.6-2.) does not contain any number in [0 1 2 3 4], so result is 0

    [2.-2.4) contains 2, so result is 1

    [2.4-2.8) does not contain any number in [0 1 2 3 4], so result is 0

    [2.8-3.2) contains 3, so result is 1

    [3.2-3.6) does not contain any number in [0 1 2 3 4], so result is 0

    [3.6-4.] contains 4, so result is 1

    ?

    Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2

    违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

    本站由北京市万商天勤律师事务所王兴未律师提供法律服务