您的当前位置:首页正文

传统医学和循证医学的差异

来源:九壹网
循证医学是指最佳的临床研究证据(核心)、临床经验和患者价值观(关注、期望、需求等)的有机结合。

循证医学四要素:临床经验、研究证据、患者意愿、医疗环境

五个步骤:提出问题、寻找证据、评价证据(真实性、重要性、实用性)、临床实践、总结及后效评价

传统医学和循证医学的差异

传统医学 循证医学 1 证据来源 动物试验 系统全面 实验室研究 临床研究 零散临床研究 过时的教科书 2 收集证据 不系统全面 系统全面 3 评价证据 不重视 重视 4 医疗模式 疾病/医生为中心 病人为中心

5 判断疗效 实验室指标的改变 病人最终结局 仪器或影像学结果 (终点指标) (中间指标) 系统评价(system review, SR)

u 以某一具体临床问题为基础,全面收集全世界所有有关研究,采用临床流行病学严

格评价文献的原则和方法

u 对筛选出符合质量标准的文献,进行综合分析和评价 u 必要时进行 Meta-分析

u 得出综合结论(有效、无效、应进一步研究) 系统评价的分类:

按原始研究类型不同

✓ 基于临床对照试验的系统评价 ✓ 基于观察性研究的系统评价  根据资料分析时是否采用Meta分析

✓ 定性的系统评价 ✓ 定量的系统评价  按系统评价来源分

✓ Cochrane系统评价 非Cochrane系统评价

Cochrane系统评价是Cochrane协作网的评价人员按照统一工作手册(Cochrane reviewers’ handbook),在相应的Cochrane评价小组编辑部的指导和帮助下所完成的系统评价。

文献综述:文献综述又称叙述性文献综述,由作者根据特定的目的和需要或兴趣,围绕某一题目收集相关的医学文献,采用定性分析的方法,对论文的研究目的、方法、结果、结论和观点等进行分析和评价,结合自己的观点进行阐述和评论,总结成文。 系统评价的意义:

及时转化和应用研究成果  提高统计效能

 应对信息时代的挑战 系统评价的步骤:

1、提出要评价的问题(不肯定,有争论)2、制定纳入研究的标准3、检索研究4、筛选研究和搜集数据5、评估纳入研究的偏倚风险((1)内在真实性:指单个研究结果接近真值的程度。 (2)外在真实性:研究结果是否可以用于研究对象以外的其他人群。 )6、分析数据并在可能的情况下进行Meta分析7、解决报告偏倚8、陈述结果与制作结果摘要表格9、解释结果与得出结论10、完善和更新系统评价 系统评价的常见偏倚:

检索文献阶段:发表偏倚、数据库偏倚、重复发表偏倚、造假偏倚、语言偏倚 筛选文献阶段:纳入标准偏倚、排除标准偏倚、筛选者偏倚、无法获取全文 资料提取阶段:研究人员偏倚、原始研究偏倚 利益冲突偏倚

发表偏倚是指有统计学意义的研究更容易投稿和被发表。发表偏倚可使Meta分析过分夸大效应的关联程度。

如何识别发表偏倚:漏斗图发、Begg’s检验(P>0.05,表明不存在发表偏倚 )、计算失安全系数

失安全系数NFS是指需要增加多少个无统计学意义的研究,才能使合并的效应量无统计学意义。NFS越小,发表偏倚越大,NFS越大,发表偏倚越小。

漏斗图所基于的假设是效应量估计值的精度随着样本量的增加而增加,其宽度随精度的增加而逐渐变窄,最后趋于点状,其形状类似一个倒置的漏斗,故称漏斗图。

数据提取由两人独立完成,比较提取结果,对有争议的数据要讨论决定

分析资料:定性分析:采用描述的方法,将每个临床研究的特征按研究对象、干预措施、研究结果、研究质量和设计方法等进行总结并列出表格,以便浏览纳入的研究情况、研究方法的严格性和不同研究间的差异,计划定量合成和结果解释。

定量分析:异质性检验、合成效应量、敏感性分析、发表偏倚分析

叙述性综述和系统综述的区别

叙述性综述 系统综述 研究问题:涉及范围较广 常集中于某一问题

文献来源:不全面 明确,常为多渠道 检索方法:常未说明 有明确检索策略 文献选择:有潜在偏倚 有明确选择标准 文献评价:方法不统一 有严格评价方法 结果合成:多为定性研究 多为定量研究 结论推断:有时遵循研究依据 大多遵循研究依据

结果更新:未定期更新 依据新试验定期更新

Meta-分析(Meta-analysis)

广义:系统评价的一种类型(目前普遍采用的定义)

用定量的统计学方法分析、综合、概括各研究结果的一种系统评价(定量系统评价)。 Meta-分析是一种系统评价,而系统评价可以是Meta-分析也可以不是Meta-分析。 狭义:一种定量合成的统计分析方法 Meta分析的统计目的

对多个同类独立研究的结果进行汇总和合并分析,以达到增大样本含量,提高检验效能的

目的,尤其是当多个研究结果不一致或都没有统计学意义时,采用Meta分析可得到更加接近真实情况的统计分析结果

异质性:在Meta分析过程中,纳入的多个研究尽管都是对同一临床问题或具有相同临床假设的研究。但是这些研究在研究对象的纳入和排除标准,样本含量、质量控制等方面可能不相同,从而导致了同一结局指标在多个研究间有差异。 异质性检验:

假如研究资料间的真实效应量一致,所有研究都来自于同一个总体,那么实际效应量间的差异可认为是由抽样误差造成的。

但若效应量间差异过大,即这些变异不仅仅是抽样引起的,纳入Meta分析的各个独立研究可能来自不同的总体,而总体效应量间存在差异,则考虑研究的异质性。 Q服从于自由度为K-1的χ2分布,Q值越大,其对应的P值越小。

I2=(Q-df)/Q×100%

Q<χ2α,k-1,则P>α,不存在异质性 Q≥χ2α,k-1,则P≤α,存在异质性

 I2统计量反应异质性部分在效应量总的变异中所占的比重。其利用自由度校正了研

究数目对Q值的影响,其结果不随研究数目的变化而改变,结果稳定  I2=0,表示没有异质性

 I2统计量越大,异质性越大

 I2统计量25%,50%,75%,分别对应低,中,高异质性。

异质性的处理:1、首先检查每个研究的原始数据是否正确,检查提取数据的方法是否正确。 2、如果产生的异质性原因可能是由于疗程长短,用药剂量、病情轻重、对照选择等所致,可使用亚组分析和Meta回归。

3、敏感性分析,排除可能导致异质性的某些(个)研究后,重做Meta分析。 4、无法解释异质性来源的可选择随机效应模型。 5、如果异质性过于显著,不做Meta分析 下列情况不用做meta分析

 研究间的异质性无法得到合理的解释  多个研究的合并结果无临床意义

 没有足够的,真实的,高质量的相关研究

效应量的合并:第一步:确定变量类型、第二步:异质性检验、第三步:计算各单个研究的效应量、第四步:选择效应模型合并效应量 确定变量类型:分类变量、连续型变量

合并效应量:固定效应模型:Mantel-Haenszel法、反方差法、Peto法

随机效应模型:DerSimonian-Laird法

森林图是由多个原始文献的效应量及其95%可信区间绘制而成,横坐标为效应量尺度,以0为中心(对于OR或RR,则以1为中心),纵坐标为原始文献的编号,按照一定的顺序,将各个研究的结果依次绘制到图上。主要用于描述各个研究的结果及其特征,以及展示研究间结果的差异情况

敏感分析:在排除异常结果的研究后,重新进行Meta分析,其结果与未排除时的Meta分析结果进行比较,探讨该研究对合并效应量影响程度及结果的可靠性。 应用最佳证据,指导临床决策

 充分评价真实性、可靠性、实用性的基础上,获得最佳证据,用于指导临床决策。  基于最佳证据、患者意愿、医疗环境及条件,达到三者统一,使最佳决策得以实施。 1、真实性评价

 是否根据随机对照试验进行的系统评价?  是否详细描述了检索策略?

 是否对每个研究质量进行了评价?  不同研究的结果是否一致? 2、重要性评价 疗效的大小如何? 疗效的精确性如何 3、适用性评价

 是否适用于我的病人?

 系统评价中的干预措施在我的医院中是否可行?  我的病人从治疗中获得的利弊如何?

 对于拟采用的干预措施和可能由此导致的不良反应,病人的价值观和选择如何?

问题的种类:背景问题(疾病的一般知识问题)、前景问题(处理、治疗病人专门知识问题)

问题的构建方法:

 包括三或四个基本成分,可按PICO原则确定:

(1)患者或问题(patient或problem,P):应包括病人的诊断及分类;

(2)干预措施(intervention,I):包括一种暴露因素、一种诊断试验、一种预后因素、一种治疗方法等;

(3)对比措施(comparison,C):与拟研究的干预措施进行对比的措施,必要时用; (4)结局指标(outcome,O)

循证医学实践的类别:证据提供者(doser)、证据应用者(user)

数据的来源:

原始研究证据数据库:

 MEDLINE, PubMed  EMbase Database

 中国生物医学文献数据库(CBMdisc)  中文科技期刊数据库(VIPdata)

 中国循证医学/Cochrane中心数据库(Chinese Evidence-Based Medicine/Cochrane

Center Database,CEBM/CCD): CEBM/CCD是由中国循证医学/Cochrane中心组织建立和更新的以中文发表的临床干预性随机对照试验和诊断试验数据库。已收录试验2万余条。

 国立研究注册(The National Research Register,NRR):NRR是一个由英国国立卫生服务

部(National Health Service NHS)资助或关注的在研或新近完成的临床试验的数据库。

二次研究数据库:

 Cochrane图书馆(Cochrane Library,CL)  Ovid循证医学数据库

 美国国立卫生研究院卫生技术评估与导向发布数据库(National Institutes of Health

Consensus Statements and Technology Assessment Statements, NIHCS & TAS) 由美国NIH的医学应用研究事务所(Office of Medical Applications of Research,OMAR)制作,是一个关于卫生技术评估的数据库。

循证检索基本步骤:

• 分析临床问题(明确研究目的) • 选择适当的数据库 • 确定检索词 • 编制检索策略 • 初步检索 • 调整检索策略 • 输出检索结果 循证证据整合库:

— 这类数据库通常是按照PICO原则分解临床问题,由检索专家完成相关文献的检索,

方法学专家完成文献的质量评价,然后由临床专家撰写并给出分级推荐意见。 — 优点:直接应用于临床

— 缺点:付费使用,内容比原始数据库少 UpToDate:提供GRADE分级

✓ 高质量:Grade A ✓ 中等质量:Grade B ✓ 低质量:Grade C ✓ 强烈推荐:Grade 1 ✓ 弱推荐:Grade 2

DynaMed:将证据质量分为三级

✓ 一级证据:最有效的且以患者为中心的研究

✓ 二级证据:运用科学研究方法但没有满足一级研究证据 ✓ 三级证据:不是以患者为中心的非科学研究证据

➢ 给出ABC三级推荐意见

✓ A级:一致且高质量的证据 ✓ B级:不一致或有限的证据 ✓ C级:缺乏直接的证据

其他循证证据整合库: (4)Best Practice

(5)ACP Smart Medicine (6)First Consult

(7)Essential Evidence Plus (8)Medscape Reference (9)MicroMedex (10)PEPID

确定检索词:

— 需要注意的问题:

(1)检索词应该是临床常用的规范术语

(2)检索词应该是描述欲检索对象的特征词汇

(3)全面考虑检索词的同义词、近义词、不同拼写方式、时态、单复数、词性变化及缩写。 (4)初步检索未找到目标文献,常需要调整检索词。 调整检索策略:

1、扩大检索范围:目标文献找不到或太少

(1)选择多个数据库

(2)考虑检索词的同义词、近义词、缩写等不同表达 (3)重新构建检索式:减少AND,截词检索等 2、缩小检索范围:目标文献太多不特异 (1)缩小数据库 (2)增加检索词

(3)重新构建检索式

(4)缩小检索文献的出版日期 研究设计与证据质量:

 高:为不降级的随机试验和升2级的观察性研究;  中:为降1级的随机试验和升1级的观察性研究;  低:为降2级的随机试验和没有升降级的观察性研究;

 非常低:为降3级的随机试验和降1级的观察性研究、病例分析、病例报告

表1 临床问题的来源 1.病史和体格检查:怎样恰当地采集和解释病史及体格检查的发现 2.病因:怎样识别疾病的原因(包括医源性) 3.临床表现:疾病临床表现的频度和时间,怎样应用这些知识来进行病人的分类 4.鉴别诊断:当考虑病人临床问题的可能原因时,怎样鉴别出那些可能的、严重的并对治疗有反应的原因 5.诊断性试验:怎样基于精确度、准确度、可接受性、费用及安全性等因素来选择和解释诊断性试验,以便确定或排除某种诊断 6.预后:怎样估计病人可能的病程和预测可能发生的并发症 7.治疗:怎样为病人选择利大于害且价有所值的治疗方法 8.预防:怎样通过识别和纠正危险因素来减少疾病的发生及通过筛查来早期诊断疾病

总结:证据分级和推荐强度的演进:

➢ 从定性到定量(如从单个RCT到多个RCT的Meta分析)

➢ 从局部到整体(只考虑试验设计到考虑研究质量、结果的一致性和直接性) ➢ 从片面到全面(单纯针对治疗扩展到预防、诊断、经济学等)

➢ 从个别到一般(涉及领域从临床、预防延伸到基础、管理、教育等) ➢ 从分散到统一(从指导各自国家和组织到指导全球) 证据评价的基本要素:

➢ 内部真实性(internal validity)(核心)

其研究方法是否合理,统计分析是否正确,结论是否可靠,研究结果是否支持作者的结论等。

(1)是否随机

 是否随机抽样

➢ 目的:保证样本的代表性

➢ 方法:单纯随机抽样、系统抽样、分层抽样、整群抽样

 是否随机的分组

➢ 目的:保证比较组的可比性

➢ 方法:完全随机分配、区组随机分配、分层随机分配

(2)是否估计样本量

➢ 观察指标在人群中的发生频率(计数资料) ➢ 两组均数的差值(计量资料) ➢ 检验水准α(第一类错误) ➢ 检验效能1-β(第二类错误)

(3)研究对象是否有纳入和排除标准

 使用统一的诊断和排除标准

 入选的研究对象应能从试验中受益  尽可能选择症状和体征明显的病人

 尽可能不用孕妇、老人、儿童为研究对象  尽量选择依从性好的研究对象 (4) 对照的选择是否合适

对照的目的:消除非处理因素的影响

空白对照 、安慰剂对照 、试验对照 、标准对照 、历史对照 、自身对照 、相互对照 (5) 干预措施是否明确 干预措施的定义

干预措施的数量与水平 干预措施之间的相互作用 干预措施的实施方案

(6)试验效应选择和测量是否合理

 指标的性质:定性的、定量的  指标的数目:根据研究目的确定

 指标的选择:中间指标、终末指标  指标的测量:科学的方法、统一的方法 — (7)是否使用盲法 — 盲法的原则

目的:控制人为主观心理因素对试验的干扰 受试对象、试验执行者、资料分析者 方法:单盲、双盲、三盲 程序:有没有描述

(8)是否存在干扰或沾染

干扰:是指实验组额外地接受了其他药物或其他治疗措施而导致疗效提高,造成假阳性。 沾染:对照组的患者额外地接受了实验组的药物,使对照组疗效提高,造成假阴性。 (9)观察期限是否合理 (10)是否有研究对象退出

— 退出的比例大于20%,通常会影响证据的真实性。 — 处理方法:

➢ 退出的原因分析

➢ 意向性分析:退出的研究对象作为无效的数据纳入分析

➢ 最差情况的演示分析:试验组退出数据做无效计,对照组退出数据当有效计

(11)统计学方法应用是否正确

— 用样本估计总体

➢ 点值估计:样本统计量 ➢ 区间估计:95%的可信区间

— 组间比较的假设检验

➢ 计量资料:t检验、方差分析 ➢ 计数资料:卡方检验、U检验 ➢ 等级资料:秩和检验

— 相关性分析:线性相关 — 多元分析

通过真实性评价可以得到三种结果

— 真正的阴性结果 、结果存在争议 、真正有意义的阳性结果

➢ 临床重要性(clinical importance)

是指研究结果本身是否具有临床价值。

n 评价研究结果的临床价值主要采用一些客观指标,而不同的研究类型其指标不同,主要为效果和效应值的精确度(如可信区间,confidence interval,CI)。 【评价指标】

事件发生率(痊愈率、有效率、致残率、病死率、药物不良反应率等)  绝对危险降低率(ARR)及相对危险降低率(RRR)  绝对危险增高率(ARI)及相对危险增高率(RRI)  预防一例不良事件需治疗总例数(NNT=1/ARR)  治疗多少例患者会发生一例副效应(NNH=1/ARI)

➢ 适用性(applicability)指文章的结果和结论在不同人群、 不同地点和针对具体病

例的推广应用价值(外部真实性)。(适用、可行、利弊)

以病人为中心的临床研究证据远比以疾病为中心的研究证据实用。 证据评价的注意事项

 方法学评价是基础:研究设计直接决定证据的级别。

 证据的真实性是评价重点:不真实,就无所谓重要和适用。  要选择恰当的评价指标:要做到“门当户对”。

 评价力求全面系统:针对研究的全过程(选题、设计、测量、分析、结果解释等)

进行评价。

 评价要实事求是:任何研究都会有缺陷和不足,应合理评估其作用和不足。  正确认识阴性结果:不要遗漏阴性结果的证据。

病因或致病因素指在疾病的发生过程中起重要作用的各种因素,包括生物、物理、化学、社会以及人体自身的心理和遗传方面的所有事件或状态。当这些因素作用于人体后导致疾病发生时,称之为致病因素,简称病因。

从流行病学角度:那些能使人群发病概率升高的因素,就可认为是病因,其中某个或多个因素不存在时,人群疾病频率就会下降。

流行病学层次的病因一般称为危险因素(risk factor),即疾病发生概率(危险)升高的因素 因果关联的判断标准:(1)时间顺序(2)关联的强度(3)可重复性(4)合理性(5)关联的特异性(6)暴露与疾病分布一致性(7)剂量反应关系(8)暴露终止效应(9)相似性

RCT的优势:减少偏倚

 随机分配可消除己知和未知混杂因素的影响

 研究者对干预因素可准确地按照试验设计进行测量  盲法测量可消除观察者与被观察者主观因素的影响  可用于研究某种治疗措施的不良反应

 缺点:RCT在病因学研究中的可行性较差 队列研究:

 优势:前瞻性,准确的测量暴露因素与疾病  能确定致病因素与疾病的先后关系  可行性强

 论证强度仅次于RCT 缺点:致病因素不能为研究者控制

研究时间较长,对人力、物力、财力的要求高。尤其是发病率低、潜伏期长的慢性病。

队列研究:

由于非随机,研究者不能主动控制暴露,暴露组的某些重要体征与非暴露组不同。  混杂因素,例:假设患高血压的病人患癌症的危险性比正常人大,那么,在有关钙

通道阻滞剂与癌症危险性的研究中,高血压将可能是一个混杂因素。  基线的描述

暴露组(各种原因服用钙通道阻滞剂)中患有糖尿病、心血管疾病、住院等的比例多于非暴露组(未用钙通道阻滞剂)

 混杂因素的调整

调整前:RR=1.4(P=0.032)

调整多项导致基线不同的因素后:RR=1.7(P=0.0005)

 前瞻性研究(RCT和队列研究):RR  回顾性研究(病例对照研究):OR,是RR的估计值

OR(RR)

保护因素 危险因素 0.9~1.0 0.7~0.8 0.4~0.6 0.1~0.3 <0.1

1.0~1.1 1.2~1.4 1.5~2.9 3.0~9.9 10~

关联强度 无 弱 中 强 很强

 ARI (Absolute risk increase):绝对危险增加率,AR ARI=︳对照组结局发生率-干预组结局发生率︱

 RRI (Relative risk increase):相对危险增加率,AR%

 NNH (Number need to harm):导致1例副作用(如癌症)的发生需要治疗(如钙通

道阻滞剂)病人的人数

NNH=1∕ARI

前瞻性研究:随机对照试验和队列研究中直接计算NNH,为暴露组与非暴露组不反应发生

率之差的倒数。

 1000名患者接受治疗,20人出现不良反应, a=20,a/(a+b)=2%;  1000名未接受治疗患者中2人出现不良反应:c=2,c/(c+d)=0.2%;  ARI=2%-0.2%=1.8%

 NNH=1/ARI=55.6≈56。

【结论】即多治疗56位患者,就会多出现1例不良反应。 病例对照研究:NNH计算复杂

 当OR<1时,NNH计算公式为:l-[PEER(1-OR)]/PEER(1-PEER)(1-OR);  当OR>1时,NNH计算公式为:1+[PEER(OR-1)]/PEER(1-PEER)(OR-1)。

 PEER (patient expected event rate,PEER)是患者预期事件发生率,即未暴露于可疑危

险因素时,研究对象不良反应发生率。 注意:

 RR或OR不能说明不良反应出现的频率,只说明暴露组与非暴露组相比更多或更少

出现不良反应的结果,故NNH给临床医师和病人的印象更为直观。

 当RR相同时,如果不良反应发生率不同,得出NNH也不相同。对因果关系强度评

估,需要综合考虑两种或多种指标。

如果95%CI范围较狭小,上下限值不包括1.0,则其精确度高,有统计学意义。

真实性的评价原则

1.病因和危险因素研究是否采用了论证强度高的研究设计方法?

2.试验组和对照组的暴露因素、结局的测量方法是否一致?是否采用了盲法?3.观察期是否足够长?结果是否包括了全部纳入的病例? 4.病因和危险因素研究因果效应的先后顺序是否合理? 5.危险因素和疾病之间有否剂量效应关系?

6.病因和危险因素研究的结果是否符合流行病的规律? 7.病因致病的因果关系是否在不同的研究中反映出一致性? 8.病因致病效应的生物学依据是否充分? 9.偏倚及其影响?

重要性的评价原则

1.暴露因素/干预措施与不良反应之间的关联强度如何?

3.多发生1例不良反应所需要治疗的患者数(NNH)

3.暴露因素/干预措施与不良反应之间关联强度的精确度如何?

适用性的评价原则

1.患者与研究对象是否存在较大差异,导致研究结果不能应用?

2.患者可能暴露因素和研究暴露因素是否有重要不同?

3.是否应该停止或继续暴露因素(即可疑的诊治干预措施)?

诊断试验评价:1、真实性评价: 评价诊断试验的准确性。2、可靠性评价:评价诊断试验的稳定性。

诊断试验的真实性评价指的是将待评价的诊断试验与诊断目标疾病的标准方法-“金标准”进行同步盲法比较,判定该方法对疾病诊断的真实性。 步骤: 确定金标准(gold standard)

1选择受试对象2 确定样本量3整理评价结果

金标准的方法:病理活检、手术发现、尸检、综合诊断等。

选择受试对象:选择原则:受试对象应能代表诊断试验可能应用的目标人群。 病例组:应包括不同的临床类型。

对照组:应选择没有目标疾病的其他病例,特别是易于与该病产生混淆的疾病。一般不把正常人纳入对照。

n(zα2)(1p)pδ确定样本量:

与样本量有关的因素:

(1)待评价诊断试验的灵敏度(病例组) (2)待评价诊断试验的特异度(对照组) (3)显著性检验水平 (4)容许误差 评价指标:

(1)识别病人能力的指标

灵敏度:实际有病而按诊断试验的标准正确地判断为有病的百分比。 灵敏度=a/(a+c)×100%

漏诊率:实际有病而按诊断试验的标准错误地判断为无病的百分比。 漏诊率=c/(a+c)×100% (2)识别非病人能力的指标

特异度:实际无病按诊断试验正确判别为无病的百分比。 特异度=d/(b+d)×100%

误诊率:实际无病按诊断试验错误判别为有病的百分比。 误诊率=b/(b+d)×100%

(3)正确指数:正确指数也称约登指数,表示诊断真正病人与非病人的总能力 约登指数(r)=1-(漏诊率+误诊率) =(灵敏度+特异度)-1 然比(LR):属于同时反映灵敏度和特异度的复合指标,即有病者中得出某一诊断试验结果的概率与无病者得出这一概率的比值。

+LR=真阳性率/假阳性率=灵敏度/(1-特异度) - LR=假阴性率/真阴性率 =(1-灵敏度)/特异度 (5)预测值

阳性预测值:诊断试验阳性者患目标疾病的可能性大小: 阳性预测值=a/(a+b)

阴性预测值:诊断试验阴性者不患目标疾病的可能性大小 阴性预测值=d/(c+d)

✓ Kappa值介于-1和+1之间

✓ K<0,由机遇所致的一致率大于观察一致率 ✓ K=-1,说明两结果完全不一致 ✓ K=0,观察一致率完全由机遇所致

✓ K>0,说明观察一致性大于由机遇所致的一致的程度 ✓ K=1,说明两结果完全一致 K在0.4到0.75之间为中、高度一致 影响诊断试验可靠性的因素: (1)试验方法本身或仪器的变异 (2)试验对象的生物学变异

(3)观察者的变异:不同观察者的变异和同一观察者内的变异

当灵敏度和特异度不变的时候,阳性预测值随着患病率的增高而增高,阳性预测值上升的速度快于阴性预测值下降的速度。

灵敏度增加、特异度降低,并联;特异度增加、灵敏度降低,串联;

原始治疗性研究证据的评价

1、真实性评价:是否真正的随机对照试验的证据。 2、重要性评价:治疗的效果和精度。 3、适用性评价:适用、可行、利弊等。

临床决策分析(clinical decision analysis , CDA)是采用定量分析方法在充分评价不同备选方案的风险和获益之后,选取最佳方案以减少临床不确定性、实现有限资源取得最大效益的一种思维方式,包括诊断决策、治疗决策等。

决策的三要素:决策主体、决策目标、备选方案

临床抉择的步骤:提出决策目标 、收集和筛选相关信息资料,拟定备选方案 、评估和选择方案 、实施方案并反馈信息 、调整方案

进行临床决策时,首先应该寻找系统评价文献和决策分析文献作为参考 诊断某种疾病的可能性用概率表示

(1)验前概率:进行诊断试验前怀疑为某种疾病的概率,可用该种疾病在特定环境中的患病率表示。

(2)验后概率:进行诊断试验后确定患病的概率。验后概率受患病率的影响。

在获得验后概率后,临床医生面临的决策; (1)是应该否定诊断 (2)需要新的诊断试验 (3)根据诊断确定进行治疗 阈值分析法的假定条件为:

➢ 单个疾病,有明确有效的治疗方法,在证实有某病的情况下,接受治疗利大

于弊,未患该病接受治疗则有一定风险。

➢ 另外一种新的诊断方法可以提供是否有病的新的信息,从而可以进一步确定

处理方案,但可能出现假阴性及假阳性结果,并且进行这种诊断试验时可能具有某种风险。

意义:PTtrx时,最好的决策是肯定诊断,TrTtrx=(SP×Rrx -Rt)/(SP×Rrx+FNR×Brx Tt=(FPR ×Rrx + Rt)/(FPR ×Rrx+SN×Brx

SN:灵敏度,FNR:漏诊率,SP:特异度,FPR:误诊率 Rt:诊断试验风险,Brx:治疗收益,Rrx:治疗风险

相对价值=(1-不良事件效用值)/(1-靶事件平均效应值) 治疗获益等于治疗带来的风险及费用支出时,称治疗阈值,费用及风险大于获益获益不需治疗,小于获益则需要治疗。 预后研究涉及到几方面的问题:

❖ 将发生什么结果(定性)?

❖ 发生各种结局的可能性有多大(定量)? ❖ 什么时候会发生(定时)? 如何改善预后(预后因素)? 预后(prognosis):是指疾病发生后,对将来发展为各种不同后果(痊愈、复发、恶化、伤残、并发症和死亡等)的预测或事前估计。

通常以概率表示,如治愈率、复发率、5年生存率等。 预后因素(prognosis factor):凡影响疾病预后的因素都可称为预后因素。若患者具有这些影响因素,其病程发展过程中出现某种结局的概率就可能发生改变。

预后循证估计:专业知识及临床经验 + 患者的疾病特征 + 预后文献提供的科学证据,进行综合性判断和估计,使预测结果尽可能接近患者的真实结局。 预后研究的意义:

了解疾病发展趋势和后果,为临床治疗决策提供依据;  了解影响预后各种因素,通过改变预后因素改变预后 影响疾病预后的因素:人口学特征:如年龄、性别等。

➢ 疾病特征:包括疾病的性质、病程、临床类型与病变程度等常是影响疾病预后的重

要因素。

➢ 心理因素及身体素质:营养状况、免疫功能等。 ➢ 诊疗情况:早期诊断、及时治疗、治疗方法

➢ 社会、家庭因素: 如医疗制度、医疗条件、社会保险制度、家庭成员之间关系、

家庭经济情况、家庭文化教养及患者文化教养等。

研究内容及设计方案:

 预后研究: 是关于疾病各种结局发生概率及其影响因素的研究  研究内容:包括预后的评定和预后因素等研究  预后研究的设计方案:

➢ 描述性研究 ➢ 病例对照研究

➢ 队列研究(前瞻性、历史性):最佳方案

➢ 实验流行病学研究:随机对照设计不适合于预后研

. 指标 生存率 病死率 有效率 缓解率 复发率 生存率曲线 (survival rate curve) 生存质量 (quality of life ) 预后的评定—纵向性设计 :

预后评定的描述:描述疾病的病死率、治愈率、缓解率、复发率、致残率、生存率等。可以将研究对象进行长期随访,纵向调查获得, 其基本设计方案是纵向的描述性研究。

预后评定的比较:要进行两组病例预后评定的比较,如比较两组治疗方案的生存率等,其基本设计方案是队列研究

全面评价生存优劣,常使用量表评估。 含义 从疾病某时点开始,到达n年时存活病例占该病总观察病例数的百分率。 某时期内因某病死亡的病例数占同期该病总病例数的百分率。 患某病经治疗后,证实有效病例占同期该病总病例数的百分率。 患某病经治疗后,达到临床疾病消失期的例数占同期该病总病例数的百分率。 患某病已经缓解或痊愈后,重新复发患者占该病总病例数的百分率。 了解不同年份患者的生存率 预后因素的研究:

预后因素的研究方法和疾病危险因素的研究方法相似。

 回顾性的临床资料中进行筛选  病例对照研究初步论证  前瞻性队列研究加以论证

队列研究:最佳设计方案 两种方式:

➢ 按主要暴露因素分组: 把某种影响预后的主要因素作为暴露因素,把研究

对象分为暴露组与对照组,随访一段时间观察其结果;

➢ 不分组: 若影响预后的因素很多,暂时分不出主次,就不分组,随访相当

长时间后进行分层分析或多因素分析,观察结局与各预后因素的关系。

病例-对照研究:初步方案 以同一疾病的不同结局(死亡与痊愈、并发症有无)作为病例-对照研究的病例组和对照组,作回顾性分析,追溯产生该种结局的有关因素。 预后因素研究的统计学方法

➢ 单因素分析 ➢ 多因素分析

 Cox回归模型:建立疾病预后函数或预后指数。 同时能有效处理随访时间

长短不一、资料失访等终检值问题。

 Logistic回归分析:如果时间因素不重要,可建立Logistic回归模型,筛选与

疾病相关的主要预后因素以及这些因素在决定预后中的相对比重

识别影响预后证据质量的偏倚

1、 失访偏倚 指在研究过程中,某些选定的研究对象因种种原因脱离了观察,令研究者无法继续去随访,由此所造成的对研究结果的影响称为失访偏倚。 2、零时刻不当的偏倚

所有观察对象虽然不能同时得病,但是对每一个对象观察的起始时刻应当是该疾病发展的同一起始阶段,否则预后的结果就会产生偏倚,此即所谓的零时刻不当的偏倚 。 3、集合偏倚

由于各医院的性质和任务不同,各医院收治患者的病情、病程和临床类型可能不同,由此导致的偏倚即为集合偏倚。

4、迁移偏倚

水星 2017-5-19

因篇幅问题不能全部显示,请点此查看更多更全内容

Top