您的当前位置:首页正文

【笔记】tf中有向图(计算图、Graph)、上下文环境(Session)和执行流程

来源:九壹网

计算图(Graph)
        Tensorflow是基于图(Graph)的计算框架,图的节点由事先定义的运算(操作、Operation)构成,图的各个节点之间由张量(tensor)来链接,Tensorflow的计算过程就是张量(tensor)在节点之间从前到后的流动传输过程,如下图示例:

 

# -*- coding: utf-8 -*-)
import tensorflow as tf
 
# 1. 创建两个张量(Tensor)
input1 = tf.constant([1.0, 1.0, 1.0, 1.0])
input2 = tf.constant([2.0, 2.0, 2.0, 2.0])
 
# 2. 定义操作(Operations)
output = tf.add(input1, input2)
 
# 3.  执行计算
with tf.Session() as sess:
    result = sess.run(output)
    #result = output.eval()
    print result
    #sess.close()   # 使用"with"语句,由python自动管理Session,不再需要显式调用close()

# -*- coding: utf-8 -*-)
import tensorflow as tf
 
# 1. 创建两个占位变量,只定义数值类型和形状(shape),具体数值在计算图执行前给定
input1 = tf.placeholder(tf.float16,shape=[4])
input2 = tf.placeholder(tf.float16,shape=[4])
 
# 2. 定义操作(Operations)
output = tf.add(input1, input2)
 
# 3.  执行计算
with tf.Session() as sess:
 
    input_1 = [1.0, 1.0, 1.0, 1.0]
    input_2 = [2.0, 2.0, 2.0, 2.0]
 
    result = sess.run(output,feed_dict = {input1:input_1, input2:input_2})
    print result

因篇幅问题不能全部显示,请点此查看更多更全内容

Top