应用题类型: 1、归一问题 11、行船问题 21、方阵问题 2、归总问题 12、列车问题 22、商品利润问题 3、和差问题 13、时钟问题 23、存款利率问题 4、和倍问题 14、盈亏问题 24、溶液浓度问题 5、差倍问题 15、工程问题 25、构图布数问题 6、倍比问题 16、正反比例问题 26、幻方问题 7、相遇问题 17、按比例分配 27、抽屉原则问题 8、追及问题 18、百分数问题 28、公约公倍问题 9、植树问题 19、“牛吃草”问题 29、最值问题 10、年龄问题 20、鸡兔同笼问题 30、列方程问题 21 方阵问题 【含义】 将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
【数量关系】 (1)方阵每边人数与四周人数的关系: 四周人数=(每边人数-1)×4 每边人数=四周人数÷4+1 (2)方阵总人数的求法:
实心方阵:总人数=每边人数×每边人数
空心方阵:总人数=(外边人数)-(内边人数) 内边人数=外边人数-层数×2
(3)若将空心方阵分成四个相等的矩形计算,则: 总人数=(每边人数-层数)×层数×4
【解题思路和方法】 方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
例1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?
例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数。
例3 有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?
例4 一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?
例5 有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?
22 商品利润问题
【含义】 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。
【数量关系】 利润=售价-进货价
利润率=(售价-进货价)÷进货价×100% 售价=进货价×(1+利润率) 亏损=进货价-售价
亏损率=(进货价-售价)÷进货价×100%
【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。
例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?
例2 某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?
例3 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?
例4 某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。
23 存款利率问题
【含义】 把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。利率一般有年利率和月利率两种。年利率是指存期一年本金所生利息占本金的百分数;月利率是指存期一月所生利息占本金的百分数。
【数量关系】 年(月)利率=利息÷本金÷存款年(月)数×100% 利息=本金×存款年(月)数×年(月)利率 本利和=本金+利息
=本金×[1+年(月)利率×存款年(月)数]
【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 李大强存入银行1200元,月利率0.8%,到期后连本带利共取出1488元,求存款期多长。
例2 银行定期整存整取的年利率是:二年期7.92%,三年期8.28%,五年期9%。如果甲乙二人同时各存入1万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。五年后二人同时取出,那么,谁的收益多?多多少元?
24 溶液浓度问题
【含义】 在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。
【数量关系】 溶液=溶剂+溶质 浓度=溶质÷溶液×100%
【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?
例2 要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?
例3 甲容器有浓度为12%的盐水500克,乙容器有500克水。把甲中盐水的一半倒入乙中,混合后再把乙中现有盐水的一半倒入甲中,混合后又把甲中的一
部分盐水倒入乙中,使甲乙两容器中的盐水同样多。求最后乙中盐水的百分比浓度。
25 构图布数问题
【含义】 这是一种数学游戏,也是现实生活中常用的数学问题。所谓“构图”,就是设计出一种图形;所谓“布数”,就是把一定的数字填入图中。“构图布数”问题的关键是要符合所给的条件。
【数量关系】 根据不同题目的要求而定。
【解题思路和方法】 通常多从三角形、正方形、圆形和五角星等图形方面考虑。按照题意来构图布数,符合题目所给的条件。
例1 十棵树苗子,要栽五行子,每行四棵子,请你想法子。
例2 九棵树苗子,要栽十行子,每行三棵子,请你想法子。
例3 九棵树苗子,要栽三行子,每行四棵子,请你想法子。
例4 把12拆成1到7这七个数中三个不同数的和,有几种写法?请设计一种图形,填入这七个数,每个数只填一处,且每条线上三个数的和都等于12。
26 幻方问题
【含义】 把n×n个自然数排在正方形的格子中,使各行、各列以及对角线上的各数之和都相等,这样的图叫做幻方。最简单的幻方是三级幻方。
【数量关系】 每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。
三级幻方的幻和=45÷3=15 五级幻方的幻和=325÷5=65
【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。
例1 把1,2,3,4,5,6,7,8,9这九个数填入九个方格中,使每行、每列、每条对角线上三个数的和相等。
例2 把2,3,4,5,6,7,8,9,10这九个数填到九个方格中, 使每行、每列、以及对角线上的各数之和都相等。
27 抽屉原则问题
【含义】 把3只苹果放进两个抽屉中,会出现哪些结果呢?要么把2只苹果放进一个抽屉,剩下的一个放进另一个抽屉;要么把3只苹果都放进同一个抽屉中。这两种情况可用一句话表示:一定有一个抽屉中放了2只或2只以上的苹果。这就是数学中的抽屉原则问题。
【数量关系】 基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。
抽屉原则可以推广为:如果有m个抽屉,有k×m+r(0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。
通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
【解题思路和方法】 (1)改造抽屉,指出元素;
(2)把元素放入(或取出)抽屉; (3)说明理由,得出结论。
例1 育才小学有367个2000年出生的学生,那么其中至少有几个学生的生日是同一天的?
例2 据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?
例3 一个袋子里有一些球,这些球仅只有颜色不同。其中红球10个,白球9个,黄球8个,蓝球2个。某人闭着眼睛从中取出若干个,试问他至少要取多少个球,才能保证至少有4个球颜色相同?
28 公约公倍问题
【含义】 需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。 【数量关系】 绝大多数要用最大公约数、最小公倍数来解答。
【解题思路和方法】 先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。
例1 一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?
例2 甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?
例3 一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?
例4 一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。
29 最值问题
【含义】 科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。
【数量关系】 一般是求最大值或最小值。
【解题思路和方法】 按照题目的要求,求出最大值或最小值。
例1 在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?
例2 在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?
重庆 武汉 北京 800 400 例3 北京和上海同时制成计算机若干台,北京可调运外地上海 500 300 10台,上海可调运外地4台。现决定给重庆调运8台,给武汉调运6台,
若每台运费如右表,问如何调运才使运费最省?
30 列方程问题
【含义】 把应用题中的未知数用字母Χ代替,根据等量关系列出含有未知数的等式——方程,通过解这个方程而得到应用题的答案,这个过程,就叫做列方程解应用题。
【数量关系】 方程的等号两边数量相等。
【解题思路和方法】 可以概括为“审、设、列、解、验、答”六字法。
(1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。
(2)设:把应用题中的未知数设为Χ。
(3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。 (4)解;求出所列方程的解。
(5)验:检验方程的解是否正确,是否符合题意。 (6)答:回答题目所问,也就是写出答问的话。
同学们在列方程解应用题时,一般只写出四项内容,即设未知数、列方程、解方程、答语。设未知数时要在Χ后面写上单位名称,在方程中已知数和未知数都不带单位名称,求出的Χ值也不带单位名称,在答语中要写出单位名称。检验的过程不必写出,但必须检验。
例1 甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?
例2 鸡兔35只,共有94只脚,问有多少兔?多少鸡?
例3 仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?
因篇幅问题不能全部显示,请点此查看更多更全内容