Annealedreplication:anewheuristicforthemaximum
cliqueproblem
ImmanuelM.Bomzea;∗,MarcoBudinichb,MarcelloPelilloc,
ClaudioRossic
aInstitut
furStatistik&DecisionSupportSystems,UniversitatWien,Universitatsstrae5,
A-1010Wien,Austria
bDipartimentodiFisica,UniversitÂadiTrieste,ViaValerio2,I-34127Trieste,ItalycDipartimentodiInformatica,UniversitÂaCa’FoscaridiVenezia,ViaTorino155,
I-30172VeneziaMestre,Italy
Received10April1998;receivedinrevisedform9April2001;accepted8May2001
Abstract
Weproposeanewheuristicforapproximatingthemaximumcliqueproblembasedonadetailedanalysisofaclassofcontinuousoptimizationmodelswhichprovideacompletecharac-terizationofsolutionstothisNP-hardcombinatorialproblem.Westartfromaknowncontinuousformulationofthemaximumclique,andtacklethesearchforlocalsolutionswithreplicatordy-namics,aclassofdynamicalsystemsdevelopedinvariousbranchesofmathematicalbiology.Hereby,weaddtotheobjectiveusedinpreviousworksaregularizationtermthatcontrolstheglobalshapeoftheenergylandscape,thatisthefunctionactuallymaximizedbythedynamics.Theparametercontrollingtheregularizationischangedduringtheevolutionofthedynamicalsystemtorenderinecientlocalsolutions(whichformerlywerestable)unstable,thusconduct-ingthesystemtoescapefromsub-optimalpoints,andsotoimprovetheÿnalresults.Theroleofthisparameteristhussuperÿciallysimilartothatoftemperatureinsimulatedannealinginthesensethatitsvariationallowstoÿndbettersolutionsfortheproblemathand.Wedemonstrateseveraltheoreticalresultsontheregularizationtermandwefurthersupportthevalidityofthisapproach,reportingonitsperformanceswhenappliedtoselectedDIMACSbenchmarkgraphs.?2002ElsevierScienceB.V.Allrightsreserved.
Keywords:Quadraticoptimization;Dynamicalsystems;Replicatordynamics;Stableset;Independentset;Combinatorialoptimization
1.Introduction
Themaximumcliqueproblem(MCP)isawell-knownproblemincombinatorialoptimizationwhichÿndsimportantapplicationsinmanydierentdomains[11].Since
Correspondingauthor.
E-mailaddresses:immanuel.bomze@univie.ac.at(I.M.Bomze),mbh@trieste.infn.it(M.Budinich),pelillo@dsi.unive.it(M.Pelillo),rossi@dsi.unive.it(C.Rossi).
0166-218X/02/$-seefrontmatter?2002ElsevierScienceB.V.Allrightsreserved.PII:S0166-218X(01)00233-5
∗
28I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
theMCPisknowntobeNP-hard,exactalgorithmsareguaranteedtoreturnasolutiononlyinatimewhichincreasesexponentiallywiththenumberofverticesinthegraph.Thismakestheminapplicableeventomoderatelylargeprobleminstances.Moreover,aseriesofrecenttheoreticalresultsshowthattheMCPis,infact,diculttosolveevenintermsofapproximation.Strongevidenceofthisfactcamein1991,whenFeigeetal.[17](seealso[18])provedthatifthereisapolynomial-timealgorithm
1−
thatapproximatestheMCPwithinafactorof2logn,thenanyNPproblemcanbe
O(1)
solvedin“quasi-polynomial”time(i.e.,in2logntime).TheresultwasfurtherreÿnedbyAroraetal.[1,2]oneyearlater.Speciÿcally,theyprovedthatthereexistsan¿0suchthatnopolynomial-timealgorithmcanapproximatethesizeofthemaximumcliquewithinafactorofn,unlessP=NP.Morerecentdevelopmentsalongtheselinescanbefoundin[3,4,23].Inlightofthesenegativeresults,mucheorthasrecentlybeendirectedtowardsdevisingecientheuristicsfortheMCP,forwhichnoformalguaranteeofperformancemaybeprovided,butareanywayofinterestinpracticalapplications.Wereferto[25]foracollectionofpromisingheuristicsfortheMCP.WehaverecentlyinvestigatedtheeectivenessofanapproachforapproximatingtheMCP,centeredaroundacontinuousformulationduetoMotzkinandStraus[33]anditsregularization[24,10],whichexploitsthedynamicalpropertiesoftheso-calledreplicatorequations,aclassofdynamicalsystemsdevelopedandstudiedinvariousbranchesofmathematicalbiology.Oneproblemassociatedwiththesemodels,how-ever,istheirinabilitytoescapeinecientlocalsolutions.Inthispaper,weintroduceaclassofparametrizedquadraticprograms,whichincludesboththeMotzkin–Strausprogramanditsregularizationasspecialcases,andinvestigatethepropertiesofitsso-lutionsasafunctionofitsparameter.AdetailedanalysisofthesepropertiessuggestsanewalgorithmforapproximatingtheMCPwhichisbasedontheideaofproperlyvaryingtheparameterduringthereplicatoroptimizationprocess,inmuchthesamespiritassimulatedannealingprocedures.Arelated,butdierent,ideahasrecentlybeenproposedbyGeeandPragerintheneuralnetworkdomain[20].ExperimentalresultsconductedonvariousDIMACSbenchmarkgraphsdemonstratethevalidityoftheproposedapproach.
Theoutlineofthepaperisasfollows.InSection2,wedescribetheMotzkin–Straustheoremanditsparameterization,andpresentthereplicatordynamicalsystems.ThesedynamicsareusedtoobtainlocallyoptimalsolutionstotheMCP.Section3isde-votedtoafewresultsthatenableustoestablishboundsonaregularizationparameterwhichgovernsstabilityunderthereplicatordynamics.Forillustration,weinvestigateinSection4asmall,butprototypicalexampleindetail.Inamoredetaileddynamicalanalysisexceedingtheusualperturbationtheoryapproach,wespecifyexplicitrangeswithinwhichqualitativefeaturesofthedynamicsareinvariant,andalsoobtainquanti-tativesensitivityresultsfortherelatedoptimizationproblems.Thisanalysisisdeferredtoanappendix,topromotetheowoftheargument.Thepreviouslyestablishedtheo-reticalpropertieswillleadustodevelopinSection5analgorithmforproperlyupdatingtheparameterwiththeobjectiveofavoidingpoorlocalsolutions.InSection6theresultsofourexperimentsarepresented,andSection7concludesthepaper.
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4929
2.Evolutiontowardsthemaximumclique
2.1.AparametrizedcontinuousformulationoftheMCP
LetG=(V;E)beanundirectedgraph,whereV={1;:::;n}isthesetofvertices,andE⊆V×Visthesetofedges.AcliqueofGisasubsetofVinwhicheverypairofverticesisconnectedbyanedge.AcliqueiscalledmaximalifnostrictsupersetofCisaclique,i.e.,novertexexternaltoCisconnectedwithmorethan|C|−1verticesofC(here,andinthesequel,|C|denotesthecardinalityofasetC).AmaximalcliqueCiscalledstrictlymaximalifnovertexiexternaltoChasthepropertythattheenlargedsetC∪{i}containsacliqueofthesamesizeasC.Inotherwords,if
dC(i)=|{j∈C:(i;j)∈E}|
denotesthedegreeofiw.r.t.C,thenamaximalcliqueCisstrictlymaximalifandonlyifdC(i)¡|C|−1foralli∈C.
Amaximumcliqueisacliquehavinglargestcardinality(notethatamaximalcliqueisnotnecessarilyamaximumone).Hence,theMCPconsistsofÿndingacliqueofmaximumsizeinagraphG.Forarecentsurveysee[11].Inthefollowing,givenasetSofverticesinG,wewilldenotebyxSitscharacteristicvector,deÿnedasxiS=1=|S|ifi∈SandxiS=0otherwise.
GivenagraphG,considerthefollowingquadraticprogramintroducedin[24,10](xalwaysdenotesthetransposeofacolumnvectorx):
maximizex(AG+12I)xsubjecttox∈Sn;
(1)
whereAG=(aij)istheadjacencymatrixofG(i.e.,aij=1if(i;j)∈E,andaij=0if(i;j)∈E),SnisthestandardsimplexofRn,thatis
n
xi=1Sn=x∈Rn:xi¿0foralli=1;:::;nand
i=1
andIisthen×nidentitymatrix.Thisturnsouttobeavariantoftheso-called
1Motzkin–Strausprogram[33],whichisobtainedfrom(1)bysimplydroppingthe2Iterm.Forcompleteness,wesummarizeheretheoriginalMotzkin–Straustheoremandsomerecentrelatedresults.1
Theorem1.LetCbeasubsetofverticesofagraphG;andletxCbeitscharacteristicvector.Then(xC)AG(xC)=1−1=|C|ifandonlyifCisaclique.Moreover:
(a)xCisastrictlocalmaximizerofxAGxoverSnifandonlyifCisastrictlymaximalclique.
(b)xCisaglobalmaximizerofxAGxoverSnifandonlyifCisamaximumclique.
TheoriginalMotzkin–Straustheorem[33]correspondstothe“if”partofTheorem1(b),whilethe“only–if”parthasbeenprovenin[39].Part(a)ofthetheoremiffrom[39,22].
1
30I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
AnimmediateconsequenceofthepreviousresultisthatanypointinSnprovidesuswithaboundonthesizeofthemaximumcliqueinG.2Infact,ifCisamaximumcliqueofG,foranyx∈SnwehavexAGx61−1=|C|,fromwhichitfollowsthat|C|¿1=(1−xAGx).
TheMotzkin–Straustheoremhasanintriguingcomputationalsigniÿcance.Itsuggestsafundamentallynewwayofsolvingthemaximumcliqueproblem,byallowingustoshiftfromthediscretetothecontinuousdomain.Apointedoutin[35],theadvantagesofsuchareformulationaremanifold.Itnotonlyallowsustoexploitthefullarsenalofcontinuousoptimizationtechniques,therebyleadingtothedevelopmentofnewecientalgorithms,butmayalsorevealunexpectedtheoreticalproperties.Additionally,continuousoptimizationmethodsaresometimesdescribedintermsofsetsofdierentialequations,andarethereforepotentiallyimplementableinanalogcircuitry.TheMotzkin–Strausandrelatedtheoremshaveservedasthebasisofmanyclique-ÿndingprocedures[36,37,21,11],andhavealsobeenusedtodeterminetheoreticalboundsonthemaximumcliquesize[15].
IncontrasttotheoriginalMotzkin–Strausformulation,however,itsregularization(1)hasafurthermerit:asobservedbyPardalosandPhillips[36]andlaterformalizedbyPelilloandJagota[39],theMotzkin–Strausprogram,initsoriginalformulation,isplaguedbythepresenceof“spurious”solutions,i.e.,solutionswhicharenotintheformofcharacteristicvectors.Clearly,thisrepresentsaproblemsinceitprohibitsdirectextractionoftheverticescomprisingtheclique,andprovidesinformationonlyonitssize.Therefore,inordertodeterminethecliquevertices,onehastomakerecoursetoiterativeorrecursiveprocedure,asthosedescribedin[34,36].
Thesigniÿcanceofthefollowingresult,asharpeningofTheorem1provedin[10],isthatalocal(andhencealsoaglobal)maximumof(1)canonlybeat-tainedatacharacteristicvectorx∗=xCforsomesubsetCofverticeswhichnec-essarilythenformsamaximalclique.Thissolvesthespurioussolutionprobleminastraightforwardanddeÿnitivemannersinceitestablishesaone-to-onecorrespon-dencebetweenlocal=globalsolutionsto(1)andmaximal=maximumcliquesofG,respectively.
Theorem2.LetGbeagraphandconsiderproblem(1).Thenthefollowingassertionsareequivalent:
(a)x=xC;whereCisamaximalcliqueofsizek=|C|;(b)xisastrictlocalsolutionto(1);(c)xisalocalsolutionto(1).
Ifoneoftheaboveconditions(andthereforeall)ismet;theobjectiveisx(AG+1C
2I)x=1−1=2k.HenceCisamaximumcliqueofGifandonlyifxisaglobalsolutionto(1).
2
WethankArunJagotaforpointingthisout.
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4931
Inthispaper,weconsiderthefollowingprogram,whichrepresentsalsoaregular-izationoftheMotzkin–Strausprogramandgeneralizes(1):
maximizef(x)=x(AG+I)xsubjecttox∈S:
n
(2)
ThisincludesboththeMotzkin–Straus(=0)programanditsregularization(=12)asspecialcases.Weinvestigatethepropertiesofitssolutionsasafunctionoftheparameter.Speciÿcally,weshowthatwhen∈]0;1[allthepropertiesofprogram(1)holdtrue.Fornegative,ontheotherhand,thelandscapeoff(x)changesand“atregions”canmergeinanextremumwhileotherextremacandisappear,dependingonthevaluesoftheparameter.AdetailedanalysisoftheseeectswillsuggestanewalgorithmforapproximatingtheMCPwhichisbasedontheideaofvaryingtheparameterduringanevolutionaryoptimizationprocess,insuchawayastoavoidobtainingcharacteristicvectorsofsmallcliques.
WepointoutthattheproposedparameterizationoftheMotzkin–Strausprogramiscompletelydierent,bothincontentandmotivations,fromthatrecentlyintroducedbyGibbonsetal.[21].Theirideawastosubstitutethesignconstraintsx¿0oftheMotzkin–Strausprogramwithoneoftheformxx=1=s,sbeingaparameterintheinterval[1;n],inanattempttoavoidspurioussolutions.Withthisprogramitmayhappenthatthesolutionshavetobeprojectedontothepositiveorthant,inordertomaintainfeasibility.
2.2.ReplicatorequationsandtheirapplicationtotheMCP
LetMbeanon-negativereal-valuedn×nmatrix,andconsiderthefollowingdy-namicalsystem:
x˙i(t)=xi(t)[(Mx(t))i−x(t)Mx(t)];
(Mx(t))i
;
x(t)Mx(t)i=1;:::;n;
(3)
whereadotsigniÿesderivativew.r.t.timet,anditsdiscrete-timecounterpart
xi(t+1)=xi(t)
i=1;:::;n:
(4)
ItisreadilyseenthatthesimplexSnisinvariantunderthesedynamics,whichmeansthateverytrajectorystartinginSnwillremaininSnforallfuturetimes.Moreover,itturnsoutthattheirstationarypoints,i.e.thepointssatisfyingx˙i(t)=0for(3)orxi(t+1)=xi(t)for(4),coincideandarethesolutionsoftheequations
xi[(Mx)i−xMx]=0;
i=1;:::;n:
(5)
Astationarypointxissaidtobeasymptoticallystableifeverysolutionto(3)or(4)whichstartscloseenoughtox,willconvergetoxast→∞.
Both(3)and(4)arecalledreplicatorequationsintheoreticalbiology,sincetheyareusedtomodelevolutionovertimeofrelativefrequenciesxi(t)ofinteracting,self-replicatingentities.Eq.(3)hasbeenintroducedinevolutionarygametheoryby
32I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
TaylorandJonker[40]tomodelevolutionofbehaviorinintraspeciÿcconictsun-derrandompairwisematinginalarge,ideallyinÿnitepopulation.Itformalizestheideathatthegrowthratesx˙i=xiofrelativefrequencyxioftheithbehaviorpattern
(i=1;:::;n)isequaltothe(dis)advantage(Mx)i−xMx=jmijxj−j;kmkjxjxk,measuredbyincrementalÿtnessrelativetotheaverageperformancewithinthepopula-tioninstatex=(x1;:::;xn).Heremijdenotesincrementalindividualÿtnessattributedtoani-individualwhenencounteringaj-individual,andM=(mij)istheresultingÿt-nessmatrix.Thebehaviorpatternsi∈{1;:::;n}areoftencalled“purestrategies”andtheinteractionmatrixMisalsotermed“payomatrix”.Similarargumentsprovidearationaleforthediscrete-timeversion(4).Surprisingly,thesedynamicalequationscanalsoberegardedasaveryspecialcaseofageneralclassofdynamicalsystemsintroducedbyBaumandEagon[5]andstudiedbyBaumandSell[6]inthecontextofMarkovchaintheory.Thiskindofprocesseshaveproventobeusefulinthespeechrecognition[31]andcomputervision[38]domains.Dynamics(3)and(4)alsoariseinpopulationgeneticsunderthenameselectionequationsinamodelassumingsep-arate(non-overlapping)generations,largepopulationsize,randomunionofgametes,andaselectionactingonlyupononechromosomallocusthroughdierentviabilities(i.e.,survivalprobabilities),givenbythetheÿtnessmatrixMofthegenotypes,i.e.,pairsofgenesdrawnfromaset{1;:::;n}ofallelesforasinglechromosomallocus.Herexiisthegenefrequencyoftheithallele.ThematrixMisinthiscontextalwayssymmetric,sincepermutedgenepairsbelongtothesamegenotype.Models(3)and(4)asselectionequationsgowaybacktoFisher[19]andKimura[29].
Fromanoptimizationpointofview,thedierencebetweensymmetricandnon-symmetricmatricesMiscrucial.Indeed,inthesymmetriccasethequadraticformx(t)Mx(t)isincreasingalongtrajectoriesofthereplicatordynamics;thisistheFun-damentalTheoremofNaturalSelection,see,e.g.[16,26,24].
Theorem3.IfM=Mthenthefunctionx(t)Mx(t)isstrictlyincreasingwithin-creasingtalonganynon-stationarytrajectoryx(t)underbothcontinuous-time(3)anddiscrete-time(4)replicatordynamics.Furthermore;anysuchtrajectoryconvergestoastationarypoint.
ApartfromthemonotonicityresultwhichprovidesaLyapunovfunctionforbothdy-namics,theprevioustheoremalsorulesoutcomplicatedattractorslikecycles,invarianttori,orevenstrangeattractors.
Toformulatetheresultswhichrelatedynamicalpropertiestooptimality,weneedsomefurthernotionsandnotations.First,considerthegeneralquadraticoptimizationproblemoverSn,
maximizexMxsubjecttox∈Sn
andthegeneralizedLagrangian
L(x;;)=xMx+x+(ex−1)
(6)
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4933
of(6),wherethemultipliersiandmayhavearbitrarysign.CallacriticalpointxofthegeneralizedLagrangianageneralizedKarush–Kuhn–TuckerpointifL(x;;)=xMxirrespectiveofthesignofi.
Finally,weneedsomenotionsfromgametheory(see,e.g.,[42]):recallthatapointx∈Snissaidtobea(symmetric)Nash(equilibrium)strategyifandonlyif
yMx6xMx
forally∈Sn:
(7)
Furthermore,aNashstrategyxissaidtobeaneutrallystablestrategy(NSS)ifandonlyif
yMx=xMx
implies
xMy¿yMy
(8)
andanevolutionarilystablestrategy(ESS)ifandonlyiftheinequalityin(8)isstrictfory=x.
Nowwerepeatthecharacterizationresultsfrom[12]whichlinkthreedierentÿelds:optimizationtheory,evolutionarygametheory,andqualitativetheoryofdynamicalsystems.
Theorem4.LetM=Mbeanarbitrarysymmetricn×nmatrixandx∈Sn.Considerthefollowingproperties:
(a1)xisanESS;i.e.;satisÿes(8)withstrictinequality;and(7);(a2)xisastrictlocalsolutionto(6);
(a3)xisanasymptoticallystablestationarypointof(3)and(4);(b1)xisaNSS;i.e.;satisÿes(7)and(8);(b2)xisalocalsolutionof(6);
(c1)xisaNashstrategy;i.e.;satisÿes(7);(c2)xisaKarush–Kuhn–Tuckerpointfor(6);
(d1)xisastationarypointunder(3)or(4);i.e.;satisÿes(5);(d2)xisageneralizedKarush–Kuhn–Tuckerpointfor(6).
Thenthefollowingimplicationsandequivalencesholdtrue:(a1)⇔(a2)⇔(a3)⇒(b1)⇔(b2)⇒(c1)⇔(c2)⇒(d1)⇔(d2).
Thepreviousresultnaturallysuggeststheuseofreplicatorequationsforapproxi-matingtheMCP.Infact,letAGbethe(symmetric)adjacencymatrixofgraphG;byputtingM=AG+12I,thereplicatordynamicalsystemwilliterativelymaximizetheobjectivefunctionof(1)andeventuallyconverge(withprobability1)toalocalmaximizer,whichbyvirtueofTheorem2,willthencorrespondtoacharacteristicvectorofamaximalcliqueofG.OnecanalsoputM=AG,inwhichcaseweob-taintheMotzkin–Strausprogram,butduetothepresenceofspuriousmaximizers,thesesolutionscanonlyprovideanapproximationofthesizeofthemaximumclique.Theempiricalresultsobtainedin[12]overnumerousDIMACSbenchmarkgraphsareencouragingandprovetheeectivenessofthisalgorithm.Theyalsoshowthattheap-proachbasedontheoriginal(non-regularized)versionoftheMotzkin–Strausproblemperformsslightlybetterthanitsregularizedcounterpart(1),intermsofcliquesize.
34I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
Thismaybeintuitivelyexplainedbyobservingthat,sincealllocalmaximaarestrict,thelandscapeofthenewobjectivefunction(1)iscertainlylessatthantheoneasso-ciatedtothenon-regularizedversionandthusadynamicsthatincreasestheobjectivefunctionateverystepwillbemorepronetoendupinacloselocalmaximum.
Finally,letusnotethatrecentempiricalinvestigations[13]indicatethatthereisnosigniÿcantgaininvaryingthestartingpointofthereplicatordynamicsbyintricatepreprocessing,orusingadiscretizationof(3)dierentfrom(4).
3.Boundsfortheannealingparameter
Inthissection,weestablishboundsfortheannealingparameterrelatedtothestabilityofxSunderthereplicatordynamics.Theÿrstresultsholdforgeneralsymmetricmatrices;wethenspecializetheseÿndingstothecaseofadjacencymatrices.Proposition5.Ifx∈Snisa(local)maximizerofx(A+I)xoverSnandS={i∈V:xi¿0};thennecessarily
(Ax)i−xAx
:i∈S:(9)¿(x)=max
xxProof.Sincexisalocalmaximizerofx(A+I)xonSn,thenTheorem4impliestheNashequilibriumcondition(7)whichforthecaseM=A+Ientails
(Ax)i+xi=(Mx)i6xMx=xAx+xx
foralli∈S
(notethatequalityhastoholdifi∈S,forotherwisewewouldarriveatthecontra-
dictionxMx=i∈Sxi(Mx)i¡xMx).Buti∈Smeansxi=0sothat¿(x)followsreadily.
Wemovetothefollowingresult:alocalmaximizerxofbothxAxandx(A+I)xoverSnnecessarilyhastobeacharacteristicvector.
Proposition6.Ifx∈Snisa(local)maximizerofbothxAxandx(A+I)xoverSnforsome=0;thennecessarilyx=xSifS={i∈V:xi¿0}.
Proof.FromTheorem2of[12]weknowthateverylocalmaximizerhastobeastationarypointundertherespectivereplicatordynamics.Henceforalli∈Swehave,dueto(5),
[Ax]i=xAx
andalso[Ax]i+xi=x(A+I)x=xAx+xx;
(10)
sothatallpositivecoordinatesofxhavetobeequal.Sincetheysumuptoone,theresultfollows.
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4935
Nowweneedsomeadditionalnotation.First,denotebye=(1;:::;1)∈Rnanddenotethe(n−1)-dimensionalhyperplaneofallvectorsthecoordinatesofwhichsumuptozeroby
e⊥={v∈Rn:ev=0}:
Givenanarbitraryn×nmatrixM,theactionofitsquadraticformone⊥canbefullydescribedwiththehelpoftheorthoprojectorP=I−(1=n)eeontoe⊥:indeed,foru∈e⊥wehavePu=uwhenceuMu=u(PMP)uresults.NowPMPissymmetricifMissymmetric,andeisaneigenvectortotheeigenvaluezeroofPMP,duetoPe=0.Henceweget
uMu¿min(M|e⊥)uu
forallu∈e⊥;
(11)
wheremin(M|e⊥)denotesthesmallesteigenvalueofPMP,ifthezeroeigenvalueisignoredwithmultiplicityone,i.e.,
min(M|e⊥)=min{∈R:PMPv=vforsomev∈e⊥\\{0}}:
(12)
WerecallTheorem5of[10]accordingtowhicheverylocalmaximizerzofxAxismaximizingthisfunctionoverthewholeface{y∈Sn:yi=0ifzi=0},andthisfaceiscontainedinthebasinofattractionofzunderthereplicatordynamics.Forsimplicityofexposition,weassumeinthenextresultthatthisfaceisthewholesimplexSn,inotherwords,thatzi¿0foralli.Further,inviewofProposition6wemayanddoassumethatz=b,whereb=xVisthebarycenterofSn,i.e.,zi=1=nforalli∈V.Thisgivesusanupperboundfortheparameterasfollows:
Proposition7.Ifb=xVisaglobalmaximizerofxAxonSn;thenbisalsoa(global)maximizerofx(A+I)xoverSnprovidedthat
6ÿ=min(−A|e⊥);
(13)
wheremin(−A|e⊥)isthesmallesteigenvaluecorrespondingtotheactionof−Aone⊥;deÿnedin(12).
Proof.TheNashequilibriumcondition(7)forbw.r.t.AimpliesxAb=bAbforallx∈Sn(again,otherwisewegotatleastonestrictinequality(Ab)i¡bAb,fromwhich
theabsurdbAb=bi(Ab)i¡bAbwouldresult).ButthenxAx−bAb=xAx−2xAb+bAb=(b−x)A(b−x)6−min(−A|e⊥)(b−x)(b−x)dueto(11).Ontheotherhand,wealsoget06(b−x)(b−x)=bb−2xb+xx=1=n−21=n+xx=xx−1=n=xx−bb,whence
x(A+I)x−b(A+I)b=xAx−bAb+(xx−bb)
6(xx−bb)−min(−A|e⊥)(b−x)(b−x)=(−ÿ)(xx−bb)60
results,provided6ÿholds,sincethelastexpressioninparenthesesisalwaysnon-negative.Hencetheresult.
(14)
36I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
Summarizing,weobtainanadmissiblerangeforourparameter:
Theorem8.LetS⊆{1;:::;n};with|S|=m.LetAS=(aij)i;j∈Sbethem×msubma-⊥
trixofAcorrespondingtoS;andeS=(1;:::;1)∈Rm.DenotebyÿS=min(−AS|eS).Ifx=xS∈Snisa(local)maximizerofxAxoverSnand∈](xS);ÿS[;thenxSisalsoastrictlocalmaximizerofx(A+I)xoverSn.
Ontheotherhand;if¡(xS);thenxSbecomesanunstablestationarypointofthereplicatordynamicsunderA+I;andthus;withprobabilityone;cannotbeapproachedbyaninteriorpathunderthesedynamics.
Proof.FromTheorem4,theclaimedassertionfollowsifwecanestablishlocalasymp-toticstabilityofxSunderthereplicatordynamicswith,say,continuoustime,andthematrixM=A+I.NowxSliesintherelativeinterioroftheface
F={x∈Sn:xi=0foralli∈S}
ofthesimplex,whichinturnisalsotimeinvariantunderdynamics(3)and(4).Asaconsequence,wecandecomposelocalstabilityanalysisintothequestionof“internal”stability(concerningconvergenceoftrajectoriesstartingnearbywithinF)and,separately,“external”stabilitydealingwithtrajectoriesstartinginSnbutoF.Externalstabilityisgovernedbythe“external”eigenvaluesofthelinearizationofthisdynamicsaroundxS,whicharegivenbythequantities(see[8,Lemma21])
[(A+I)xS]i−(xS)(A+I)(xS)=[AxS]i−(xS)A(xS)−(xS)(xS)
fori∈S:
Nowif¿(xS),thenthelatterquantityisnegativebydeÿnition(9).Ontheotherhand,internalstabilityofxSfollowsfrom6ÿSandtheoptimalityofxSw.r.t.x(A+I)xonthefaceFasinProposition7.RecallthatoptimalityonFisguaranteedbyTheorem5of[10].Hencetheresultfor¿(xS).Theinstabilityresultfollowsbythesameargumentationasin[14,Theorem6]:allstartingpointsoftrajectoriesconvergingtothenon-asymptoticallystablepointxSlieonthecenter-stablemanifold[27,28]whichalwaysisofcodimensionatleastone.Hence,atrajectorywitharandomlychosenstartingpointwillalmostsurelynotconvergetoxS.
AfurtherresultholdswhenAistheadjacencymatrixofagraphG:
Theorem9.IfA=AGistheadjacencymatrixofgraphGandSisastrictlymaximalclique;then]−1;1[⊆](xS);ÿS[.Moreprecisely,(xS)6−1thatbecomes(xS)60ifSisjustamaximalclique;ontheothersideÿS=1foranykindofcliqueS.Proof.IfA=AGandx=xSisthecharacteristicvectorofastrictlymaximalcliqueofsizek=|S|,weknowthat(xS)cannotexceed−1,becauseof
k([AGxS]i−(xS)AG(xS))=dS(i)−(k−1)6−1
(15)
foralli∈SduetothedeÿnitionofstrictmaximalityofS(similarly,onecanshow
that(xC)60foranymaximalcliqueC).RecallthatdS(i)=j∈Saijdenotesthe
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4937
degreeofvertexiw.r.t.S,i.e.,thenumberofverticesinSconnectedtoi.Moreover,inthesimplifyinghypothesisofProposition7,ifxV=bisaglobalmaximizerofxAx,thenGisacompletegraph,i.e.AG=ee−I,sothat−PAGP=PandconsequentlyÿV=1.ReturningtothegeneralsituationwherewehavetoreplaceVwithS,weseethatbyanalogy,ÿS=1musthold.
Theorem10.If0¡¡1;thentheonlystrictlocalmaximizersofx(AG+I)xoverSn(i.e.theonlyattractingstationarypointsunderthereplicatordynamicswithAG+I)arecharacteristicvectorsxSwhereSisamaximalclique.Conversely;ifSisamaximalclique;thenxSrepresentsastrictlocalmaximizer.
Proof.Weshowthateveneverylocalmaximizery∈Sn(notnecessarilystrict)isacharacteristicvector,byvirtuallythesameproofasofTheorem9in[10]:tothisend,putS={i:yi¿0}.FirstweshowthatthesubgraphofGinducedbySiscomplete.Indeed,supposethatforsomei;j∈Swithi=jwehad(i;j)∈E,i.e.aij=0wouldhold.Thenforsmall¿0,thepointx=y+(ei−ej)∈Snwhereeiistheithstandardbasisvector.Straightforwardcalculationsnowyield
x(A+I)x=y(A+I)y+2¿y(A+I)y;
acontradictiontotheoptimalityofy.HencewithASandeSasdeÿnedinTheorem
8wegetAS=eSeS−I.NowtheKarush–Kuhn–Tuckerconditionsnecessaryforlocaloptimalityyield,inparticular,ASyS+yS+eS=oforsome∈R,whichgives,usingeSyS=1,
yS=
1+
eS;1−
which,againusingeSyS=1,yieldsy=xS.ItremainstoshowthatSismaximal.Sosupposethatthereisavertexi∈SsuchthatdS(i)=|S|.Butthenasin(15),
[(AG+I)xS]i−(xS)(AG+I)(xS)=
dS(i)−|S|+1−
¿0;
|S|contradictingtheNashequilibriumproperty(7)ofxSw.r.t.M=AG+I,whichisensuredbylocaloptimalityofxSduetoTheorem4.HenceSisamaximalclique.Toshowtheconverseassertion,observethatxSisalocalmaximizerofxAGxoverSnduetoTheorem1.Now∈[0;1[⊂](xS);ÿS[(byTheorem9),andTheorem8impliesthatxSisalsoastrictlocalmaximizerofxAG+IxoverSn.
Forthecase−1¡¡0nogeneralresulthasbeenproven,butexamplescanbeprovidedinwhichnew(spurious)localmaximaemergewhicharenotcharacteristicvectorsofanysubsetofvertices,andatthesametimelocalsolutionsintheformofcharacteristicvectorsdisappear.Inthenextsection(andinanappendix)westudysmallexampleswhichillustratethispoint.
38I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
Fig.1.TheMotzkin–Strausprogramf0(x)andxxwhenxvariesoverS3.
Fig.2.f1=2(x)andf−1=2(x)onS3.
4.Aprototypicalexample
Inthissectionweinvestigateasmall,butneverthelessinteresting,example,sketchedinFig.1.Itisagraphofsize3withtwomaximumcliquesofsize2intersectinginvertex3.HenceAGhaszeroentrieswiththeexceptionofa13=a31=a23=a32=1.ThisisafrequentlyconsideredcounterexampleexhibitingspurioussolutionstotheMotzkin–Strausprogram[36].Forthissimplegraphf(x)isdeÿnedonthetwo-dimensionalsimplexS3sothatwecanactuallyplotitillustratinggraphicallytheÿndingsofthepreviousparagraphs.
Moreprecisely,S3isatrianglespannedbythevertices[1;0;0],[0;1;0]and[0;0;1]containedintheplanedescribedbytheequationx1+x2+x3=1.Ourplotstakethisplaneastheirhorizontalplanesettingtheirorigininthevertex[0;0;1]ofS3.ToremindthereaderofthissituationtheplotsofFig.1containtheS3trianglemarkedingray;thethird,vertical,axisoftheplotsreportthevaluesoff(x).
TheplotsofFig.1containthebasicMotzkin–Strausprogramandtheregularizertermxx,respectively;Fig.2containplotsoff1=2(x)andoff−1=2(x)seenfromaslightlydierentviewpoint.Onecanintuitivelygraspwhatishappeningbyrealizing
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4939
thatthesetwoplotsareobtainedbytheÿrstoneofFig.1whentheregularizingtermis,respectively,addedorsubtracted.
LetusnowexaminetheÿguresindetailstartingfromthebasicMotzkin–StrausprograminFig.1.InthisexampletherearetwomaximumcliquesS={1;3}and
111T
T={2;3},andtheircharacteristicvectorsxS=[12;0;2]andx=[0;2;2]give
111
f0(xS)=f0(xT)=12.Butmoregenerally,f0(x)=2forallx=[2−s;s;2]when06s612.ThisexampleshowsexplicitlythatintheMotzkin–Strausprogramtheglobalmaximizeroff0(x)arenotnecessarilycharacteristicvectorsofmaximumcliques,asstatedbythefollowinggeneralproperty(see[39]foraproofandrelatedresults):
Theorem11.LetGbeagraphcontainingmaximumcliquesC1;:::;Cq(amongpos-sibleothers).TheneveryvectorbelongingtotheconvexhulloftheircharacteristicvectorsisaglobalmaximizerofxAGxoverSnifandonlyif;foralli;j=1;:::;q;thenumberofedgeshavingoneendpointinCi\\CjandtheotherinCj\\Ciequalsmij(mij−1);wheremij=|Ci\\Cj|=|Cj\\Ci|.
Fig.2containsf1=2(x)andshowsthatinthiscasetheonlymaximacorrespondtothecharacteristicvectorsofthemaximumcliqueswhilethesecondplot,containingf−1=2(x),showsthattheisolatedmaximizerisaninteriorpointnotcorrespondingtoanycliquevector.For¿1,e.g.f3=2(x),thesituationisessentially(apartfromtheverticalscale)thatoftheregularizerterminFig.1.Theseplotsillustratealsotheroleoftheboundsofthat,forthisexample,are=0andÿ=1forbothxSandxTaspredictedbyTheorem9.Theshapesoff−1=2(x),f1=2(x)andf3=2(x),representingthethreepossiblecasesofwithrespecttoitsbounds,conÿrmtheresultsofTheorems8and10.
Amoredetailedanalysistogetherwiththatofanothersimpleexampleisprovidedintheappendix.
5.Theannealedreplicationheuristic
Asdiscussedpreviously,themajordrawbackofreplicatorequationsistheirinherentinabilitytoescapefromlocalmaximizersoftheobjectivefunction.Theorem8providesuswithanimmediatestrategytoavoidunwantedlocalsolutions,i.e.,maximalcliqueswhicharenotmaximum.SupposethatSisamaximalcliqueinGthatwewanttoavoid.Byletting¡(xS),itscharacteristicvectorxSbecomesanunstablestationarypointofthereplicatordynamicsunderf,andthuswillnotbeapproachedbyanyinteriortrajectory.Ofcourse,theproblemistoobtainareasonableestimatefor(xS)withoutknowingSinadvance.Furthermore,if60,itmaywellhappenthattheprocessconvergestoavectorwhichdoesnotrepresentaclique(seebelow).Sinceweareconcernedwiththemaximumcliqueproblem,
(xS)=S=maxdS(i)−|S|+1:
i∈S
(16)
40I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
Asalreadynotedin(15),S6−1ifSisstrictlymaximalwhileS=0ifSisnotstrictlymaximal.Inbothcases,S¿1−|S|withequalityattainedifSisisolatedinG.Soifonewantstoavoidcliqueswithsize|S|6m,onecouldsimplyrunthealgorithmwith¡1−m61−|S|6S60,andifthereisacliqueTsuchthatstillT¡holds,thereisa(moreorlessjustiÿed)hopetoobtaininthelimitxT,whichyieldsautomaticallyalargermaximalcliqueT.Unfortunately,twoothercasescouldoccur:
(a)noothercliqueTsatisÿesT¡,i.e.,hasatoolargevalue;
(b)evenifthereissuchaclique,otherattractorscouldemergewhicharenotchar-acteristicvectorsofaclique(notethatthisisexcludedif¿0byTheorem10).
Theproperchoiceoftheparameteristhereforeatrade-obetweenthedesiretoremoveunwantedmaximalcliquesandtheemergenceofspurioussolutions.Wepresentnowthestrategyweadoptedinthischoicestressingthat,giventhelackofpreciseindications,ourprescriptionsaresupportedmainlybynumericalresultsobtainedinextensivetestsandbytheintuitionsobtainedexaminingthesetestsandsimpleexampleslikethoseofSection4andoftheappendix.
Insteadofkeepingthevalueofÿxed,ourapproachistostartwithasucientlylargenegativeandadaptivelyincreaseitduringtheoptimizationprocess,inmuchthesamespiritasthesimulatedannealingprocedure[30].Ofcourse,inthiscasetheannealingparameterhasnointerpretationintermsofahypotheticaltemperature,andtheresultingalgorithmiscompletelydeterministic.Therationalebehindthisideaisthatforvaluesofthataresucientlynegativeonlythecharacteristicvectorsoflargemaximalcliqueswillbestableattractivepointsforthereplicatordynamics,togetherwithasetofspurioussolutions.Asthevalueofincreases,spurioussolutionsdisappearandatthesametime(characteristicvectorsof)smallermaximalcliquesbecomestable.Weexpectthatatthebeginningoftheannealingprocessthedynamicsisattractedtoward“promising”regions,andthesearchisfurtherreÿnedastheannealingparameterincreases.Insummary,theproposedalgorithmisasfollows:
1.Startwithasufficientlylargenegative.2.LetbbethebarycenterofSnandsetx=b.
3.Runthereplicatordynamicsstartingfromx,underA+Iuntilconvergenceandletxbetheconvergedpoint.
4.Unlessastoppingconditionismet,increaseandgoto3.5.Selectwith0¡¡1(e.g.=12),runthereplicatordynamicsstartingfromcurrentxunderA+Iuntilconvergence,andextractamaximalcliquefromtheconvergedsolution.
Thelaststepinthealgorithmisnecessaryifwewanttoextractalsotheverticescomprisingthecliquefound,asshowninTheorem10.
Notethatwhen¡0wearenolongerguaranteedthatthetrajectoriesoftherepli-catordynamicsinstep(3)willremaininthesimplexSn,andhencex(A+I)xwillnotnecessarilyincreaseateverystep.Admittedly,inthenumericalsimulationswe
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4941
carriedoutandwhicharereportedinthefollowingsection,thisphenomenonalmostneverhappened.Inafewcasestheÿrstiterationyieldednegativeentriesintheiteratedvector,butatthefollowingstepsthevectorwasreadilyprojectedontothesimplex.Inanycase,amatrixwithnegativeelementsisnoproblem.Itissimpletoseethat,byaddingasucientlylargeconstanttothematrixtomakeitnon-negative,thetheoryandtheoptimizationprocessareunaected.
Itisclearthatforthealgorithmtowork,weneedtoselectanappropriate“anneal-ing”strategy.Tothisend,onecouldemploythefollowingheuristics:supposeforthemomentthattheunderlyinggraphisarandomoneinthesensethatedgesaregener-atedindependentlyofeachotherwithacertainequalprobabilityq(inapplications,qcouldbereplacedwith|E|=(n2),theactualdensity).SupposeSisanunwantedcliqueofsizem.Take¿0small,say0.01,andconsideralowerboundwhichisexceededwithprobability1−:
Theorem12.UndertherandomgraphmodelconsideracliqueSofsize|S|=m;put=1=2(n−m)anddenotebymthefollowinglowerboundfor(xS):
(17)m=1−(1−q)m−mq(1−q):Then
m)6:P((xS)6
Moreover;mexceeds1−mforallm¿mq;where
1−q√n
mq;=:q(18)
Proof.Since(xS)=maxi∈SdS(i)−m+1,andsincefordierenti=j,thevariatesdS(i)anddS(j)arestochasticallyindependentintherandomgraphmodel,weÿrstgettheidentity
m)=[P(dS(i)6m+m−1)]n−m:P((xS)6
Next,observethattheexpectedvalueandvarianceofdS(i)is,accordingtotheBino-mialLaw,
EdS(i)=mq
and
VardS(i)=mq(1−q):
ÄHenceCebyÄsev’sinequalitygives
P(|dS(i)−mq|¿)6mq(1−q)=2;whichentails,putting=1−(1−q)m−m¿0,
m+m−1)=P(dS(i)−mq6m+(1−q)m−1)P(dS(i)6
=P(dS(i)−mq6−)
6P(|dS(i)−mq|6)6mq(1−q)−2:
(19)
42I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
ThisgivesanlowerboundmforSwhichisexceededwithaprobabilityofleast1−asfollows:
m)=[P(dS(i)¡m+m−1)]n−mP((xS)6
6[mq(1−q)−2]n−m=
(20)
√
provided1−(1−q)m−m==mq(1−q)2(n−m),whichyields(17).Since¿1=2nbydeÿnition,obviously261=n.Ontheotherhand,m¿1−mifandonlyifqm−
mq(1−q)¿0,whichisequivalenttom¿[(1−q)=q]2.Hencem¿mq;¿[(1−q)=q]2yieldsm¿1−m.Sincemq;610ifq¿0:1forall¿0,thepreviouslyobtainedhardlowerbound1−misrelaxedbyminalmostallimportantapplications.Moreovertheboundmdecreaseswithincreasingmprovidedthat
m21−q1
√1+log¿−
(n−m)2qmholds,andthisistrueformanyimportantcasesinpractice:indeed,observethatthe
latterinequalitynecessarilyholdsiftheexpressioninbracketsispositive,whichistrue,e.g.for=0:01,whenever6m6(n−m)2.Thusitmakessensetousemasaheuristicproxyforthelowerboundof(xS),toavoidbeingattractedbyacliqueofsizem.
Furthermore,awell-knownresultduetoMatula[32]accuratelypredictsthesizeofthemaximumcliqueinrandomgraphswithsucientlymanyvertices.Let
M(n;q)=2log1=qn−2log1=qlog1=qn+2log1=q
e
+1:2(21)
Matulaprovedthat,asn→∞,thesizeofthemaximumcliqueinann-vertexq-densityrandomgraphiseitherM(n;q)orM(n;q)withprobabilitytendingto1.
Thepreviousresultssuggestusasortof“two-level”annealingstrategy:thelevelofcliquesize,whichinturninducesthatofthe“actual”annealingparameter.Moreprecisely,ifwedonothaveanyaprioriinformationabouttheexpectedsizeofthemaximumclique,wecanuseMatula’sformulaM(n;q)tohaveaninitial(moreorlessaccurate)estimateofit.Letm=M(n;q);bysettingtheinitialvaluefor(step1ofouralgorithm)atsomeintermediatevaluebetweenmandm−1,e.g.=(m+m−1)=2,weexpectthatonlythecharacteristicvectorsofmaximalcliqueshavingsizemwillsurviveinf,togetherwithmanyspurioussolutions.Aftertheinitialcycle,wedecreasem,recalculatemandm−1andupdate=(m+m−1)=2instep4asinthepreviousstep.Thewholeprocessisiterateduntileithermreaches1orbecomesgreaterthanzero.
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4943
6.Experimentalresults
Toassesstheeectivenessoftheproposedheuristic,extensivesimulationswerecarriedoutoveraselectionofDIMACSgraphs[25],whichrepresentastandardbenchmarkforcliqueÿndingalgorithms.3Theexperimentswereconductedusingthediscrete-timeversion(4)ofthereplicatorequations.ThecodewaswrittenintheCprogramminglanguageandrunonaDigitalAlphaStationSeries200(noattemptwasmadetooptimizethecode).Foreachgraphconsidered,theproposedalgorithmwasrunbyusingthetwo-levelannealingscheduledescribedattheendoftheprevioussection.Foreachinternalcycle(step3),thereplicatoralgorithmwasiterateduntilthe(squared)distancebetweentwosuccessivestatesbecamesmallerthan10−10.Attheÿnalcycle(i.e.,step5),theparameterwassetto12,andthereplicatordynamicswasstoppedwheneitheramaximalclique(i.e.,alocalmaximizeroff1=2onSn)wasfoundorthedistancebetweentwosuccessivepointswassmallerthanaÿxedthresh-old,whichwassetton10−15(nbeingthenumberofverticesofthegraphathand).Inthelattercasetheconvergedvectorwasrandomlyperturbed,andthealgorithmrestartedfromtheperturbedpoint.Becauseoftheone-to-onecorrespondencebetweenlocalmaximizersandmaximalcliques(seeTheorem10)thissituationcorrespondstoconvergencetoasaddlepoint.
Inordertoassesstherelativemeritsoftheproposedheuristicwecomparedouralgorithmwithplainreplicatordynamicswithÿxed,i.e.,withnoannealingstrat-egy.Speciÿcally,twocaseswereconsidered:=12,whichcorrespondstotheoriginalspurious-freequadraticprogramproposedby[24]andrecentlystudiedbyBomzeetal.[10,12],and=0whichistheoriginalMotzkin–Strausformulation[33]asstudiedbyPelillo[37].Inbothcases,thereplicatorprocesswasstartedfromthebarycenterofthesimplex,anditerateduntilthesquareddistancebetweentwosuccessivestatesbecamesmallerthan10−20.Inaddition,ourresultswerecomparedwiththosere-portedbyGibbonsetal.[21]whoproposedacontinuous-basedheuristic(CBH)alsobasedonaparameterization(completelydierentfromours)oftheMotzkin–Strausprogram.
TheresultsofourexperimentsaresummarizedinTables1and2,whichcontainarowforeachDIMACSgraphsconsidered.Thecolumnslabeledgraph,vertices,anddens.representthenameofthecorrespondinggraph,thenumberofitsverticesanditsdensity,respectively.ThecolumnMaxClique,containsthesizeofthemaximumcliquewhenknown,oralowerboundforit(thisinformationisalreadyavailableintheÿlecontainingthegraph).ThecolumnsARH,PRD(12),PRD(0)andCBHcontainthesizeofthecliquefoundusingtheproposedannealedreplicationheuristic(ARH),theplainreplicatordynamics(PRD)appliedto(2)with=12,theplainreplicatordynamics(PRD)appliedto(2)with=0—theseresultsaretakenfrom[11]—and
Wedidnotconsidergraphswheretheplainalgorithmappliedto(1)alreadyyieldsthemaximumclique,e.g.,the“c-fat”family[11].Also,afewverylargeanddensegraphswereexcludedbecauseoftheexcessivelyhighcomputationalcostrequired.
3
44I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
Table1
ResultsonDIMACSbenchmarkgraphs(partI)Graphbrock200brock200brock200brock200brock400brock400brock400brock400brock800brock800brock800brock800
1234123412341212311231Vertices2002002002004004004004008008008008001000200200200200200400400400400400200200400400
Dens.0.7450.4960.6050.6580.7480.7490.7480.7490.6490.6510.6490.6500.5010.7000.7000.9000.9000.9000.5000.7000.7000.7000.9000.7000.9000.9000.700
Maxclique2112151727293133232425261530187060441340302210018¿4213¿21
CliquesizeobtainedARHPRD(1)21910131420232323181819198151245393172015125016411321
17891221201819161516158151245363272015124014371118
PRD(0)188101321222021171718178151245353372015125516401118
CBH2012141623242324201920198151246363082015145018411220
Time(s)167.7997.33124.44150.74906.26752.69554.45937.843323.313175.442697.563181.741824.6039.6640.11106.2956.0398.76156.77232.39230.72194.12425.88131.12158.41269.64838.30
san1000san2000.7san2000.7san2000.9san2000.9san2000.9san4000.5san4000.7san4000.7san4000.7san4000.9sanr200sanr200sanr400sanr400
0.70.90.50.7theGibbonsetal.CBHalgorithm[21],respectively.Finally,thecolumnlabeledtimecontaintheCPUtimerequiredbytheprocesstoprovidetheÿnalsolution.
Ascanbeseen,theresultsareveryencouraging.Infact,inalmostallcasesweobtainedlargercliqueswithARHthanPRD(12)did(theexceptionsbeingbrock4001,san2000.93andphat700-2).Inmanycases,weobtainedthesameresultsasCBHandinafewexampleswereturnedbettersolutions,e.g.,phat1500-2,san2000.92,sanr4000.5.ARHalsoperformedbetterthanPRD(0).Onlyinsixoutof46casesPRD(0)returnedalargercliquesize,thatis:brock4001,san2000.93,san4000.91,phat500-3,phat700-2,andphat1000-3.However,asdiscussedinprevioussections,duetothepresenceofspurioussolutionsintheoriginalMotzkin–Strausprogram,PRD(0)isnotabletoalwaysreturnthenodescomprisingthecliquefound:itonlyprovidesinformationaboutitssize.ItisworthnotingthattheSan-chisgraphs(the“san”family)turnedouttobeveryhardforMotzkin–Straus-basedoptimizationalgorithmssinceneitherofthethreeheuristicsfoundgoodresults.
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
Table2
ResultsonDIMACSbenchmarkgraphs(partII)GraphMANNa9MANNa27ppppppppppppppp
hat300-1hat300-2hat300-3hat500-1hat500-2hat500-3hat700-1hat700-2hat700-3hat1000-1hat1000-2hat1000-3hat1500-1hat1500-2hat1500-3Vertices45378300300300500500500700700700100010001000150015001500171776
Dens.0.9270.9900.2440.4890.7440.2530.5050.7520.2490.4980.7480.2450.4900.7440.2530.5060.7540.6490.751
Maxclique1612682536936¿491144¿6210¿46¿6512¿65¿941127
CliquesizeobtainedARHPRD(1)216117825359364794159104462106491816
121176223283347743578426196289715
PRD(0)121176243383548943598446396290715
CBH1612182536935491144601046651163941021
Time(s)
45
0.8336807.81107.63301.693221.27335.83893.211729.50739.921893.962582.181965.473010.437288.224100.548598.9116251.7734.85610.16
keller4keller5
AsfarastheCPUtimeisconcerned,itisclearthatouralgorithmturnsouttobecomputationallymoreexpensivethanplainreplicatordynamicsonÿxed(see[12]forcomparison)becausethelatterissimplyasinglestepofourheuristic.Moreover,ARHisslowerthanCBH[21]whichinturnmayhaveseriousmemoryallocationproblems.However,wenotethatthecontinuous-timeversion(3)ofreplicatorequationscannaturallybemappedontohardwarecircuitry[41],therebymakingthewholealgorithmparticularlyamenabletoparallel,distributedimplementations.
Fromtheresultsobtained,itcanbeconcludedthattheproposedannealedreplicationheuristicdoesagoodjobatÿndinglargecliques,andclearlybeatstheplainreplicatordynamicsapproach,wherenoannealingstrategyisused.Moreover,itshouldbepointedoutthattheannealingscheduleadoptedisentirelybasedontheassumptionthatthegraphsathandarerandom;clearly,DIMACSgraphscanhardlysaidtobe“random,”butneverthelesstheheuristicworkedremarkablywell.Ofcourse,betterannealingstrategiescouldbedevisedifweknewsomethingabouttheunderlyingstructureofthegraphs,butinabsenceofthiskindofinformationtherandomgraphassumptionseemstobesucientlyrobust.7.Conclusions
Wehavepresentedanewheuristicforapproximatingthemaximumcliqueproblem.Theapproachiscenteredaroundanattractivecharacterizationoftheproblemdueto
46I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
MotzkinandStraus,whichallowsustoformulateitasalinearlyconstrainedquadraticmaximizationprogram.Speciÿcally,wehaveintroducedacontrolparameterandstudiedthepropertiesoftheobjectivefunctionasvaries.Wehaveshownthatwhenispositiveallthepropertiesenjoyedbythestandardregularizationapproach[10]holdtrue;speciÿcally,inthiscaseaone-to-onecorrespondencebetweenlocal=globalmaximizersinthecontinuousspaceandlocal=globalsolutionsinthediscretespaceex-ists.Fornegative’saninterestingpictureemerges:astheabsolutevalueofgrowslarger,localmaximizerscorrespondingtomaximalcliquesdisappear.Wehavederivedboundsontheparameterwhichaectthestabilityofthesesolutions.Theseresultshavesuggestedtheannealedreplicationheuristic,whichconsistsofstartingfromalargenegativeandthenproperlyreducingitduringtheoptimizationprocess.Foreachvalueofstandardreplicatorequationsareruninordertoobtainlocalsolu-tionsofthecorrespondingobjectivefunction.Therationalebehindthisideaisthatforvaluesofwithaproperlargeabsolutevalueonlylocalsolutionscorrespondingtolargemaximalcliqueswillsurvive,togetherwithvariousspuriousmaximizers.Asthevalueofisreduced,spurioussolutionsdisappearandsmallermaximalcliquesbecomestable.Anannealingscheduleisproposedwhichisbasedontheassumptionthatthegraphsbeingconsideredarerandom.ExperimentsconductedoverseveralDI-MACSbenchmarkgraphsconÿrmtheeectivenessoftheproposedapproachandtherobustnessoftheannealingstrategy.Theoverallconclusionisthattheannealingpro-ceduredoeshelptoavoidinecientlocalsolutions,byinitiallydrivingthedynamicstowardspromisingregionsinstatespace,andthenreÿningthesearchastheannealingparameterisincreased.Acknowledgements
Theauthorswouldliketothankoneoftheanonymousrefereesforprovidingcriticalcommentsandsuggestions.
AppendixFulldynamicanalysisoftwoexamples
HereweinvestigatethedynamicbehaviorofthereplicatordynamicsofAG+Iasvariesovertheentirerealline,forthegraphofsize3consideredinSection4.SinceforthereplicatordynamicsonS3acompleteclassiÿcationofthereplicatorowisavailable[7,9],werefrainfromrepeatingthephaseportraitsinpictureshere,butratherrefertothenumbersinthesystemusedinthecitedarticles(seeFig.6in[7]andFig.1in[9]).Apreÿxedminussign(−)symbolizestimereversaloftherespectivephaseportrait(PP).Insomecases,thePPshavetoberotatedaccordingly.Therearethreebifurcationsat=0;1;2:for¡0thesituationisessentiallythatofthesecondplotofFig.2andthereisonlytheinteriorattractor
1−1−2−y=:;;
4−34−34−3I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4947
TheowisdepictedasPP7inFig.6of[7].Asincreasesreachingtheÿrstbifur-cationat=0thesituationchangesfromthatofthesecondplotofFig.2tothatoftheMotzkin–StrausprogramofFig.1.Theowstopsnotonlyattheedgeconnectingvertices1and2,butalsoalongthetrajectoriesjoiningywiththe(former)saddlepointsxSandxT,sothatwearriveatPP1.If∈]0;1[thesituationisessentiallythatoftheÿrstplotofFig.2,andwehavethepictureofPP8,whichrendersbothxSandxTas(local)attractors,andyasasaddlepointwanderingtowardsx{3}as1.Thiscompletelybreaksdownif=1where,again,theowisstoppedattwoedges:PP20emerges.Ifisincreasedfurther,onlytheverticesareattractingwiththeoccurrenceofyasaninteriorrepellorifexceeds2:wegetPP−35for∈]1;2]andPP−7if¿2.TheregularizingtermofFig.1substantiallydepictsthesituationafterthelastbifurcationat=2.
Inanotherexample,Gconsistsofthreeverticeswithonlytwoofthemconnected,soAGhasonlyzeroentrieswiththeexceptionofa12=a21=1.HenceS={1;2}istheuniquemaximumclique.Inthiscase,replicatordynamicsundergoesasimpleexchange-of-stabilitybifurcationaspassesthrough=−1,andamoredramatic,butsimilarphenomenonoccursas=0wheretheowontwoedgesisreversedsimultaneously:indeed,for¡−1weobtain,again,PPNo.7withinteriorglobalattractoroftheform
+1;;x=
3+13+13+11111S
(observethatxapproaches[13;3;3]as−∞whilex→x=[2;2;0]as−1).Ifnowincreases,thisstablestationarypointremainsatxS.Indeed,thePPisfor∈[−1;0[qualitativelythesameasPP35whilefor=0weobtainthePP−20.StillxSistheglobalattractor.Ifisfurtherincreasedtopositivenumbers(e.g.=12),thenlocalstabilityofxSisretained,butthereemergesasecondlocalattractorx{3}(correspondingtothemaximalclique{3})togetherwithaninteriorsaddlepoint,againatxasabove,andthePP−8results.If=1,stabilityofx{3}isretained,buttheowattheedgecontainingxSstops:PP−1depictsthesituation,whichinsomesensecorrespondstotheoccurrenceofspurioussolutionsinthepreviousexample(emergingat=0there).Finally,if¿1,wearriveagainatPP−7wherexisnowarepellorandallverticesbecomeattractors.ThisisinaccordancewiththetheoryasinTheorem8.
References
[1]S.Arora,C.Lund,R.Motwani,M.Sudan,M.Szegedy,Proofveriÿcationandthehardnessof
approximationproblems,Proceedingsofthe33rdAnnualSymposiumonFoundationsofComputerScience,Pittsburgh,PA,1992,pp.14–23.
[2]S.Arora,S.Safra,Probabilisticcheckingofproofs:anewcharacterizationofNP,Proceedingsofthe
33rdAnnualSymposiumonFoundationsofComputerScience,Pittsburgh,PA,1992,pp.2–13.
[3]M.Bellare,S.Goldwasser,C.Lund,A.Russell,Ecientprobabilisticallycheckableproofsand
applicationtoapproximation,Proceedingsofthe25thAnnualACMSymposiumonTheoryComput.,SanDiego,CA,1993,pp.294–304.
48I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–49
[4]M.Bellare,S.Goldwasser,M.Sudan,Freebits,PCPsandnon-approximability—towardstightresults,
Proceedingsofthe36thAnnualSymposiumonFoundationsofComputerScience,Milwaukee,WI,1995,pp.422–431.
[5]L.E.Baum,J.A.Eagon,Aninequalitywithapplicationstostatisticalestimationforprobabilistic
functionsofMarkovprocessesandtoamodelforecology,Bull.Amer.Math.Soc.73(1967)360–363.[6]L.E.Baum,G.R.Sell,Growthtransformationsforfunctionsonmanifolds,PaciÿcJ.Math.27(2)
(1968)211–227.
[7]I.M.Bomze,Lotka–Volterraequationandreplicatordynamics:atwo-dimensionalclassiÿcation,Biol.
Cybernet.48(1983)201–211.
[8]I.M.Bomze,Non-cooperativetwo-persongamesinbiology:aclassiÿcation,Internat.J.GameTheory
15(1986)31–57.
[9]I.M.Bomze,Lotka–Volterraequationandreplicatordynamics:newissuesinclassiÿcation,Biol.
Cybernet.72(1995)447–453.
[10]I.M.Bomze,Evolutiontowardsthemaximumclique,J.GlobalOptim.10(1997)143–164.
[11]I.M.Bomze,M.Budinich,P.M.Pardalos,M.Pelillo,Themaximumcliqueproblem,in:D.Z.Du,P.M.
Pardalos(Eds.),HandbookofCombinatorialOptimization(suppl.Vol.A),Kluwer,Dordrecht,1999,pp.1–74.
[12]I.M.Bomze,M.Pelillo,R.Giacomini,Evolutionaryapproachtothemaximumcliqueproblem:
Empiricalevidenceonalargerscale,in:I.M.Bomze,T.Csendes,R.Horst,P.M.Pardalos(Eds.),DevelopmentsinGlobalOptimization,Kluwer,Dordrecht,1997,pp.95–108.
[13]I.M.Bomze,F.Rendl,Replicatordynamicsforevolutiontowardsthemaximumclique:variations
andexperiments,in:R.DeLeone,A.Murli,P.M.Pardalos,G.Toraldo(Eds.),HighPerformanceAlgorithmsandSoftwareinNonlinearOptimization,Kluwer,Dordrecht,1998,pp.53–68.
[14]I.M.Bomze,V.Stix,Geneticengineeringvianegativeÿtness:evolutionarydynamicsforglobal
optimization,Ann.Oper.Res.89(1999)297–318.
[15]M.Budinich,Boundsonthemaximumcliqueofagraph,Disc.Appl.Math.,toappear.
[16]J.F.Crow,M.Kimura,AnIntroductiontoPopulationGeneticsTheory,Harper&Row,NewYork,
1970.
[17]U.Feige,S.Goldwasser,L.LovÃasz,S.Safra,M.Szegedy,ApproximatingcliqueisalmostNP-complete,
Proceedingsofthe32ndAnnualSymposiumonFoundationsofComputerScience,SanJuan,PuertoRico,1991,pp.2–12.
[18]U.Feige,S.Goldwasser,L.LovÃasz,S.Safra,M.Szegedy,Interactiveproofsandthehardnessof
approximatingclique,J.ACM43(2)(1996)268–292.
[19]R.A.Fisher,TheGeneticalTheoryofNaturalSelection,ClarendonPress,Oxford,1930.
[20]A.H.Gee,R.W.Prager,Polyhedralcombinatoricsandneuralnetworks,NeuralComput.6(1994)161–
180.
[21]L.E.Gibbons,D.W.Hearn,P.M.Pardalos,Acontinuousbasedheuristicforthemaximumclique
problem,in:D.S.Johnson,M.Trick(Eds.),Cliques,Coloring,andSatisÿability—SecondDIMACSImplementationChallenge,AmericanMathematicalSociety,Providence,RI,1996,pp.103–124.
[22]L.E.Gibbons,D.W.Hearn,P.M.Pardalos,M.V.Ramana,Continuouscharacterizationsofthemaximum
cliqueproblem,Math.Oper.Res.22(3)(1997)754–768.
[23]J.Hastad,Cliqueishardtoapproximatewithinn1−j,Proceedingsofthe37thAnnualSymposiumon
FoundationsofComputerScience,1996,pp.627–636.
[24]J.Hofbauer,K.Sigmund,TheTheoryofEvolutionandDynamicalSystems,CambridgeUniversity
Press,Cambridge,UK,1988.
[25]D.S.Johnson,M.A.Trick(Eds.),Cliques,Coloring,andSatisÿability:SecondDIMACS
ImplementationChallenge,DIMACSSeriesinDiscreteMathematicsandTheoreticalComputerScience,Vol.26,AmericanMathematicalSociety,Providence,RI,1996(seealsohttp:==dimacs.rutgers.edu=Volumes=Vol26.html).
[26]S.Karlin,Mathematicalmodels,problemsandcontroversiesofevolutionarytheory,Bull.Amer.Math.
Soc.10(1984)221–273.
[27]A.Kelley,Thestable,center-stable,center,center-unstable,unstablemanifolds,J.DierentialEquations
3(1967)546–570.
[28]A.Kelley,Stabilityofthecenter-stablemanifold,J.Math.Anal.Appl.18(1967)336–344.
[29]M.Kimura,Onthechangeofpopulationÿtnessbynaturalselection,Heredity12(1958)145–167.
I.M.Bomzeetal./DiscreteAppliedMathematics121(2002)27–4949
[30]S.Kirkpatrick,C.D.GelattJr.,M.P.Vecchi,Optimizationbysimulatedannealing,Science220(4598)
(1983)671–679.
[31]S.E.Levinson,L.R.Rabiner,M.M.Sondhi,Anintroductiontotheapplicationofthetheoryof
probabilisticfunctionsofaMarkovprocesstoautomaticspeechrecognition,BellSystemTech.J.62(1983)1035–1074.
[32]D.W.Matula,Thelargestcliquesizeinarandomgraph,TechnicalReportCS7608,Departmentof
ComputerScience,SouthernMethodistUniversity,1976.
[33]T.S.Motzkin,E.G.Straus,MaximaforgraphsandanewproofofatheoremofTurÃan,Canad.J.Math.
17(1965)533–540.
[34]C.H.Papadimitriou,K.Steiglitz,CombinatorialOptimization:AlgorithmsandComplexity,
Prentice-Hall,EnglewoodClis,NJ,1982.
[35]P.M.Pardalos,Continuousapproachestodiscreteoptimizationproblems,in:G.DiPillo,F.Giannessi
(Eds.),NonlinearOptimizationandApplications,PlenumPress,NewYork,1996,pp.313–328.
[36]P.M.Pardalos,A.T.Phillips,Aglobaloptimizationapproachforsolvingthemaximumcliqueproblem,
Internat.J.ComputerMath.33(1990)209–216.
[37]M.Pelillo,Relaxationlabelingnetworksforthemaximumcliqueproblem,J.ArtiÿcialNeuralNetworks
2(1995)313–328.
[38]M.Pelillo,Thedynamicsofnonlinearrelaxationlabelingprocesses,J.Math.ImagingVision7(4)
(1997)309–323.
[39]M.Pelillo,A.Jagota,Feasibleandinfeasiblemaximainaquadraticprogramformaximumclique,J.
ArtiÿcialNeuralNetworks2(1995)411–419.
[40]P.Taylor,L.Jonker,Evolutionarilystablestrategiesandgamedynamics,Math.Biosci.40(1978)
145–156.
[41]A.Torsello,M.Pelillo,Continuous-timerelaxationlabelingprocesses,PatternRecognition33(2000)
1897–1908.
[42]J.W.Weibull,EvolutionaryGameTheory,MITPress,Cambridge,MA,1995.
因篇幅问题不能全部显示,请点此查看更多更全内容