计算图(Graph)
Tensorflow是基于图(Graph)的计算框架,图的节点由事先定义的运算(操作、Operation)构成,图的各个节点之间由张量(tensor)来链接,Tensorflow的计算过程就是张量(tensor)在节点之间从前到后的流动传输过程,如下图示例:
# -*- coding: utf-8 -*-)
import tensorflow as tf
# 1. 创建两个张量(Tensor)
input1 = tf.constant([1.0, 1.0, 1.0, 1.0])
input2 = tf.constant([2.0, 2.0, 2.0, 2.0])
# 2. 定义操作(Operations)
output = tf.add(input1, input2)
# 3. 执行计算
with tf.Session() as sess:
result = sess.run(output)
#result = output.eval()
print result
#sess.close() # 使用"with"语句,由python自动管理Session,不再需要显式调用close()
# -*- coding: utf-8 -*-)
import tensorflow as tf
# 1. 创建两个占位变量,只定义数值类型和形状(shape),具体数值在计算图执行前给定
input1 = tf.placeholder(tf.float16,shape=[4])
input2 = tf.placeholder(tf.float16,shape=[4])
# 2. 定义操作(Operations)
output = tf.add(input1, input2)
# 3. 执行计算
with tf.Session() as sess:
input_1 = [1.0, 1.0, 1.0, 1.0]
input_2 = [2.0, 2.0, 2.0, 2.0]
result = sess.run(output,feed_dict = {input1:input_1, input2:input_2})
print result
因篇幅问题不能全部显示,请点此查看更多更全内容