您的当前位置:首页正文

湘教版七年级上册数学 1.1 具有相反意义的量

来源:九壹网
第1章 有理数

1.1 具有相反意义的量

【教学目标】 知识与技能

1.通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量.

2.理解有理数的意义,体会有理数应用的广泛性. 过程与方法

通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类.

情感态度

强化用数学的意识,体验数学与实际生活的联系,运用知识解决问题,树立学好数学的信心.

教学重点

正数、负数的意义,有理数的意义,能正确对有理数进行分类. 教学难点

对负数的理解以及正确地对有理数进行分类. 【教学过程】

一、情景导入,初步认知

今天你们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%.

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

问题2:这些数够用吗?你还见过其它的数吗?

【教学说明】 以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础.

二、思考探究,获取新知

1.说一说:如下图所示的温度计上是如何区分零上的度数和零下的度数的?

2.观察:

(1)在预报北京市某天的天气时,播音员说“北京,晴,局部多云,零下6摄氏度到5摄氏度.”这时,屏幕上是如何显示这天的温度的?

(2)如下图,储蓄存折上是怎样表示“存入2 500元”和“支出3 000元”的?

日期 摘要 币种 存入/支出 110110 110116 110202 110225 110313 现存 POS消费 现取 转存 现取 RMB RMB RMB RMB RMB +2 500 -500 -3 000 +4 000 -2 000 3.思考:上面例子出现的各对量,虽然内容不同,但有一个共同点,这个共同点是什么?在数学里怎么表示这样的一对数?

2

【归纳结论】 像3、125、10.5、 等大于0的自然数和分数就是正数;在正数前面加

32

上“-”(读作负)号,例如-3、-1、-0.618、-等就是负数.

3

有时在正数前面加上“+”(读作正)号,以强调它是正数.例如,“正数5”写作“+5”,但通常把“+”号省略不写.

4.零是正数还是负数呢?

【归纳结论】 0既不是正数,也不是负数.

我们把正数和零称为非负数;把负数和零称为非正数.

【教学说明】 强调:①如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.譬如:用正数表示向南,那么向北3 km可以用负数表示为-3 km.

②“相反意义的量”包括两个方面的含义:一是相反意义;二是在相反意义的基础上要有量.如:向东走10米,和运进20吨就不是意义相反的量.

5.请举出生活中具有相反意义的量,并分别表示它们. 【教学说明】 能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引入负数的必要性.

6.议一议:从小学到现在,我们学过的数有哪些?你能给它们分类吗? 【归纳结论】 整数和分数统称为有理数.

正整数:如1,2,3,…

整数零负整数:如-1,-2,-3,…有理数 12

正分数:如2,3,5.2,…

分数3

,-3.5,-,…负分数:如-137

正有理数

有理数零

负有理数

【教学说明】 通过对有理数的分类,使学生更系统地了解有理数. 三、运用新知,深化理解

1.下列具有相反意义的量是( B ) A.前进与后退 B.胜3局与负2局

C.气温升高3 ℃与气温为-3 ℃ D.盈利3万元与支出2万元

2.表示相反意义量是( B ) A.“前进8米”与“向东6米” B.“赢利50元”与“亏损160元” C.“黑色”与“白色”

D.“你比我高3 cm”与“我比你重5千克”

3.温度先上升3 ℃,再上升-5 ℃的意义是( C ) A.温度先上升3 ℃,再上升5 ℃ B.温度先上升3 ℃,再上升-2 ℃ C.温度先上升3 ℃,再下降5 ℃ D.上面答案都不正确

4.下列各组数中不是具有相反意义的量的是( D ) A.收入250元与支出20元 B.水位上升17米与下降10米 C.超过0.5 mm和不足0.03 mm D.增大2岁与减少2升

5.下列用正数和负数表示相反意义的量,其中正确的是( C )

A.一天凌晨的气温是-5 ℃,中午比凌晨上升5 ℃,所以中午的气温是+4 ℃ B.如果+3.2米表示比海平面高3.2米,那么-9米表示比海平面低5.8米 C.如果生产成本增加5%记作+5%,那么-5%表示生产成本降低5% D.如果收入增加8元,记作+8元,那么-5元表示支出减少5元 6.下面说法正确的是( D ) A.正数都带有“+”号

B.不带“+”号的数都是负数

C.小学数学中学过的数都可以看作是正数 D.0既不是正数也不是负数

7.(1)如果大雁向南飞30米记作+30米,那么向北飞50米记作__-50__.

(2)小明家8月份收入8 000元记作__+8__000__,支出5 000元记作__-5__000__. (3)答题时假如答一题得10分记作+10分,那么答错一道扣5分记作__-5__.

(4)如果体重减少了10千克记作-10千克,那么体重__增加__10千克记作+10千克. (5)月底某超市开展打折促销活动,月底结算共盈利80 000元可记作__+80__000__. 8.若向东走20米记作+20米,那么-30米表示__向西走30米__;若向西走-30米又是什么意思?__向东走30米__.

9.把下列各数填入相应的位置上:

511,-,111,-0.6,5,0,3.3,6,-135,0.3,2%,12,.

2341正数:{1,111,5,3.3,6,0.3,2%,12,};

45

负数:{-,-0.6,-135};

23

整数:{1,111,5,0,6,-135,12}; 1

正分数:{3.3,0.3,2%,};

45

负分数:{-,-0.6};

23

51

分数:{-,-0.6,3.3,0.3,2%,};

234

【教学说明】 通过练习检测学生掌握的情况,同时巩固提高.

四、师生互动、课堂小结

先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充. 【课后作业】

布置作业:教材“习题1.1”中第1、2、4题.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top