Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than or equal to the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
For example:
Given BST [1,null,2,2]
,
1
\
2
/
2
return [2]
.
Note: If a tree has more than one mode, you can return them in any order.
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).
方法一:129ms
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def findMode(self, root):
"""
:type root: TreeNode
:rtype: List[int]
"""
counter = collections.Counter()
def traverse(root):
if not root:
return
counter[root.val] += 1
traverse(root.left)
traverse(root.right)
traverse(root)
maxn = max(counter.values()+[None])
return [e for e, v in counter.iteritems() if v == maxn]
方法二:96ms
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def findMode(self, root):
"""
:type root: TreeNode
:rtype: List[int]
"""
if not root:
return []
count = collections.defaultdict(int)
def preorder(root):
if root:
count[root.val] += 1
preorder(root.left)
preorder(root.right)
preorder(root)
max_occ = max(count.values())
return [k for k in count if count[k] == max_occ]
因篇幅问题不能全部显示,请点此查看更多更全内容