Influenceofirregulartopographyandrandomsoilpropertiesoncoherencylossofspatialseismicgroundmotions
ArticleinEarthquakeEngineering&StructuralDynamics·July2011
DOI:10.1002/eqe.1077
CITATIONSREADS
1240
2authors:
KaimingBiCurtinUniversity
39PUBLICATIONS242CITATIONS
SEEPROFILE
HongHaoCurtinUniversity
481PUBLICATIONS5,515CITATIONS
SEEPROFILE
Allin-textreferencesunderlinedinbluearelinkedtopublicationsonResearchGate,lettingyouaccessandreadthemimmediately.Availablefrom:HongHaoRetrievedon:28October2016
EARTHQUAKEENGINEERINGANDSTRUCTURALDYNAMICSEarthquakeEngngStruct.Dyn.2011;40:1045–1061
Publishedonline22November2010inWileyOnlineLibrary(wileyonlinelibrary.com).DOI:10.1002/eqe.1077
Influenceofirregulartopographyandrandomsoilproperties
oncoherencylossofspatialseismicgroundmotions
KaimingBi∗,†andHongHao
SchoolofCivilandResourceEngineering,UniversityofWesternAustralia,35StirlingHighway,
Crawley,WA6009,Australia
SUMMARY
Coherencyfunctionsareusedtodescribethespatialvariationofseismicgroundmotionsatmultiplesupportsoflongspanstructures.Manycoherencyfunctionmodelshavebeenproposedbasedontheoreticalderivationormeasuredspatialgroundmotiontimehistoriesatdenseseismographicarrays.Mostofthemaresuitableformodellingspatialgroundmotionsonflat-lyingalluvialsites.Ithasbeenfoundthatthesecoherencyfunctionsarenotappropriateformodellingspatialvariationsofgroundmotionsatsiteswithirregulartopography(Struct.Saf.1991;10(1):1–13).Thispaperinvestigatestheinfluenceoflayeredirregularsitesandrandomsoilpropertiesoncoherencyfunctionsofspatialgroundmotionsongroundsurface.Groundmotiontimehistoriesatdifferentlocationsongroundsurfaceoftheirregularsitearegeneratedbasedonthecombinedspectralrepresentationmethodandone-dimensionalwavepropagationtheory.Randomsoilproperties,includingshearmodulus,densityanddampingratioofeachlayer,areassumedtofollownormaldistributions,andaremodelledbytheindependentone-dimensionalrandomfieldsintheverticaldirection.Monte-Carlosimulationsareemployedtomodeltheeffectofrandomvariationsofsoilpropertiesonthesimulatedsurfacegroundmotiontimehistories.Thecoherencyfunctionisestimatedfromthesimulatedgroundmotiontimehistories.Numericalexamplesarepresentedtoillustratetheproposedmethod.Numericalresultsshowthatcoherencyfunctiondirectlyrelatestothespectralratiooftwolocalsites,andtheinfluenceofrandomlyvaryingsoilpropertiesatacanyonsiteoncoherencyfunctionsofspatialsurfacegroundmotionscannotbeneglected.Copyright᭧2010JohnWiley&Sons,Ltd.
Received21January2010;Revised4July2010;Accepted27September2010KEYWORDS:
coherencylossfunction;irregulartopography;randomsoilproperties;Monte-Carlosimulation
1.INTRODUCTION
Forlargedimensionalstructures,suchaslong-spanbridges,pipelinesandcommunicationtrans-missionsystems,theirsupportsinevitablyundergodifferentseismicmotionsduringanearthquakeowingtothegroundmotionspatialvariation.Pastinvestigationsindicatethattheeffectofthespatialvariationofseismicmotionsonthestructuralresponsescannotbeneglected,andcanbe,incases,detrimental[1].Groundmotionspatialvariationeffecthasbeenextensivelystudiedbymanyresearchersespeciallyaftertheinstallationofstrongmotionarrays(e.g.theSMART-1arrayinLotung,Taiwan).Manyempirical[2–6]andsemi-empirical[7,8]modelshavebeenproposedmostlyforflat-lyingalluvialsites.Thesecoherencyfunctionsusuallyconsistoftwoparts,themodulusorcalledlaggedcoherency,whichmeasuresthesimilarityoftheseismicmotionsbetween
∗Correspondence
to:KaimingBi,SchoolofCivilandResourceEngineering,TheUniversityofWesternAustralia,
35StirlingHighway,Crawley,WA6009,Australia.†E-mail:bkm@civil.uwa.edu.au
Copyright᭧2010JohnWiley&Sons,Ltd.
1046
K.BIANDH.HAO
thetwostations,andthephase,whichdescribesthewavepassageeffect,i.e.thedelayinthearrivalofthewaveformsatthefurtherawaystationcausedbythepropagationoftheseismicwave.Itisgenerallyfoundthatthelaggedcoherencydecreasessmoothlyasafunctionofstationseparationandwavefrequency.Toconsiderlocalsiteeffect,DerKiureghian[9]proposedatheoreticalmodeltodescribecoherencyfunctionofmotionsonthegroundsurface,inwhichheassumedthatsiteeffectinfluencesthephaseofthecoherencyfunctiononly,whileitdoesnotaffectthelaggedcoherency.
Contrasttotheobservationsontheflat-lyingsites,Somervilleetal.[10]investigatedthecoherencyfunctionofgroundmotionsonasitelocatedonfoldedsedimentaryrocks(theCoalingaanticline),andfoundthatthelaggedcoherencydoesnotshowastrongdependenceonstationseparationandwavefrequency,andtheincoherencyisgenerallyhigherthanthatontheflat-lyingsites.Theyattributedthechaoticbehaviourtothewavepropagationinamediumhavingstronglateralheterogeneitiesinseismicvelocity.Liaoetal.[11],basedontheseismicdatarecordedattheParkwayarrayinWainuiomataValley,NewZealand,comparedthelaggedcoherencyfunctionsofdifferentstationcombinations,i.e.fourgroupswithstationpairslocatedonthesediments,onegroupwithonesedimentarystationandonerockstation.Theyconcludedthatthelaggedcoherencybetweenthesedimentandrockstationsexhibitlargevariabilityandfollownoconsistentpattern.Theseobservationssuggestthatthespatialcoherencyfunctionmeasuredonflat-lyingsedimentarysitesmaynotprovideagooddescriptionofspatialgroundmotioncoherenciesonsiteswithirregulartopography.TheseobservationsalsoindicatethatthetheoreticalmodelproposedbyDerKiureghian[9]mightnotbeabletoreliablydescribetheinfluenceoflocalsiteeffectonthecoherencyfunction.
Althoughitwasobservedthattheheterogeneityofsiteconditionsstronglyaffectthegroundmotionspatialvariations[10,11],allthepreviousstudiesandtheoreticalandempiricalcoherencymodelsmentionedaboveassumedthatthesitecharacteristicsarefullydeterministicandhomoge-neous.However,inreality,therealwaysexistspatialvariationsofsoilpropertiesanduncertaintiesindefiningthepropertiesofsoils.Thisresultsfromthenaturalheterogeneityorvariabilityofsoils,thelimitedavailabilityofinformationaboutinternalconditionsandsometimesthemeasurementerrors.Theseuncertaintiesassociatedwithsystemparametersarealsolikelytohaveinfluenceonthecoherencyfunction.ZervaandHarada[12]modelledhorizontalsoillayersatasiteasa1-DOFsystemwithrandomcharacteristicstostudytheeffectofuncertainsoilpropertiesonthecoherencyfunction.Theypointedoutthatthespatialcoherencyofmotionsonthegroundsurfaceissimilartothatoftheincidentmotionatthebaserockexceptatthepredominantfrequencyofthelayer,whereitdecreasesconsiderably.Theeffectofuncertainsoilpropertiesshouldalsobeincorporatedinspatialvariationmodelofgroundmotions.Theirexplanationforthisphenomenonwasthatforinputmotionfrequenciesclosetothemeannaturalfrequencyofthe‘oscillators’,theresponseofthesystemswasaffectedbythevariabilityinthevalueofthisnaturalfrequency,andresultedinlossofcorrelation[12].However,itshouldbenotedthata1-DOFsystemcannotrealisticallyrepresentthemultiplepredominatefrequenciesthatmayexistatasitewithmultiplelayersandmultiplemodes.LiaoandLi[13]developedananalyticalstochasticmethodtoevaluatetheseismiccoherencyfunction,inwhichanumericalapproachtocomputecoherencyfunctionisdevelopedbycombiningthepseudo-excitationmethodwithwavemotionfiniteelementsimulationtechniques.Anorthogonalexpansionmethodisintroducedtostudytheeffectofuncertainsoilpropertiesonthecoherencyfunction.Theresultsalsodemonstratethatthelaggedcoherencyvaluestendtodecreaseinthevicinityoftheresonantfrequenciesofthesite.Thismethodis,however,difficulttobeimplementedandsometimesalittlearbitrarytoselecttheabsorbingboundaryconditions,andisdifficulttoexplainwhythelaggedcoherencyfunctionvariessignificantlyoverrelativelyshortdistancesowingtotheinherentlimitationsofusingfiniteelementmethodtomodelwavemotioninaunboundedmedium[14].
Itisobviousthattheeffectsofirregulartopographyandrandomsoilpropertiesofasiteonthecoherencyfunctionofspatialgroundmotionscannotbeneglected.However,atpresent,onlyverylimitedrecordedspatialgroundmotiondataonsitesofdifferentconditionsareavailable.Theyarenotsufficienttodeterminethegeneralspatialincoherencecharacteristicsofgroundmotions
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
INFLUENCEOFIRREGULARTOPOGRAPHYANDRANDOMSOILPROPERTIES
1047
andderiveempiricalrelationstomodelspatialgroundmotionvariationsatasitewithvaryingsiteconditions.Ontheotherhand,totheauthors’bestknowledge,nomoretheoretical/analyticalanalysisinthisfieldcanbefoundexceptforthestudiesmentionedabove[9,12,13].
Thepresentstudyinvestigatestheinfluenceofalayeredcanyonsiteandrandomlyvaryingsoilpropertiesoncoherencyfunctionofspatialgroundmotions.Thesiteisassumedconsistingofhorizontallyextendedmultiplesoillayersonahalf-space(baserock).Thebaserockmotionsatdifferentlocationsareassumedtohavethesameintensity,andaremodeledbyafilteredTajimi-Kanaipowerspectraldensityfunction.Thespatialvariationofgroundmotionsonthebaserockisaccountedforbyanempiricalcoherencyfunctionforspatialgroundmotionsonaflat-lyingsite.Usingtheone-dimensionalwavepropagationtheory[15],thepowerspectraldensityfunctionsofspatialgroundmotionsatvariouslocationsonsurfaceofthecanyonsitecanbederivedbyassumingthebaserockmotionsconsistingofout-of-planeSHwaveorin-planecombinedPandSVwavespropagatingintothesitewithanassumedincidentangle.Thespatiallyvaryinggroundmotiontimehistoriescanthenbegeneratedbasedonthespectralrepresentationmethod.Inordertotakeintoconsiderationtherandomsoilproperties,Monte-Carlosimulationmethodisusedinthestudy.Therandomsoilpropertiesconsideredincludetheshearmodulus,densityanddampingratioofeachlayer,andtheyareallassumedtohavenormaldistributionsintheverticaldirectionandaremodelledasindependentone-dimensionalrandomfields[16].Innumericalcalculations,foreachrealizationoftherandomsoilproperties,spatialgroundmotiontimehistoriesaregenerated.Thesetimehistoriesarethenusedtocalculatethelaggedcoherencybetweenanytwogroundmotiontimehistories.Thenumericalcalculationsincludethefollowingsteps:(1)randomgenerationofsoilproperties;(2)estimationofgroundmotionpowerspectraldensityfunctionsatvariouspointsonthecanyonsurface;(3)simulationsofspatialgroundmotiontimehistoriesand(4)calculationsofcoherencyfunctions.Thesestepsarerepeateduntiltheestimatedmeanandstandarddeviationofthelaggedcoherencybetweengroundmotionsatanytwopointsconverge.Numericalexamplesarepresentedtodemonstratetheproposedmethodandtostudytheeffectsofirregulartopographyandrandomsoilpropertiesoncoherencyfunctionofspatialgroundmotions.
2.THEORETICALBASIS
2.1.Estimationofcoherencyfunction
Letuj(t)anduk(t)betherecorded(simulated)accelerationtimehistoriesatlocationsjandkofasite,andthecorrespondingFouriertransformofthetimehistoriesareUj()andUk(),respectively.Thesmoothedautospectraldensityfunctionofgroundmotionatlocationjorkisthen
Sii(n)=
Mm=−M
W(m)|Ui(n+m)|2
i=jork(1)
andthecrosspowerspectraldensityfunctionbetweenmotionsatstationsjandkis
Sjk(n)=
Mm=−M
∗
W(m)Uj(n+m)Uk(n+m)
(2)
whereW()isthespectralsmoothingwindow,isthefrequencystep,n=nisthenth
discretefrequencyand∗denotesthecomplexconjugate.
Thecoherencyfunctionofthespatialgroundmotionscanbeobtainedas[3]
jk()=Sjk()Sjj()Skk()(3)
ThecoherencyfunctioninEquation(3)isgenerallyacomplexfunctionandcanbewrittenas
jk()=|jk()|exp[ijk()]
Copyright᭧2010JohnWiley&Sons,Ltd.
(4)
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
1048
K.BIANDH.HAO
inwhich|jk()|isthelaggedcoherency,jk()=tan−1[Im(Sjk())/Re(Sjk())]isthephaseangle,‘Im’and‘Re’denotetheimaginaryandrealpartsofacomplexnumber.
Basedontheanalysisabove,thecoherencyfunctioncanbereadilyestimatediftheaccelerationtimehistoriesateachlocationareavailable.Thesimulationofgroundmotiontimehistoriesisbasedontheone-dimensionalwavepropagationtheory[17]andthespectralrepresentationmethod.ThesetwopartsarebrieflyintroducedinSections2.2and2.3,moredetailedinformationcanbefoundinReference[15].
2.2.One-dimensionalwavepropagationtheory
Forasitewithhorizontallyextendedmultiplesoillayersonahalfspace(baserock),thebaserockmotionscanbeassumedtoconsistofout-of-planeSHwaveorin-planecombinedPandSVwavespropagatingintoasitewithanassumedincidentangle.Foraharmonicexcitationwithfrequency,thedynamicequilibriumequationscanbewrittenas[17]2
∇e=−2e
cp
2
2
or∇{}=−2{}
cs
2
(5)
where∇2eand∇2{}aretheLaplaceoperatorofthevolumetricstrainamplitudeeandrotational-strain-vector{}.cpandcsaretheP-andS-wavevelocities,respectively.ThisequationcanbesolvedbyusingtheP-andS-wavetrialfunctions.Theout-of-planedisplacementswiththeamplitudeviscausedbytheincidentSHwave,whereasthein-planedisplacementswiththeamplitudeuandwinthehorizontalandverticaldirectionsdependonthecombinedPandSVwaves.Theamplitudevisindependentofuandw,hence,thetwo-dimensionaldynamicstiffness
L]and[SLmatrixofeachsoillayerfortheout-of-planeandin-planemotions,[SSHP−SV],canbe
formulatedindependentlybyanalysingtherelationsofshearstressesanddisplacementsattheboundaryofeachsoillayer.Assemblingthematricesofeachsoillayerandthebaserock,thedynamicstiffnessofthetotalsystemisobtainedanddenotedby[SSH]and[SP−SV],respectively.Thedynamicequilibriumequationofthesiteinthefrequencydomainisthus[17]
[SSH]{uSH}={PSH}or
[SP−SV]{uP−SV}={PP−SV}
(6)
where{uSH}and{PSH}aretheout-of-planedisplacementsandloadvectorcorrespondingtotheincidentSHwave,{uP−SV}and{PP−SV}arethein-planedisplacementsandloadvectorofthecombinedPandSVwaves.Thestiffnessmatrices[SSH]and[SP−SV]dependonsoilproperties,incidentwavetype,incidentangleandcircularfrequency.Thedynamicload{PSH}and{PP−SV}dependonthebaserockproperties,incidentwavetype,incidentwavefrequencyandamplitude.BysolvingEquation(6)inthefrequencydomainateverydiscretefrequency,therelationshipoftheamplitudesbetweenthebaserockandeachsoillayercanbeformed,andthesitetransferfunction[H()]intheout-of-planeandin-planedirectionscanbeestimated.
2.3.Groundmotiongeneration
Consideracanyonsitewithhorizontallyextendedmultiplesoillayersrestingonanelastichalf-spaceasshowninFigure1,inwhichhm,Gm,m,mandmisthedepth,shearmodulus,massdensity,dampingratioandPoisson’sratiooflayerm.Thespatiallyvaryingbaserockmotionsareassumedtoconsistofout-of-planeSHwaveorin-planecombinedPandSVwavesandpropagatingintothelayeredsoilsitewithanassumedincidentangleasdiscussedabove.Theincidentmotionsatdifferentlocationsonthebaserockareassumedtohavethesamepowerspectraldensity,andaremodelledbyafilteredTajimi-Kanai[18]powerspectraldensityfunction.Thespatialvariationofgroundmotionsatbaserockismodelledbyanempiricalcoherencyfunctionforspatialground
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
INFLUENCEOFIRREGULARTOPOGRAPHYANDRANDOMSOILPROPERTIES
1049
kLayer l:hl,Gl,ρl,ξl,υljLayer m-1:
Layer m:hm,Gm,ρm,ξm,υmhm−1,Gm−1,ρm−1,ξm−1,υm−1
j’
Layer 1:
h1,G1,ρ1,ξ1,υ1GB,ρB,ξB,υB
k’
Base rock:
Figure1.Schematicviewofalayeredcanyonsite.
motionsonaflatsite.Thecrosspowerspectraldensityfunctionsofsurfacemotionsatnlocationsofthelayeredsitecanbewrittenas
⎤⎡
S11()S12(i)···S1n(i)
⎥⎢
⎢S21(i)S22()···S2n(i)⎥
⎥(7)S(i)=⎢⎥⎢
············⎦⎣
Sn1(i)
where
Sjj()=|Hj(i)|2Sg(),Sjk(i)=
j=1,2,...,n
j,k=1,2,...,n
∗
Hj(i)Hk(i)Sg()jk(djk,i),
Sn2(i)···Snn()
(8)
aretheautoandcrosspowerspectraldensityfunctions,respectively.InwhichSg()istheground
motionpowerspectraldensityonthebaserock;jk(djk,i)isthecoherencyfunctionbetweenlocationsjandkonthebaserock;Hj(i),Hk(i)arethesitetransferfunctionsatlocationsjandkonthegroundsurface,whichcanbeformulatedbasedonone-dimensionalwavepropagationtheorydiscussedinSection2.2.
DecomposingtheHermitian,positive-definitematrix,S(i),intothemultiplicationofacomplexlowertriangularmatrix,L(i),anditsHermitian,LH(i),
S(i)=L(i)LH(i)
(9)
thestationarytimeseriesuj(t),j=1,2,...,n,canbesimulatedinthetimedomaindirectlyas[5]uj(t)=
where
jNm=1n=1
Ajm(n)cos[nt+jm(n)+mn(n)]
(10)
Ajm()=
√
4|Ljm(i)|,0N
Im[L(i)]jm
,0Njm()=tan−1
Re[Ljm(i)]
(11)
aretheamplitudesandphaseanglesofthesimulatedtimehistories,whichensurethespectraofthesimulatedtimehistoriescompatiblewiththosegiveninEquation(8);mn(n)istherandomphaseanglesuniformlydistributedovertherangeof[0,2],mnandrsshouldbestatisticallyindependentunlessm=randn=s;Nrepresentsanuppercut-offfrequencybeyondwhichtheelementsofthecrosspowerspectraldensitymatrixgiveninEquation(7)isassumedtobezero.
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
1050
K.BIANDH.HAO
ThegeneratedtimeseriesbyEquation(10)arestationaryprocesses.Inordertoobtainthenon-stationarytimehistories,anenvelopefunction(t)isappliedtouj(t).Thenon-stationarytimehistoriesatdifferentlocationsarethenobtainedby
fj(t)=(t)uj(t),
2.4.Randomfieldtheory
Inengineeringpracticetherearealwayssomeuncertaintiesinthesoilpropertiesbecauseofthereasonsmentionedabove.Therandomfieldtheory[16]iswidelyusedtodescribethevariabilityofsoilproperties.Inthistheorytherandomsoilproperty,u(z),ischaracterizedbythemeanvalue,u¯,standarddeviation,uandthecorrelationdistance,u.umeasurestheintensityoffluctuationordegreetowhichactualvalueofu(z)maydeviatefrom.umeasuresthecorrelationlevelorpersistenceofthepropertyfromonepointtoanotherinasite,smallvaluesofusuggestrapidfluctuationabouttheaverage,whereaslargevaluesofuimplythataslowlyvaryingcomponentissuperimposedontheaveragevalueofu¯.
Considerthataone-dimensionalrandomfield,u(z),withmeanvalue,u¯(z),andstandarddevi-ation,u,itslocalaverageprocessuZ(z)ofu(z)overtheintervalZcenteredatzisdefinedas
1z+Z/2
uZ(z)=u(z)dz(13)
Zz−Z/2Itcanbeseenthatthelocalaverage,uZ(z),dependsonthespecificlocationoftheintervalzwithinthestatisticallyhomogeneoussoillayer.ThemeanandvarianceofuZ(z)are[16]
E[uZ(z)]=E[u(z)]=u¯(z)Var[uZ(z)]=2u(Z)
(14)
j=1,2,...,n
(12)
where(Z)isavariancereductionfunctionofu(z)thatmeasuresthereductionofpointvariance,
2u,underlocalaverage.Thevariancefunction,(Z),canbederivedfromauto-correlationfunction,u(z),inthefollowingform:
2Zz
(Z)=u(z)d(z)(15)1−
Z0ZByusingtheexponentialauto-correlationfunction[19]
u(z)=exp(−2|z|/u)
thevariancereductionfunctioncanbederivedas[19]
(Z)=
1
[2(Z/u)+e−2(Z/u)−1]22(Z/u)
(17)(16)
Inthisstudy,theshearmodulus,densityanddampingratioofeachsoillayerofthesiteare
regardedasrandomfields,andareassumedtofollownormaldistributionsintheverticaldirection.Theserandomfieldscanbemodelledbyintroducingthemeanvalue,standarddeviationandcorrelationdistanceofeachparameterasmentionedabove.Takeshearmodulusasanexample
¯+G(Z)=G¯(1+COV×(Z))G=G(18)¯andGarethemeanvalueandstandarddeviationofshearmodulus,(Z)isthevariancewhereG
reductionfunctionandisanormaldistributedrandomprocesswithzeromeanandunityvariance.
¯isthecoefficientofvariation.COV=G/G
2.5.Monte-Carlosimulation
Monte-Carlosimulationshavebeenextensivelyusedinmanyscientificfieldswithrandomparam-eters.Itwasfoundthatfortherangeofvariabilityusuallypresentinsoilproperties,Monte-Carlo
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
INFLUENCEOFIRREGULARTOPOGRAPHYANDRANDOMSOILPROPERTIES
1051
basedmethod,thoughcomputationallyintensive,mightbethesimplestandmostdirectmethod.Othermethods,whicharebasicallyexpansionbased,donotprovideaccurateresultswhenthecoefficientsofvariationofsoilpropertiesarelarge[20].Inthisstudy,Monte-Carlosimulationsarealsoemployedtoaccountfortheinfluenceofrandomsoilpropertiesonspatialgroundmotions.InMonte-Carlosimulations,soilpropertiesarerandomlygeneratedaccordingtotheirdistributions.Eachsetofrandomsoilpropertiesareconsideredasdeterministicinestimatingthepowerspectraldensitiesofgroundmotions.Thenspatialgroundmotiontimehistoriesaresimulatedaccordingtotheproceduresdescribedabove.
3.NUMERICALEXAMPLE
Tostudytheinfluenceofirregulartopographyandrandomsoilpropertiesonthecoherencyfunctionbetweendifferentmotionsonthegroundsurface,afour-layercanyonsiterestingonthebaserockisselectedasanexampleasshowninFigure2.Themeanvaluesofthecorrespondingsoilpropertiesofeachsoillayerandbaserockarealsogiveninthefigure.
ThemotionsonthebaserockareassumedtohavethesameintensitiesandfrequencycontentsandaremodelledbythefilteredTajimi-Kanaipowerspectraldensityfunctioninthefollowingform:
221+424gg
Sg()=|HP()|S0()=2222222222(f−)+(2ff)(g−)+4gg
(19)
where|HP()|isahighpassfilterfunction[21],whichisappliedtofilteroutenergyatzeroand
verylowfrequenciestocorrectthesingularityingroundvelocityanddisplacementpowerspectraldensityfunctions.S0()istheTajimi-Kanaipowerspectraldensityfunction[17],gandgarethecentralfrequencyanddampingratiooftheTajimi-Kanaipowerspectraldensityfunction,fandfarethecorrespondingcentralfrequencyanddampingratioofthehighpassfilter.isascalingfactordependingonthegroundmotionintensity.Intheanalysis,theout-of-planehorizontalmotionisassumedtoconsistofSHwaveonly,whereasthein-planehorizontalandverticalmotionsareassumedtobecombinedPandSVwaves.Theparametersforthehorizontalmotionareassumedasg=10rad/s,g=0.6,f=0.5,f=0.6and=0.0034m2/s3.TheseparameterscorrespondtoagroundmotiontimehistorywithdurationT=20sandpeakgroundacceleration(PGA)0.2gbasedonthestandardrandomvibrationmethod[22].TheverticalmotiononthebaserockisalsomodelledwiththesamefilteredTajimi-Kanaipowerspectraldensityfunction,buttheamplitudeisassumedtobe2/3ofthehorizontalcomponentofPGA0.2g.
kNo.4 Sandy fill, h=5m, G=30MPa, ρ=1900kg/m3,ξ=5%,υ=0.40No.3 Soft Clay, h=15m, G=20MPa, ρ=1600kg/m3,ξ=5%,υ=0.40jNo.2 Silt sand, h=16m, G=220MPa, ρ=2000kg/m3,ξ=5%,υ=0.33
No.1 Firm clay, h=12m, G=30MPa, ρ=1600kg/m3,ξ=5%,υ=0.40j’ k’ Base rock: G=1800MPa, ρ=2300kg/m3,ξ=5%,υ=0.33
Figure2.Afour-layercanyonsitewithdeterministicsoilproperties(nottoscale).
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
1052
K.BIANDH.HAO
Figure3.Simulatedaccelerationtimehistories:(a)baserockmotion;(b)horizontalout-of-planemotion;
(c)horizontalin-planemotion;and(d)verticalin-planemotion.
TheSobczykmodel[23]isselectedtodescribethecoherencylossbetweenthegroundmotionsatpointsjandkonthebaserock:
jk(i)=|jk(i)|exp(−idjkcos/vapp)=exp(−d2jk/vapp)·exp(−idjkcos/vapp)
(20)
whereisacoefficientreflectingthelevelofcoherencyloss;=0.001thatisusedinthepresentpaperrepresentsintermediatelycorrelatedmotions;djkisthedistancebetweenthepointsjandk,anddjk=100misassumed;istheincidentangleoftheincomingwavetothesite,andisassumedtobe60◦;vappistheapparentwavevelocityonthebaserock,whichis1768m/saccordingtothebaserockpropertyandthespecifiedincidentangle.Seismicwavesareassumedpropagatingverticallyfromthebaserocktothegroundsurface.
Takethecanyonsitewithdeterministicsoilpropertiesasanexample.Assumingthesoilprop-ertiesofeachsoillayerequaltotheirmeanvaluesasgiveninFigure2,theaccelerationtimehistoriesonthebaserockandthegroundsurfacearesimulatedbasedontheprocedurespresentedinSections2.2and2.3.Thesamplingfrequencyandtheuppercut-offfrequencyaresettobe100HzandN=20Hz,respectively.2048samplingpointsareusedineachsetofgroundmotiontimehistories.AsmninEquation(10)isarandomvariableuniformlydistributedovertherangeof[0,2],anyrealizationofarandomangle,mn,willresultinagenerationofasetofspatialgroundaccelerationtimehistoriesthatarecompatiblewiththespectraldensityfunctioninEquation(8).Figure3showsonesetofthesimulatedaccelerationtimehistories.
Thecoherencyfunctionbetweendifferentmotionsonthegroundsurfacecanbeestimatedafterthegenerationofaccelerationtimehistories.However,itneedstobeemphasizedthatcoherencyestimatesdependstronglyonthetypeofthesmoothingwindowandtheamountofsmoothingperformedontherawdata.Abrahamsonetal.[24]notedthatthechoiceofthesmoothingwindowshouldbedirectednotonlyfromthestatisticpropertiesofthegroundmotiontimehistories,butalsofromtheproblemforwhichitisanalysing,sothattherequiredresolutionisnotlost.Theysuggestedan11-pointHammingwindow,ifthecoherencyestimatesistobeusedinstructuralanalysis,fortimewindowslessthanapproximately2000samplesandforstructuraldampingcoefficient5%ofcritical[24].Itshouldalsobenotedthatifnosmoothingisperformedonthe
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
INFLUENCEOFIRREGULARTOPOGRAPHYANDRANDOMSOILPROPERTIES
1053
Figure4.Meanvaluesandstandarddeviationsofthelaggedcoherencyofthehorizontal
out-of-planemotionat0.2,2.0,5.0and9.0Hz.
Figure5.Comparisonofthemeanlaggedcoherencyonthebaserockfrom
600simulationswiththetargetmodel.
rawdata,thelaggedcoherencywillalwaysbeunityforeachfrequency,andnoinformationaboutthecoherencycanbeextractedfromthedata.
Toobtainthemeanlaggedcoherencyfunctionsonthebaserockandgroundsurface,Monte-CarlosimulationmethodisusedasdiscussedinSection2.5.ConvergencetestneedstobeconductedtocheckthenumberofMonte-Carlosimulationsrequiredtoobtainconvergedsimulationresults.SincealargernumberofMonte-Carlosimulationsisrequiredforthesimulationtoconvergeiftherandomvariablesunderconsiderationhavelargercoefficientsofvariation(COV),thecasewiththelargestCOVconsideredinthisstudy,i.e.aCOVof60%forshearmodulusanddampingratioofeachsoillayerand5%forsoildensity,whichwillbefurtherdiscussedinSection3.2,isusedtoperformtheconvergencetest.Themeanvaluesandstandarddeviationsofthelaggedcoherencyfunctionofthehorizontalout-of-planemotionat0.2,2.0,5.0and9.0Hzareusedasthequantityforconvergencetest.AsshowninFigure4,thecorrespondingvaluesvirtuallyunchangedafter600simulations,indicatingthesimulationsconvergedwith600simulations.Resultsofthesimulatedin-planemotions,whicharenotshown,alsoconvergeafter600simulations.Therefore,600simulationsareperformedforeachcaseinthesubsequentcalculations.Figure5showsthecomparisonbetweenthemeanlaggedcoherencyfunctionsfromthe600simulatedspatialgroundmotiontimehistoriesonthebaserocksmoothedbythe11-pointHammingwindowwiththetargetmodel.Itisevidentthatverygoodagreementcanbeobtainedexceptforthefrequenciesnearzero.Infact,theoretically,coherencyshouldtendtobeunityasfrequencytendstozero,however,coherencyestimatesfromgroundmotiontimehistories,duetosmoothing,canrarelyreachthisvalue.
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
1054
K.BIANDH.HAO
Figure6.Comparisonofthemeanlaggedcoherencybetweenthesurfacemotions(j,k)withthatoftheincidentmotiononthebaserock:(a)horizontalout-of-planemotion;
(b)horizontalin-planemotion;and(c)verticalin-planemotion.
Figure7.Standarddeviationsofthelaggedcoherencyonthegroundsurface:(a)horizontalout-of-plane
motion;(b)horizontalin-planemotion;and(c)verticalin-planemotion.
3.1.Influenceofirregulartopography
Assumingthatallthesoilpropertiesaredeterministicandequaltotheirmeanvalues,theinfluenceofirregulartopographyisstudiedfirst.Figure6showsthemeanvaluesofthelaggedcoherencyfunctionsbetweenthespatialgroundmotionsofpointsjandkonthegroundsurfaceofthecanyonsite.Forcomparisonpurpose,thelaggedcoherencybetweenincidentmotiononthebaserockatjandkisalsoplotted.Figure7showsthecorrespondingstandarddeviations.Asshown,thestandarddeviationshaveageneraltrendofincreasingwithfrequency,butarerelativelysmall,alllessthan0.13.Thisindicatesthatthelaggedcoherencyismoredifficulttobeaccuratelymodelledathighfrequencies.Nonetheless,asthestandarddeviationsarerelativelysmallascomparedtothemeanlaggedcoherencyvalues,includingthemwillchangethelaggedcoherencyvalue,butnottheoveralltrend.Figure6showsthatthecoherencyfunctionbetweensurfacegroundmotionsdiffersfromthatbetweenbaserockmotionssignificantly.Atallfrequencies,thecoherencylossfunctionsonthegroundsurfacearesmallerthanthoseonthebaserock,i.e.thecoherencyfunctiononthebaserockistheupperboundofthecoherencyofspatialgroundmotionsonthesurfaceofacanyonsite.ThisconclusionisinagreementwiththatofLouandZerva[25],andLiaoetal.[11].Itindicatesthatwavepropagationthroughalocalsiteevenwithdeterministicsitepropertiesfurtherreducesthecrosscorrelationbetweenspatialgroundmotionsonthebaserock.Asshown,therearemanyobviouspeaksandtroughsinthecoherencyfunctionofsurfacemotions.Thesepeaksandtroughsdirectlyrelatetothemodulusofthespectralratiooftwolocalsites,namely|Hk(i)/Hj(i)|,asshowninFigure8.Hj(i)andHk(i)arethetransferfunctionsofsitesjandk,respectively.Theyarethespectralratioofthesurfacemotionatjorktothecorrespondingbedrockmotionatjork,whichcanbecalculatedbasedontheone-dimensionalwavepropagationtheoryasdiscussedinSection2.2.Figure9showsthemodulusofthetransferfunctionsatsitesjandk.
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
INFLUENCEOFIRREGULARTOPOGRAPHYANDRANDOMSOILPROPERTIES
1055
Figure8.Modulusofthesiteamplificationspectralratiooftwolocalsites:(a)horizontalout-of-plane
motion;(b)horizontalin-planemotion;and(c)verticalin-planemotion.
Figure9.Amplitudesofthesiteamplificationspectraoftwolocalsites:(a)horizontalout-of-planemotion;
(b)horizontalin-planemotion;and(c)verticalin-planemotion.
Itisobviousthatsiteamplifiesthemotionsonthebaserocksignificantly,whichmakestheenergyofsurfacegroundmotionsconcentrateatafewfrequenciescorrespondingtothevariousvibrationmodesofthesite.Thisresultindicatestheimportanceofconsideringthemultiplemodesofalocalsoilsitewhenestimatingtheseismicwavepropagationandsiteamplification.Thepresentresultisanextensionofthoseobtainedwitha1-DOFmodel[12].Witha1-DOFmodel,theinfluenceofthehighervibrationmodesofthesiteonsiteamplificationandhencethespatialgroundmotioncoherencycannotbeincluded.ComparingFigures6and8,itcanbenotedthatwhenthespectralratiosdifferfromeachother,thespatialgroundmotionsonthegroundsurfaceareleastcorrelatedwithaminimumlaggedcoherencyvalue.Takingthehorizontalout-of-planemotionasanexample,fourobviousminimacanbeobservedaroundthefrequencies0.78,1.90,4.20and7.10Hz,whichcorrespondtothefourevidentpeaksinthespectralratioasshowninFigure8(a).Similarconclusionscanbeobtainedforthein-planemotions.Thisisexpectedbecausethelaggedcoherencymeasuresthesimilarityofthemotionsattwodifferentlocations.Iftwositesamplifythegroundmotionstothesameextentatcertainfrequencies,thecoherencylossismainlycausedbytheincoherenceeffectandwavepassageeffect,localsiteeffecthaslittleinfluenceonthelaggedcoherency.However,ifthesiteamplificationspectraaredifferentfromeachotheratcertainfrequencies,thelocalsiteeffectonwavepropagationisdifferent.Thereforesurfacegroundmotionswillbedifferentatthesefrequencies,whichresultsinspatialsurfacegroundmotionslesscorrelated.TheseobservationscoincidewiththerecordeddatafromtheCoalingaanticlineinCalifornia[10]andtheWainuiomataValleyinNewZealand[11].Theseobservationsalsoindicatethatsiteeffectwillnotonlycausephasedifferenceofthecoherencyfunction[9],butwillalsoaffectitsmodulus.
LiaoandLi[13]usedtheauto-powerspectraldensityofgroundmotionatonelocationofthesitetoidentifythelaggedcoherencyfunctiononthegroundsurface,andconcludedthat
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
1056
K.BIANDH.HAO
thesurfacelayerirregularityofasitecanreducethelaggedcoherencyfunctionvaluesinthevicinityoftheresonantfrequenciesofthesite.Toexaminetheirobservation,thehorizontalout-of-planemotionofsitejisusedasanexample.Thefundamentalvibrationfrequencyofthesiteisabout1.25HzasshowninFigure9(a).AccordingtoLiaoandLi’sconclusion,thelaggedcoherencyshouldhaveaminimumvalueatthisfrequency.However,thepresentresultsactuallydisplayapeakvalueinthelaggedfrequencyatthisfrequencyasshowninFigure6(a).ThiscontradictswithLiaoandLi’sconclusion.Thisisbecauseinthepresentexample,bothwavepathsfromjtojandktokorbothsitesamplifythebedrockmotionaroundthisfrequency,althoughtoadifferentextent.Thereforewavepropagationthroughthetwositesdoesnotsignifi-cantlyreducethecrosscorrelationofspatialbedrockmotionsatthisfrequency.Thisobservationdemonstratesthatusingtheamplitudeofthepowerspectraldensityofgroundmotionatjustonelocationtoassesstheinfluenceofwavepropagationinacanyonsiteandhencethecoherencyfunctionofspatialsurfacegroundmotionsmaynotleadtoareliablecoherencyestimation.Thespectralratiobetweenthetwoconsideredsitesortwowavepathsisamorereliableandappro-priateparametertomeasurethelocalsiteeffectoncrosscorrelationofspatialsurfacegroundmotions.
3.2.Influenceofrandomsoilproperties
Theinfluenceofrandomlyvaryingsoilpropertiesonthecoherencylossfunctionsbetweenthesurfacemotionsisstudiedinthissection.Withoutlosinggenerality,assumingshearmodulus,dampingratioandsoildensityarerandomfieldsinallsoillayers,andallfollowanormaldistribution.ThemeanvaluesofsoilpropertiesineverylayeraregiveninFigure2.Accordingtoamorespecificreviewandsummary[26],inmostcommonfieldmeasurements,theCOVforthecohesionandundrainedstrengthofclayandsandareinarangeof10–100%.Thestatisticalvariationofthesoildensityis,however,relativelysmallascomparedwithothersoilparameters.Therefore,inthepresentstudy,itisassumedthattheshearmodulusanddampingratiohaveCOVof20,40and60%forallsoillayers,whereastheCOVofsoildensityisassumedtobe5%inallthecases.Vanmarcke[16]studiedthescaleofsoilfluctuation,andconcludedthatthecorrelationdistanceofvarioussoilsvaryfrom0.16to46m.Fortypicalclay,itisabout5m.Thecorrelationdistanceof4misusedinthepresentpaper.Itshouldbenotedthatinthepresentstudy,onlytherandomfluctuationsofsoilpropertiesintheverticaldirectionareconsidered,thoseinthehorizontaldirectionareneglectedbecauseseismicwavesareassumedpropagatingverticallyandmodeledwiththeone-dimensionalwavepropagationtheory.
Figures10and11showtheinfluenceofrandomvariationsofsoilpropertiesonthemeanvaluesandstandarddeviationsofthelaggedcoherenciesofspatialsurfacemotions.Forcomparisonpurpose,thecorrespondingvalueswithdeterministicsoilproperties(COV=0),andthatoftheincidentmotiononthebaserockarealsoplotted.Asshown,theinfluenceofrandomsoilpropertiesonthelaggedcoherencybetweenthemotionsonthegroundsurfaceshouldnotbeneglected,especiallyforhorizontalmotions.Thelaggedcoherencybetweenthemotionsonthegroundsurfaceissmallerthantheincidentmotiononthebaserockasobservedabove.WhentheCOVofsoilpropertiesis0.2,themeanlaggedcoherenciesaresimilartothoseobtainedbydeterministicanalysis.IncreasingCOVofsoilpropertiesingeneralleadstosmallerlaggedcoherenciesbetweenthemotionsonthegroundsurface,butcouldresultinlargercoherencyvaluesatcertainfrequencieswherethespectralratiosofthetwositesdifferfromeachothersignificantlyasshowninFigure12.Inthiscase,largerCOVleadstosmallerspectralratiosthatresultsintherelativelylargerlaggedcoherencyvalues.AsshowninFigure11,largerCOVofsoilpropertiesresultsinlargervariationsofthelaggedcoherencyfunctiononthegroundsurface,asexpected.Itshouldbenotedthattheseobservationsarebasedonthesimulateddatafromacanyonsite.Ifaflatsiteisunderconsideration,andtherandomnessofsoilpropertiesinthehorizontaldirectionisneglected,thetwolocalsitesamplifygroundmotionsonthebaserocktothesameextentalthoughrandomnessintheverticaldirectionisconsidered.Inthiscase,thespectralratiosoftwolocalsitesequalunity,andthecoherencyfunctiononthegroundsurfaceisthenthesameasthatonthebaserock(incidentmotion).Therandomsoilpropertieshavenoinfluenceonthecoherencyfunctionontheground
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
INFLUENCEOFIRREGULARTOPOGRAPHYANDRANDOMSOILPROPERTIES
1057
Figure10.Influenceofuncertainsoilpropertiesonthemeanvaluesoflaggedcoherencyfunctions:(a)horizontalout-of-planemotion;(b)horizontalin-planemotion;and(c)verticalin-planemotion.
Figure11.Influenceofuncertainsoilpropertiesonthestandarddeviationsoflaggedcoherencyfunctions:(a)horizontalout-of-planemotion;(b)horizontalin-planemotion;and(c)verticalin-planemotion.
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
1058
K.BIANDH.HAO
Figure12.Influenceofuncertainsoilpropertiesonthemeanspectralratiosoftwolocalsites:(a)horizontal
out-of-planemotion;(b)horizontalin-planemotion;and(c)verticalin-planemotion.
surfaceinthiscase.Thisobservationprovesagainthattheinfluencesoflocalsiteonsurfacegroundmotionspatialvariationsdependonthesimilarityofthetwowavepaths.Ifthetwowavepathsarethesame,localsitewillnotaffectthesurfacegroundmotionspatialvariations.3.3.Influenceofrandomvariationofeachsoilparameter
Toinvestigatetheeffectofrandomvariationofeachsoilparameteronthelaggedcoherencyfunctionbetweendifferentmotionsonthegroundsurface,assumingonlyonesoilparameter,namelyeithershearmodulus,soildensityordampingratio,israndom,whereastheothertwoparametersareassumedtobedeterministicinthecalculation.TheCOVsforshearmodulusanddampingratioareassumedtobe40%andtheCOVforsoildensityisassumedtobe5%.Figures13and14showthemeanvaluesandthecorrespondingstandarddeviationsofthelaggedcoherency,respectively.Thecorrespondingvalueswithdeterministicsoilproperties,andthatbetweentheincidentmotionsonthebaserockareplottedagainforcomparisonpurpose.Asshown,meanvaluesandstandarddeviationsofthelaggedcoherencyobtainedbyconsideringonlythedampingratioorsoildensityasrandomparameterarealmostthesameasthosewithdeterministicsoilpropertyassumption,indicatingthattheinfluenceofrandomdampingratioandsoildensityonlaggedcoherencyisinsignificantandcanbeneglected.Ontheotherhand,theinfluenceoftherandomvariationsofshearmodulusisobviousespeciallyforthehorizontalmotions.TheseresultscanbeexplainedbythespectralratiosofthetwolocalsitesasshowninFigure15,inwhichtheinfluenceofrandomdampingratioandsoildensityonthespectralratiosisinsignificantwhiletheinfluenceoftheshearmodulusispronounced.Becausethelaggedcoherencyfunctiondirectlyrelatestothespectralratiosoftwolocalsitesasdiscussedabove,thisleadstotheobservationsoflaggedcoherencyfunctionsinFigures13and14.
Itshouldbenotedthatalltheresultsobtainedabovearebasedontheassumptionofacorrelationdistance,u,of4mforatypicalclaysite.Infact,thecorrelationdistancevariesinarelativelywide
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
INFLUENCEOFIRREGULARTOPOGRAPHYANDRANDOMSOILPROPERTIES
1059
Figure13.Influenceofeachrandomsoilpropertyonthemeanvaluesoflaggedcoherencyfunctions:(a)horizontalout-of-planemotion;(b)horizontalin-planemotion;and(c)verticalin-planemotion.
Figure14.Influenceofeachrandomsoilpropertyonthestandarddeviationsoflaggedcoherencyfunctions:(a)horizontalout-of-planemotion;(b)horizontalin-planemotion;and(c)verticalin-planemotion.
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
1060
K.BIANDH.HAO
Figure15.Influenceofeachrandomsoilpropertyonthemeanspectralratiosoftwolocalsites:(a)horizontalout-of-planemotion;(b)horizontalin-planemotion;and(c)verticalin-planemotion.
range[16],whenlargercorrelationdistanceisconsidered,similarconclusionscanbeobtainedbutmoreprominentvariationwillbeobserved.Theseresultsarenotshowninthecurrentpaperowingtothepagelimit.
4.CONCLUSIONS
Thispaperevaluatestheinfluenceoflocalsiteirregulartopographyandrandomsoilpropertiesonthecoherencyfunctionbetweenspatialsurfacemotions.Followingconclusionsaredrawn:1.Thecoherencyfunctionbetweensurfacegroundmotionsonacanyonsiteisdifferentfromthatbetweenbaserockmotions.Thelaggedcoherencyfunctiononthebaserockistheupperboundofthatonthegroundsurface.
2.Foracanyonsite,thecoherencyfunctionofspatialsurfacegroundmotionsoscillateswithfrequency.Themaximumandminimumcoherencyvaluesarerelatedtothespectralratiosoftwolocalsitesortwowavepaths.Whenthespectralratiosoftwolocalsitesdifferfromeachothersignificantly,thespatialgroundmotionsonthegroundsurfaceareleastcorrelated.Thecoherencyfunctionmodelsformotionsonaflat-lyingsitecannotbeusedtomodelthatofmotionsonacanyonsite.
3.Theinfluenceofrandomsoilpropertiesonthelaggedcoherencyfunctiondependsonthelevelofvariationsofsoilproperties.Ingeneral,themoresignificantaretherandomvariationsofsoilproperties,thelargeristhelocalsiteeffectonspatialsurfacegroundmotionvariations.Therandomvariationsofsoildampingratioanddensityhaveinsignificanteffectonthelaggedcoherencywhencomparedwiththerandomvariationsofshearmodulus.Itshouldbenotedthatthesoilnonlinearitiesalsoaffectthesurfacemotionspatialvariations,butarenotconsideredinthepresentpaper.Itissuggestedtomonitorsomecanyonsitestocheck
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
INFLUENCEOFIRREGULARTOPOGRAPHYANDRANDOMSOILPROPERTIES
1061
theresultsobtainedinthepresentpaper.Furtherstudyisalsoneededtodevelopanalyticalorempiricalrelationoflocalsitecharacteristicswithgroundmotionspatialvariationsforeasyuseinengineeringapplication.
REFERENCES
1.SaxenaV,DeodatisG,ShinozukaM.Effectofspatialvariationofearthquakegroundmotiononthenonlineardynamicresponseofhighwaybridges.Proceedingsof12thWorldConferenceonEarthquakeEngineering,Auckland,NewZealand,2000.
2.LohCH.AnalysisofthespatialvariationofseismicwavesandgroundmovementfromSMART-1data.EarthquakeEngineeringandStructuralDynamics1985;13(5):561–581.
3.HarichandranRS,VanmarckeEH.Stochasticvariationofearthquakegroundmotioninspaceandtime.JournalofEngineeringMechanics1986;112(2):154–174.
4.LohCH,YehYT.Spatialvariationandstochasticmodellingofseismicdifferentialgroundmovement.EarthquakeEngineeringandStructuralDynamics1988;16(4):583–596.
5.HaoH,OliveiraCS,PenzienJ.Multiple-stationgroundmotionprocessingandsimulationbasedonSMART-1arraydata.NuclearEngineeringandDesign1989;111(3):293–310.
6.HarichandranRS.Estimatingthespatialvariationofearthquakegroundmotionfromdensearrayrecordings.StructuralSafety1991;10:219–233.
7.LucoJE,WongHL.Responseofarigidfoundationtoaspatiallyrandomgroundmotion.EarthquakeEngineeringandStructuralDynamics1986;14(6):891–908.
8.SomervillePG,McLarenJP,SaikiaCK,HelmbergerDV.Site-specificestimationofspatialincoherenceofstronggroundmotion.EarthquakeEngineeringandStructuralDynamics:II—RecentAdvancesinGroundMotionEvaluation,ASCEGeotechnicalSpecialPublicationNo.20,1988;188–202.
9.DerKiureghianA.Acoherencymodelforspatiallyvaryinggroundmotions.EarthquakeEngineeringandStructuralDynamics1996;25(1):99–111.
10.SomervillePG,McLarenJP,SenMK,HelmbergerDV.Theinfluenceofsiteconditionsonthespatialincoherence
ofgroundmotions.StructuralSafety1991;10(1):1–13.
11.LiaoS,ZervaA,StephensonWR.Seismicspatialcoherencyatasitewithirregularsubsurfacetopography.
ProceedingsofSessionsofGeo-Denver,GeotechnicalSpecialPublicationNo.170,2007;1–10.
12.ZervaA,HaradaT.Effectofsurfacelayerstochasticityonseismicgroundmotioncoherenceandstrainestimations.
SoilDynamicsandEarthquakeEngineering1997;16:445–457.
13.LiaoS,LiJ.Astochasticapproachtosite-responsecomponentinseismicgroundmotioncoherencymodel.Soil
DynamicsandEarthquakeEngineering2002;22:813–820.
14.ChenY,LiJ.Effectofrandommediaoncoherencyfunctionofseismicgroundmotion.WorldEarthquake
Engineering2007;23(3):1–6(inChinese).
15.BiK,HaoH.Simulationofspatiallyvaryinggroundmotionswithnon-uniformintensitiesandfrequencycontent.
AustraliaEarthquakeEngineeringSociety2008Conference,Ballart,Australia,2008;PaperNo.18.
16.VanmarckeEH.Probabilisticmodellingofsoilprofiles.JournaloftheGeotechnicalEngineeringDivision1977;
103(9):1227–1246.
17.WolfJP.DynamicSoil–StructureInteraction.Prentice-Hall:EnglewoodCliffs,NJ,1985.
18.TajimiH.Astatisticalmethodofdeterminingthemaximumresponseofabuildingstructureduringanearthquake.
ProceedingsofSecondWorldConferenceonEarthquakeEngineering,Tokyo,1960;781–796.19.VanmarckeEH.RandomFields:AnalysisandSynthesis.MITPress:Cambridge,1983.
20.YehCH,RahmanMS.Stochasticfiniteelementmethodsfortheseismicresponseofsoils.InternalJournalfor
NumericalandAnalyticalMethodsinGeomechanics1998;22(8):819–850.
21.RuizP,PenzienJ.Probabilisticstudyofthebehaviourofstructuresduringearthquakes.ReportNo.UCB/EERC-69-03,UniversityofCaliforniaatBerkeley,1969.
22.DerKiureghianA.Structuralresponsetostationaryexcitation.JournaloftheEngineeringMechanicsDivision
1980;106(6):1195–1213.
23.SobczkyK.StochasticWavePropagation.KluwerAcademicPublishers:TheNetherlands,1991.
24.AbrahamsonNA,SchneiderJF,SteppJC.Empiricalspatialcoherencyfunctionsforapplicationstosoil–structure
interactionanalysis.EarthquakeSpectra1991;7(1):1–28.
25.LouL,ZervaA.Effectsofspatiallyvariablegroundmotionsontheseismicresponseofaskewed,multi-span,
RC-highwaybridge.SoilDynamicsandEarthquakeEngineering2005;25:729–740.
26.BaecherGB,ChanM,IngraTS,LeeT,NucciLR.Geotechnicalreliabilityofoffshoregravityplatforms.Report
MITSG80-20,SeaGrantCollegeProgram.MITPress:Cambridge,1980.
Copyright᭧2010JohnWiley&Sons,Ltd.
EarthquakeEngngStruct.Dyn.2011;40:1045–1061
DOI:10.1002/eqe
因篇幅问题不能全部显示,请点此查看更多更全内容