PerformanceAnalysisofCollaborativeSpatio-TemporalProcessingforWirelessSensor
Networks
‡C.Fischione,†A.Bonivento,†A.Sangiovanni-Vincentelli,§F.Santucci,‡K.H.Johansson
‡KTH,†U.C.Berkeley,§UniversityofL’Aquila
e-mail:‡{carlofi,kallej}@s3.kth.se,†{alvise,alberto}@eecs.berkeley.edu,§santucci@ing.univaq.it
Abstract—Spatio-Temporalprocessingisacontroltechniquetoincreasethequalityofthereceivedsignalsinwirelessnet-works.Outageeventshaveastronginfluencenotonlyontheperformanceofthephysicallayer,butalsoonrouting,MAC,andapplicationlayer.Inthispaper,weproposeanoutagebasedperformanceanalysisofcollaborativeSTPforWSNs.Afteranaccuratecharacterizationofthewirelesschannel,wederivetheoutagestatisticsasfunctionoftheSTPcoefficients,andinvestigatetheeffectsofSTPontheprobability,averagedurationandrateoftheoutageevents.Furthermore,weshowthatapropercontrolpolicyoftheSTPcoefficientscanbederivedaccordingtotherequirementsfromtheapplicationsandWSNscommunicationlayers.
IndexTerms:WirelessSensorNetworks(WSNs),Spatio-Temporalprocessing(STP),Fading,Outage,LevelCrossingAnalysis.
I.INTRODUCTION
Significantperformanceimprovementscanbeachievedifnodesinwirelessnetworkscooperate.Collaborativedistrib-utedspatio-temporalprocessing(STP)issuchatechnology,whichinthecontextofcellularradiosystemandad-hocwirelessnetworkshasbeenanareaofintenseresearch(seee.g.[1]).Forwirelesssensornetworks(WSNs),however,constraintsonpower,memory,informationprocessing,etc.,maketheextensionoftraditionalSTPtechniquestoWSNsdifficult.STPtechniquesforWSNsshouldalsotakeintoaccountcross-layermechanisms,whicharecrucialformanysensingandcontrolapplications[2],[3].
Somerecentcontributionscanbefoundinliterature.In[4]theauthorsinvestigatethepossibilityofshapingtheradiationdiagramusingarandomdistributionofnodes.Specifically,theauthorsshowthatusingrandomlyplacednodes,itisstillpossibletoobtaingoodradiationdiagram.However,theanalysisisbasedonanumberofidealassumptions,particularlyasimplemodelofthewirelesschannel.In[5]and[6],aninterestingframeworkisaddressed,wherenodesaregroupedinclustersandcollaboratetoreceiveandtrans-mitinformationusingadistributedalgorithmforthephasesynchronization.Moreover,theauthorsproposetheuseofanSTPtechniquebasedonMaximumRatioCombiningscheme,wherethenodesaresupposedtoperformanaccuratechannelestimation.In[7],amaximumlikelihoodapproachisproposedforthecommunicationbetweenasourceandadestinationwithmultiplerelays,andtheoptionsofrelayandforward,anddecodeandforwardareinvestigated.Aframeworkforperformanceanalysisinacellularradiosystem,butinterestingalsofromaWSNsperspective,canbefoundin[8],where
WorkdoneintheframeworkoftheHYCONNetworkofExellence,contractnumberFP6-IST-511368.
aMaximumRatioCombiningspatialdiversityschemewithcompositeRayleigh-Lognormalchannelmodelisstudied.Outageseventscanhavestronginfluenceontheperfor-manceofupperlayersintheprotocolstack,e.g.,[9],[10],[11].Despitetheirimportance,outageseventsforWSNshavebeenconsideredintheliterature[12]onlyrecently.Infact,itiswellknownthatoutagestatisticsareimportantperformancemeasuresusefulfortheoptimizationoftheMAC,time-slotduration,packetlength,etc.OutagestatisticsarealsoimportantfromtheperspectiveofapplicationsutilizingtheWSNs.AnimportantexampleiswhenaWSNisusedtogatherinformationforreal-timecontrolofaplant.Thestabilityoftheclosed-loopcontrolsystemmayrequireoutagesrateslowerthanacertainfrequencyrelatedtothesamplingfrequencyofthesensorsandactuatorsaswellasthedynamicsoftheplant.ThemaincontributionofthispaperisaninvestigationofSTPperformanceforWSNsintermsoftheoutagestatistics.WeprovideanaccurateframeworkfortheabstractionofthepropertiesofthephysicallayerwithcollaborativeSTP,takingintoaccountalltherelevantparametersthatmayinfluencetheupperlayerprotocolsandapplications.Afteraccuratemodellingofthephysicallayer,westudytheSTPperformancewithrespecttotheoutageevents.Specifically,theoutageprobability,theoutagerateandaverageoutagedurationareexplicitlyderivedasafunctionoftheSTPcoefficients.WeaimatdefininganoptimalcontroloftheSTPparameters,whichshouldbescalablewithrespecttoapplication,MAC,routingandpropagationconditionsofthephysicallayer.Ourapproachdiffersfrom[5]and[6],becausewefocusontheoptimizationofoutageperformanceinsteadofoptimalshapingtheequivalentradiationdiagramoftherandomsensorarray.Forreal-timeapplications,theoutageprobabilityisamorereasonablemeasurethanthebiterrorprobabilityanalysisaddressedin[7].Moreover,noneofthesecontributions,aswellas[8],takesintoaccountthepresenceofacorrelationstructureamongwirelesslinks,thatmayhavestrongeffectsontheperformance.
Therestofthepaperisorganizedasfollows:afteradescriptionofthesystemmodelandthewirelesschannelforWSNswithcollaborativeSTPinSectionII,inSectionIIItheoutagestatisticsarederived;inSectionIVasketchofpossibleoutagebasedSTPisoutlined;inSectionVnumericalexamplesarediscussed,and,finally,inSectionVIconclusionsandfuturedevelopmentsaregiven.
II.SYSTEMMODEL
ConsiderthescenarioinFig.1.Wehaveamovingsensornode,calledMS,thatbroadcastsasignalassociatedtoarealtimeapplication.ThereisaclusterofNsensornodesthatreceivethebroadcastedsignalandretransmitittoaSensor
Collectorinformation(SC).whereassociatedForexample,toantheinvertedMScouldpendulumtransmitasthestatusthecontrollerthecommunicationattheSCbetweentheactuatorattheMSin[2],andwhereWeassumethattherelayinghappenssensorthroughnodestheareWSN.
partofaWSNsourceseveraltechniquecoding.otherTherefore,techniquesSTPcanmaybebeseenimplemented,acomplementaryase.g.signalThereisrunningnodirectoverlinkthebetweenrelayingthesensorMSnodes.
andtheweighthasreceivedthetoreceivedpassthroughsignalstheSC,thetorelayingnodesthatcooperativelychannels,bytheSC.Thesensorimprovenodesthetransmitqualityusingofthedifferentsignaltimesignalsslotsfororexamplecodes.theyWeassumecouldusethattwothedifferentretransmissionfrequencies,frequencyThehappenslinksbetweenwithnotheappreciableMSanddelay.
oftherelayingnodesareandfixedfastfading.flat,timeWeassumevariantandtherelayaffectedbypathloss,shadowdescribingandinsensornodesandtheSCathevisibility.linksbetweenConsequently,thechannelcoefficientstogoodIndustrial,theoneapproximation.consideredinThisthem[5],setandupareareisassumedrepresentativebasicallyknownequivalentwithofthearecommonlyScientific,employedandinMedicalWSNs(ISM)[13].
transceivers,whichMoving Sensing NodeRelay Sensor NodesSensor CollectorFig.1.SystemoverviewoftheWirelessSensorNetwork.
fromTheautomatictheSCvariousreceivessimultaneouslytheretransmittedsignalsofsignalaBPSKwaysensornodes,andthereforeperformsinisexpressedmodulation,thesumofasfollows:
thethecomplexsignals.envelopeUndertheoftheassumptionreceivedy(t)=
Nwi[hi(t)s(t)+ni(t)]+n(t),(1)
i=1
wherecoefficients,wi,i=1,...,Narethecomplexinthewandforthesakeofnotationvaluessimplicity,oftheweweighting
includeiwirelessSC;alsohtheknownchannelgainsbetweenthenodesandnoiselinki(t),betweeni=1...,theN,isMSthechannelcoefficientoftheGaussiancomponentatthenodeiandsensori;ni(t)istheσ2noise(AWGN),withpower,andspectralisassumeddensityasgivenwhitebypresenti;finally,σ2atthen(receivert)includesofthetheSC,interferenceshavingpowerandspectralAWGNdensitynoisearen.Notethattheweightingcoefficientsw=[w1,w2,...,wshadowingThesetchannelbytheSTPalgorithm.
N]amultiplicativeandcoefficientfastmodelfading.hasfollowsWei(t)expressiscomprehensivesuchacoefficientofpath-loss,usinghi(t)=gi(t))takesintoaccountpath
[14]:
Li(t),(2)whereLi(tlossandshadowing,while
gi(t)=|gi(t)|ejφi(t)isthefastfading.Acommonassumption
2
forprocess,gi(t)thenisto|gbe(t)|aiscomplexRayleighzerodistributed.meanGaussianMoreover,randomiletusdefineprocess,pi(t)|gi(functionofwithpparametert)|2,then,)aregivenσpi(t)isanexponentialdistributedaspi.inThetheaveragefollowingand[14]:
correlationi(tE{pi(t)}mp2
i=2σpi
,(3)E{pi(t)pi(t−τ)}rp4
i(τ)=8σpiJ0
(2πfmτ),(4)
whereFurthermore,J0(·)isstatisticallywetheassumezeroorderthatBesselgfunctionofthefirstkind.
i(t)andgj(t)Theshadowingindependent.
,withi=j,arecomponentLi(t)hasalog-normaldistri-butionprocessLi(t)=eBi(t),whereBi(t)componenthavingisa2
GaussiantheexhibitsaveragemBiandvarianceσBi
.Theshadowingrandom
ofin[15]:
thepropagationautocorrelationscenario.acorrelationandWestructurethatisdependentoncross-correlationresortheretothefunctionsgeneralderivedmodel2
CτB(τ)=σ2−1τ2B
iBi
i
e,
(5)
1τ2
CστBBB
iBj(τ)=iσBjAcos[ϑij(t)+B]e
−2i
,(6)
where(measuredτBifrominisseconds),thede-correlationϑconstantoftheshadowing
ij(t)isFig.theMSandthenodei,andthetheangleMSandbetweenthenodethejlinks(seeThe2),environment.valuesandforAandConsequently,AandBareBtwoareconstantssuchthatA+B≤1.thedependentaverageandontheautocorrelation
propagationFig.between2.Thethecorrelationlinktowardstructurethenodeofjtheandchannelthenodegainsi.
isfunctionoftheanglefunctionofLi(t)canbeexpressedasfollows:
E{Li(t)}=emBi+21
σB2
i,
(7)
E{Li(t)Lj(t−τ)}=e
mBi+mBj+12σ2
B2i
+σBj
+2CBiBj(τ)
,andAfteramongkeepingacoherentinmindreceivertheindependencematchedtoofthe(8)
thetransmittedRayleighsignal+differentnodes,weexpresstheSignaltoInterferencefading[8]):
NoiseRatio(SINR)correspondingto(1)asfollows([14],SINR(t)=EwheresNiN
i=1|wi|2ri(t)
,(9)=1
|wi|2σi+σn|Esistheenergyofthetransmittedsignal,whileri(tassumedh(t)|2.Notethat(9)dependsontimesincethefading)=iismeaningtobetimevariant.Also,notethat|wi|2hasthefallsTheprobabilitybelowsignalofrelayingofaminimum(1)ispower.
saidtheoutagequalitytobeeventsthresholdinoutageisdefinedγ.ifasInthefollows:
particular,SINR(9)thePout=P(SINR(t)<γ).
(10)
III.STPOUTAGESTATISTICS
trivial.DerivingthestatisticsoftheSINR(9)isincombinationHowever,canofRayleigh-LognormalsincetheSINRisexpressedgeneralasalinearnonwell-knownrelyuponexistingresults[10],[16].randomWeprocesses,resorttowethemethodfor(seeextension[16]and[17]oftheforWilkinsonacomprehensiveMomentanalysismatchingandthethefollowingaccuracyapproximation:
oftheapproach).Specifically,weconsiderSINR(t)∼=eZ(t),
(11)
whereandZ(t)firstcovarianceisaandsecondCGaussianrandomprocesshavingaveragemZmomentsZ(τ),thatofarethederivedasafunctionofthemZ=lnSINR:
Mm2
1
M2(0),(12)
mC=lnMm2(τ)
Z(τ)M.m2(13)1where:
Mm1E{SINR(t)},
(14)Mm2(τ)
E{SINR(t)SINR(t−τ)}.
(15)
expressedTheSINRasfollows:
indB,SINRdB,isaGaussianprocess,andis
SINRdB(t)=βZ(t)
(16)
withasβ=maverageandln10βmcovariancefunctionexpressed,)=β2Crespectively,SINRdB=ZandCSINRdB(τZ(τ),withforwardTheSINR/10.
outagederivationdBGaussianofdistributionallowsforastraight-Specifically,rateFoutageprobabilityPout(w),averageforageneraltheyout(wreferencecan),andbeoutageaveragedurationDout(w).onexpressedLevelasfollows(seee.g.[14]P=√1
2πCrossingTheory):
∞
out(w)e−y22dy,(17)uFw)=12πλ2−u2
out(λe2dy,(18)
0
Dout(w)=
Pout(w)
F),
(19)
out(wwhere
u=mSINRdBC−γdB=βmZ−γdB(20)SINRdB(0)
βσ,
Zλ0=CSINRdB(0),(21)λ−
d2C2=SINRdB(τ)dτ2,(22)
and(15),γdB=10logγ.IntheAppendix,theexpressionsfurtherThe(21)log-normaland(22)areof(14),approximationprovided.
fortheSINRallowsthat,probabilitywhenapproximatedistributionuisnegative,thestatisticsfunctioncanbeoftheoutagesintervals,to[10]describedwithparameterwithaRayleighϕ(w)=
3
u2imatedλ2/4λwith0,and,anexpressionhence,theaveragesimpleroutagewithrespectdurationto(19):
isapprox-Doutapprox(w)=
π2ϕ(w).(23)
Notemayproblems.
leadthatinto(23)remarkabletherearesimplificationsnotintegralfunctionstosolveofoptimizationw,andthisIV.SKETCHOFOUTAGEBASEDSTP
layerTheoutagestatistics(17)-(19)and(23),togetherproblems,constraints,canbeemployedtoformulateoptimizationwithcross-w.Thesolutionwheretheofthevariablesoptimizationaretheproblemweightingiscoefficientsderivedattheofprobability,theSC,fadingwhereitisnotrequiredthedeterministicknowledgeordernodemoments.butcoefficientsonlytheestimationforthecomputationofthefirstofandthesecondoutagefilters.withbyThee.g.Suchestimationscanbeperformedbyeachestimationsimplerunningoftheaverageorrecursivelow-passoptimization.thenodesquencySincearetransmittedfadingthechanneltoparameterstheparametersSCandusedperformedinthepropagation,correspondingsametheweightstoshouldthecoherencebeupdatedtimevarywithafre-atofleastthewirelessenergyAntimeexamplescale.
withtheoutageconsumptionofoutageofthebasedSTPistheminimizationofthevalueapplications,ofprobabilitythethresholdisnotnodesundertheconstraintthatthecouldlowerthanaminimumthreshold.Thewirelesssystemasforbesetbytherequirementsofthe[1].
dataorvoiceservicesinthirdgenerationtransmittedOncetheintoweightsthenodes.arecomputedThistransmissionattheSC,mighttheybehaveexpensivetobewilltermsofenergyconsumption,delay,etc.Ourfutureworksolutions.
includetheinvestigationofdistributedandsuboptimalV.NUMERICALEXAMPLES
eralIngenerality,frameworkthissection,arenumericalreportedexamplesanddiscussed.obtainedWithwithnoourlossgen-devisethehowwethepresentweightingsomecoefficientsspecificcasesmaybethattunedaretousefulofsatisfytotheWerequired50◦anglesconsiderconstraints.
ϑasystemscenariowithN=3sensors,wherei,jamongthecorrelationand115◦.Withnolossnodesofgenerality,arerandomlywesetchosentheshadowingbetweenoutdoorfrequencychannels.constantsTheAMS=isBassumed=0.5,tothatareassociatedtoTherefore,off.4GHz,andhavingtransmitaspeedwithof1acarrierc=2WenoisesassumethethatmaximumthepowerDopplerfrequencyisf.5m/s.m=10Hz.theoneachnodeisσspectraldensityoftheAWGN1=...=σN=σn=standardsymbolbe2
=deviationenergytonoiseratioEs/NN0,and0issetto10dB.The1.0,i=1of..3the.TheRayleighSINRcomponentsthresholdisaresettoassumedγto
dBσ.pSeei
Tab.IfortheshadowingdB=3EachThecurvesinFig.3-6areplottedsetting.
asfunctionofd1=|w1|2.legendcurvevalueofof0.theisreferredtothevalued2=|w2|2specifiedinthe01figure,whiled3=|w3|2issettotheconstantTab.InbeI,Fig.where3,thefortheoutageanycase.
parametersprobabilityisreportedforthecase1inavaluestrongestuniform,ofdaveragewiththeoftheshadowingareassumedtocomponent.exceptionofLookingthenodeFig.23,thatforexperienceseachd2,a1thatensuresaminimumoftheoutageprobability
Caseparameternode1node2node3mB1.02.01.01σiB1.01.01.0τii0.010.010.01mB1.01.01.02σiB1.02.01.0τii
0.010.010.013mBi,σB1.01.01.0τii0.0010.010.01TABLEI
PARAMETERSETTINGSFORTHENUMERICALEXAMPLES
canofbefound.Moreover,theminimumisthesameforpossibledwithpowers,whiletosetthetheexceptionthevalueoutageofofd0.05.Therefore,itcouldallcases2,2=beprobabilitytheweightingisstillcoefficientsminimized.
withlowinInFig.4,theoutageprobabilityisreportedforthecase2standardTab.I,wherethenode2isassumedtoexperiencealargerforprobabilityFig.3deviationarestillvalid.oftheMoreover,shadowing.Theobservationsmadehigherishigher,andthiscanbetheexplainedminimumoftheoutageeventsstandardlastlonger.
deviationoftheshadowingimplyobservingthatoutagethatFig.Noteaslargerthe3andthattherangevariationoftheoutageprobabilityinchannelFig.4,parameters.isdependentSevereonthechannelSTPcoefficientsconditionsasleadwelltoareIncomponentreportedFig.variation5andoftheoutages.
for6,thetheaverageoutagedurationandoutageratedelay.theLookingofthetonodecasetheresults,13experiencesofTab.I,wheretheshadowingasthereaislargeranincreasede-correlationloweroutagedecreasesoutageraterate.increases,Bythecontrary,whilehighertheaveragevaluesoutageofdofd1,2durationleadtoisofreachedasforbothdd1andd2increase,andacommonminimum1>0.25.Therefore,atrade-offinrequirementstheweightingmappedcoefficientsontooutagecouldberatesdevisedandduration.
accordingthechoicetothe10−1.4ytilibaborP egatuO10−1.5d2=0.05d2=0.09d2=0.13d2=0.17d2=0.2100.10.20.3d10.40.50.60.7Fig.the3.caseOutage1ofprobabilityTab.I.
asfunctionoftheSTPcoefficientsdi=|wi|2
forVI.CONCLUSIONSANDFUTUREDEVELOPMENTS
collaborativeInthispaper,STPanforinvestigationWSNswasofproposed.theoutageTheperformanceapproachofis
4
d2=0.05d2=0.09d2=0.13d2=0.17yd2=0.21tiliba10−1.4borP egatuO10−1.510−1.600.10.20.30.40.50.60.7d1Fig.4.OutageofprobabilityTab.I.
asfunctionoftheSTPcoefficientsdi=|wi|2forthecase2140120100) 1 − s( et80aR egatu60d2=0.05Od2=0.0940d2=0.13d2=0.1720d2=0.21000.10.20.30.40.50.60.7d1Fig.5.OutagerateasfunctionoftheSTPcoefficientsdi=|wi|2case3ofTab.I.
forthebasedasontheadoptionofagoodabstractionofphysicallayeranOurfunctionnecessitiesoptimizationmethodofthecanSTPpolicybeweightingcoefficients.
ofactuallytheusedforthederivationofexample,totheofweightingtheuppercoefficientslayersSTPofalgorithmtailoredtothecouldtheprotocolstack.Fordoensuremovingnotaffectanaveragethecontroloutageofdurationandanbeoutagetunedinrateorderthatfordesiredselectingsensor.theAnothersufficientexampleanapplicationnumberistheusemonitoredofourapproachbytheredundantqualitytheonesand,ofthethus,receivedofnodesthatensureasavingsignal,energy.whileturningoffthesleepingextensionanddisciplineofouralgorithmsmodeltoWeplantoinvestigateforincludethesensorjointoptimumSTP-sensingextensionnodesofcouldourbeapproachinteresting.
toWSNswithseveralnodes.Finally,movingVII.APPENDIX
asThefollows:
firstandsecondordermomentsof(9)canbederivedMm1=CA
Nd2mBi+21σB2
i2σpi
ei
,(24)
i=1
3x 10−3d2=0.052.5d2=0.09)sd2=0.13( noit2ad2=0.17ruD ed2=0.21gatu1.5O egarevA10.5000.10.20.30.40.50.60.7d1Fig.6.AverageOutage3ofTab.durationI.
asfunctionoftheSTPcoefficientsdi|w=i|2forthecaseMm2(τ)=
CA2
didj2σ2
pi
2σpjeBi+i=1
N,i=jN2mj=1
mBj
12[σ2B2i+σBj+2CBiBj(τ)]
+
CA2
Nd4iσ8piJ0(2πfmτ)rνi(τ)
i=1
e
2mBi+σ2
B
i
+CBi(τ),(25)
whereCA=Es/(N
i=1diσi+σn)anddi=|wi2isderivedasfollows:
|2.λλ2
=−β
2d2
CZ(τ)dτ2(26)
d2Mm2(τ)
)
=
dτ2Mm2dτM−dMm2(τ2
,(27)
m22
where,areobtained:
afteralgebraicmanipulations,thefollowingexpression
dMm2(τ)NNdCBdτ
=
Gi,j(τ)
iBj(τ)
i=1j=1,j=i
dτ
+
NHi=1
Nτ)
dCBi(τ)
i,j(τ)+Ii(i=1
dτ
,(28)where
Gi,j(τ)
=
CAdidj2σ2
p2mBii2σpje+mBj
12[σ2B2i+σBj+2CBiBj(τ)]
,(29)Hi(τ)=CAd4iσ8p2mBi+σBiJ0(2πfmτ)e
2
i+CBi(τ),(30)
Ii(τ)=CAd4iσ8p2mBi+σB+CiJ0(2πfmτ)e
2
iBi(τ).(31)
5
andd2Mm2(τ)dGi,j(τ)dCBiBj(τ)
dτ2
=
NNi
j=1,i=j
dτdτ+
NGd2CBi,j(τ)iBj(τ)i
j=1N,i=j
dτ2
+
NdHi(τ)+i
dτ
NdIi(τ)dCBi(τ)i
dτdτ+
NId2Ci
Bi(τ)
i
dτ2,
(32)
withdGi,j(τ)
dCBiBj(τ)dτ=Gi,j(τ)dτ,(33)
dHi(τ)dτ
=
CAd4iσ8pJ0(2πfmτ)e
2mBi+σ2
B+CBi(τ)ii+Hi(τ)
dCBi(τ)
dτ
,(34)and
dIi(τ)
dτ=H(τ)+IdCi(τ)Bi(τ)i.(35)
REFERENCES
dτ
[1]J.nicationsC.Liberti,T.[2]Hall,X.Liu,1999.
:IS-95S.andRappaport.ThirdGenerationSmartAntennasCDMAApplicationsforWireless.Commu-Prentice
A.Goldsmith.Wirelessnetworkdesignfor[3]IEEEM.service-basedSgroi,CDC,distributedcontrol.
A.2004.
[4]networks.H.whitepaper,universalWolisz,A.Sangiovanni-Vincentelli,J.M.Rabaey.A
U.C.Berkeleyapplicationinterface,forad-hocwirelesssensor[5]inR.adOchiai,hocnetworks.P.Mitran,H.V.Poor,V.Tarokh.2004.
Collaoborativebeamforming
controlMudumbai,J.Hespanha,IEEEInformationU.Madhow,TheoryG.Barriac.WorkshopScalable,2004.
feedback
[6]tionalfordistributedbeamforminginsensornetworks.IEEEInterna-G.Barriac,SymposiumR.onInformationTheory,2005.
[7]informationD.channelsChen,withoutJ.transferMudumbai,N.Laneman.insensorU.networks.Madhow.IEEEDistributedIPSN04beamforming,2004.
for
channelstateCooperativeinformation.diversityIEEEAsilomarforwirelessConferencefading
,[8]2004.
W.diversityCheng,inL.mobileZheng,cellularJ.Hu.networks.PerformanceIEEEanalysis6thCASofSymp.cooperativemacro-[9]TechnologiesM.[10]onZorzi.F.Communications,Outage,2004.
onEmerginganderroreventsinburstychannels.IEEETransactions
sityGraziosi,cellularF.Vol.46,no.3,1998.
systems.Santucci.IEEEDistributionJourn.onofSelect.outageAreasintervalsinComm.,inmacrodiver-Vol.17,[11]pp.L.durationYang,2011–2021M.S.,Alouini.Nov.1999.
Ontheaverageoutagerateandaverageoutage
interferers.ofIEEEwirelesscommunicationsystemswithmultiplecochannel[12]4M.,JulyTransactiononWirelessCommunications,Vol.3,N.Zuniga,2004.
B.Krishnamachari.Analyzingthetransitional[13]powerJ.WirelessPolastre,wirelessResearch.R.Szewczyk,links.SECONTelos:D.EnablingCuller,,2004.
regioninlow
“Telos:ultra-lowEnablingpowerwirelessUltra-Lowresearch.Power
[14]IPSN/SPOTSG.L.St¨uber.,April,2005.[15]Publishers,F.inGraziosi,1996.
PriciplesodMobileCommunication.KluwerAcademic
mobileradioF.Santucci.systems.AIEEEgeneralCommunicationcorrelationmodelLetters,forshadowVol.6,fading
No.3,[16]MarchF.Graziosi,2002.
[17]channels.F.Santucci.Onsirfadestatisticsinrayleigh-lognormal
C.lognormalFischione,IEEEICC2002,Vol.3,2002.
processesF.Graziosi,withF.wirelessSantucci.applications.ApproximationIEEEofICCasum,2004.
ofonoff
因篇幅问题不能全部显示,请点此查看更多更全内容