ContentslistsavailableatScienceDirect
ColloidsandSurfacesA:Physicochemicaland
EngineeringAspects
journalhomepage:www.elsevier.com/locate/colsurfa
Dynamicfoambehaviorintheentranceregionofaporousmedium
E.Ashooria,∗,D.Marchesinb,W.R.Rossena
ab
DelftUniversityofTechnology,Netherlands
InstitutoNacionaldeMatemáticaPuraeAplicada,RiodeJaneiro,Brazil
articleinfoabstract
InfoamEOR,complexdynamicsofbubblecreationanddestructioncontrolsfoamproperties.Herewereconsiderwhetherandwhennon-equilibriumeffectsareimportant,focusingspecificallyontheentranceregion,whereinjectedgasandliquidaretransformedintofoam.
Wesolveforwatersaturationandfoamtextureintheentranceregionusingthepopulation-balancefoammodelofKam(2008),whichfeaturesthreesteadystates(nofoam,strongfoam,andanunstableintermediatestate)atsomeinjectionrates,asseeninexperiments.Wederiveandsolveequationsforwatersaturationandfoampropertiesalongtheentranceregionatsteadystate.Mathematicalconditionsontheentranceregionitselfcancontrolwhichoftheseveralpossiblesteadystatesisultimatelytakendownstreambyfoam.Forinstance,iffoamisnotpre-generated,andcapillary-pressuregradientsareneglected,asinmanypublishedsimulationstudies,thefinalsteadystatedownstreamistheonewithhighestwatersaturation–theweakestfoam.Simulationsneglectingcapillarypressurethereforemayleadtoinferenceofthewrongfoamstateintheformationorcore.Insomecases,inthepresenceofcapillarypressure,analysisoftheasymptoticdynamicbehaviorinthevicinityofpossibledownstreamsteadystatesmayruleoutsomepossiblesteadystates.
Weshowthattheapparentlengthofentranceregioncanbequitedifferentifonemeasureswatersaturationorpressuregradient.Finally,wefitfoamkineticparameterstothelengthoftheentranceregionseeninsomeexperiments;acompanionpaper[18]investigatestheeffectoftheseparametersonthetravelingwaveattheshockfrontdownstream.
© 2011 Elsevier B.V. All rights reserved.
Articlehistory:
Received30September2010Accepted30December2010
Available online 13 January 2011Keywords:
EnhancedoilrecoveryFoaminporousmediaEntranceregionCapillarypressure
Populationbalancefoammodel
1.Introduction
Foamisagglomerationofgasbubblesseparatedfromeachotherbythinliquidfilmscalledlamellae[1].Foamcanimprovethesweepefficiencyofinjectedgasesforenhancedoilrecov-erybymitigatingorreducingtheeffectsoflowgasviscosityandreservoirlayering.Thepredictionoffoamperformancereliesonmodeling.Population-balancemodels[2–7]andlocal-equilibriummodels[8–13]arethemainfoam-modelingapproaches.Withsomeadditionalassumptions,aone-dimensionaldisplacementwithlocal-equilibriummodels(LE)canlenditselftoanalysisbyfractional-flowmethods,anapplicationofthemethodofcharac-teristics[14–17].
Inthepopulation-balanceapproach,foamtexture(inverselyrelatedtobubblesize)ismodeledexplicitly,usingabalanceequationforthelamellaethatseparatebubbles.Thisequationis
∗Correspondingauthorat:DepartmentofGeotechnology,Stevinweg1,2628CN,Delft,Room:2.120Netherlands.Tel.:+31152789248;fax:+31152781189.
E-mailaddresses:e.ashoori@tudelft.nl(E.Ashoori),marchesi@impa.br(D.Marchesin),w.r.rossen@tudelft.nl(W.R.Rossen).
0927-7757/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.colsurfa.2010.12.043
similartothemassbalanceforsurfactantorwater.Themech-anismsforlamellaecreationanddestructionarerepresentedexplicitlyinthebalanceequationonbubbletexture.Analterna-tivetopopulation-balancemodelingistoassumelocalequilibrium(LE)(equalgenerationanddestructionrates)atalllocationsintheformation.Inthisapproach,foamtexturecanberepresentedexplicitlyorimplicitly,forinstanceinagas-mobility-reductionfactor.
Thefractional-flowmethodbasedonLEmodelsisanapproachthatprovidesusefulinsightsandeaseofuse.Thisapproachincludessomesimplifyingassumptions:incompressiblephases;Newtonianmobilities;one-dimensionalflow;absenceofdispersion,gradientofcapillarypressure,andviscousfingering;andimmediateattain-mentofLE.
Rossenetal.[15]showthat,insomecases,population-balancesimulationscanbemodelednearlyequivalentlywithfractional-flowmethodsthatassumeLE.Chenetal.[7]showexampleswheresimulationassumingLEcloselymatchesasimulationwithfullpop-ulationbalance.Inallthesestudiesthemainmismatchbetweenthetwoapproacheshappensattheveryentranceofthecore.
WeassumethatonasufficientlylargescalefoamiseverywhereatLEwithtwoexceptions:thefirstexceptionisshockfronts,where
218E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227
Nomenclature
Forequationsinthistext,itisonlyimportantthataconsistentsetofunitsbeemployed.WegiveSIunitsbelow.ForappendicesAandB,themodelequationsassumecertainunitsasspecifiedthere.Afoamparameterinfirst-order-kineticfoammodelcparameterinEq.(A.7)CcfoamparameterinKammodel,(m−3s−1)CffoamparameterinKammodel
Cg
foamparameterinKammodel,(m−3s−1)Einjectionpointfwwaterfractionalflowfunction(excluding
capillarity-drivenflow)
IinitialstateJLEstatedownstreamoftheentranceregionKcfoamparameterinfirst-order-kineticfoammodel,
(s−1)
k0rggasrelativepermeabilityintheabsenceoffoam
kfrggasrelativepermeabilityinpresenceoffoamkrwwaterrelativepermeability
MRF
foamparameterinfirst-order-kineticfoammodel(mobilityreductionfactor)nfoamparameterinKammodel
nDdimensionlessfoamtexture(=nf/nmax)
nLEdimensionlesslocal-equilibriumfoamtexture
nDffoamtexture(numberoflamellaeperunitvolume),(m−3)
nLEflocal-equilibriumfoamtexture,(m−3)nmaximumfoamtexture,(m−3)
∇max∇ppressuregradientinKammodel,(psift−1)p0foamparameterinKammodel,(psift−1)Pcgas–watercapillarypressure,(Pa)rcfoamcoalescencefunction,(m−3s−1)rgfoamgenerationfunction,(m−3s−1)Sggassaturation
Sgrresidualgassaturationinawater-gassystemSwwatersaturation
Swcconnatewatersaturationinawater-gassystemS∗wlimitingwatersaturationttimes
utotalsuperficialvelocity,(m−3s−1)uggassuperficialvelocity,(m−3s−1)uw
watersuperficialvelocity,(m−3s−1)
vdimensionlessinterstitialvelocity,(m−3s−1)
vs
slopeoftheshocklineonthefractional-flowdia-gram
x
standingcoordinatefordisplacementin1-D,(m)
SuperscriptsandsubscriptsEinjectionpointIinitialstateJlocal-equilibriumstatedownstreamoftheentrance
region
−upstreamoftheshock+downstreamoftheshockGreekSymbolsεsmallvalue(seeAppendixC)Ámovingcoordinate(withshockvelocity)fordis-placementin1-D,(m)porosity1,2eigenvectors1,2eigenvalues
gmobilityofgas,(m2(Pas)−1)wmobilityofwater,(m2(Pas)−1)
fggasviscosityinpresenceoffoam,(Pas)0ggasviscosityinabsenceoffoam,(Pas)wviscositiesofwater,(Pas)
gas–waterinterfacialtension,(Nm−1)
foamtexturechangesabruptly;see[18].Inthispaperwefocus
onthesecond,theentranceregionnearthewellorinjectionfaceofacoreflood,wheregas,waterandsurfactantcreatefoam,orwherefinelytexturedpre-generatedfoammaycometoacoarsertexture.
Therehavebeenanumberofexperimentalstudiesdesignedtoinvestigatewhetherandhowfoamgenerationbeforeinjectionaffectsfoamformationandpropagationinacore.Withgreatcare,Fallsetal.[19]wereabletopreventfoamtexturechangingoveradistanceof60cminabeadpack,using3mmbeads.Somestudiesfindthattheporousmediumcreatesorreshapesthefoamoverarelativelyshortdistance,regardlessofthestateoftheinjectedfluids[10,12,20,21].
Ifthereisnofoamgenerationupstreamofthecore,theentranceregionmaybeobservedasaregionofgreaterwatersaturationSw,neartheentrance,measuredforinstancebyCTimaging[6,7,22,23],oraregionofsmallerpressuregradientpthanthatdownstream[6,12,19,20,22–28].However,fewexperimentaldataonpareavailablewithsufficientresolutiontoresolvepressuregradientasafunctionofpositionwithinthisregion.
MyersandRadke[26]contendthatmanyearlierfoam-flowexperimentswereconductedinshortcoresandsuspectedthatsuchexperimentswouldbedominatedbytheentranceeffect.Theyreportanentranceregionaslongas15cminsomeexperi-ments.Minssieux[22]alsoobservedasignificantwater-saturationentranceregionextendingforapproximately10cm.SomestudiesfindnoentranceregionobservableinSw(oronetooshorttomea-sure)[11,21].Incaseswherebotharemeasuredtheentranceregioncanbethesame[7]ordifferent[23,29]asreflectedinp,whichreflectsbubbletexture,andSw.FriedmannandJensen[20]reportthatthenatureoftheinjectedfoamaffectsfoampropertiesdown-streamoftheentranceregion.Thelengthoftheentranceregiondependsonmanyfactors,includinggastype,injectionvelocities,surfactanttypeandconcentration,andpresenceofoil,amongoth-ers.Duetotheexistenceofweakerfoaminthepresenceofmanyhydrocarbons,theentranceregionislongerwithoilpresentandtheremaybenosharpfoamfront,dependingonoilconcentration[26].Therearealsosomecontroversialresultsontheeffectofgastypeontheentranceregion.Farajzadehetal.[27]foundashorterentranceregionforCO2foam(around4cm)comparedwithN2foam(around6cm)forthesameexperimentalconditions,whileChou[24]reportfewerporevolumesoffoaminjectionrequiredtocreateN2foamratherthanCO2foam.
Inthisworkweassumethereisanentranceregionthroughwhichtheinjectedfluidscometolocalequilibriumbetweenfoamgenerationanddestruction.Inprincipleapregeneratedstrongfoamcouldcoarsenintheentranceregion;here,however,wefocusoncreationoffoamintheentranceregionfromgasandwater,withoutpre-generationoffoambeforeinjection.
Theissueofasteady-stateentranceregionisseparatefromthatofatimedelayinreachingsteadystate.Inmanyexperimentslargepressuredropsarenotobserveduntilmanyporevolumesoffluidhavebeeninjected[11,24,30–32]thisproblemcanbepronouncedforCO2foam[27].Chou[24]reportsfewerporevolumesofinjec-tionneededtocreatestrongfoamthanweakfoam.Hereweassumethatsteady-stateisachievedinthecore,andsolvefortheentrance
E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227219
regionatsteadystate.Whilethedelayinreachingsteadystatemaybelongonthelaboratoryscale,weexpectittoberelativelyshortonthefieldscale.
Wesolveforsteady-statewatersaturationandfoamtextureintheentranceregionaccountingforfoamkineticsemployingtwodifferentfoammodels:asimpleschematicfirst-order-kineticmodelandamore-realisticpopulation-balancemodelwithmulti-plesteadystates[5].Weshowhowconsiderationoftheentranceregioncanruleoutsomecandidatesforthestatedownstreamoftheentranceregion.TocomplementthetravelingwavesolutionworkdonebyAshoorietal.[18],wealsoexaminesensitivityoftheentranceregiontothekineticparametersinthemodelandfitthoseparameterstothelengthoftheentranceregiontypicalofcorefloodexperiments.
2.Entranceregioninfoamprocesses
Atsteadystate,nomobileoilispresentintheentranceregion,andsurfactantconcentrationisuniform.Animmiscibletwo-phase(gas–water),incompressibledisplacementinrectilinearflowthroughaporousmediumisgovernedbytheRapoport–Leasequa-tion[33,34]:∂S
ϕw∂fw∂wgdPc∂t+u∂x+∂x
w+g∂x
=0(1)
whereSwandfwarewatersaturationandfractionalflow,respec-tively,ϕisporosity,utotalsuperficialvelocity,xposition,ttime,andwandgaremobilitiesofwaterandgas.ThesecondandthirdtermsinEq.(1)representconvectiveandcapillarity-drivenwaterflow,respectively.Sincesurfactantispresentinuniformconcentra-tionintheaqueousphase,noseparatematerialbalanceisneededforsurfactant.
Infoamprocesses,propertiessuchasgandfwdependnotonlyonwatersaturationbutalsoonbubblesizeorfoamtexturenf,definedasthenumberoflamellaeperunitvolumeofgasphase.Modelingfoamprocessesthereforerequires,inadditiontothewatermass-balanceEq.(1),aso-calledpopulation-balanceequa-tionforfoamtexture:ϕ
∂∂tS∂ϕ
gnD+∂x
nDug=nSgrg−rc
(2)
maxwherenD≡nf/nmaxisthedimensionlessbubbletextureandnmaxis
theupperlimittofoamtexture(reflectingalowerlimittobubblesize)[35].Intherestofthispaperweworkwithdimensionlessfoamtextureratherthannf.
Becausefoamisnotpre-generated,butrathergasandwater(withdissolvedsurfactant)areco-injected,thereisanentranceregioninwhichfoamgainsitsultimateLEtexturecorrespondingtotheinjectedwaterfractionalflow.Inthisregion,watersat-urationisrelativelyhighandpressuregradientlow.Overtime,theentranceregionreachessteadystate,i.e.water-saturationandbubble-textureprofilesdonotchangefurther.
Fig.1showsaschematicdiagramofthesteady-stateentranceregionandofthedownstreamshockfrontforagivenfoamdis-placementandfoamfractional-flowcurve.Inthisfigure,thegraydashedcurverepresentsfoam-freewaterfractionalflowandthethickblackcurvewaterfractionalflowinthepresenceoffoamatlocalequilibrium(LE).Thethinblackcurvesarefractional-flowcurvesatconstantbubbletexture.Theentranceregion,inthegraysolidrectangleinthebottomfigure,startsatpointEatpositionx=0(topfigure),withzerobubbletexture;asxincreasesthefoamasymptoticallyapproacheslibriumandSw=SJ
stateJ,withbubbletextureatlocalequi-w.Becausefoamtextureiszeroattheinlet,pointEmustlieonthefoam-freefractionalflowcurvewheretotalwater
fractionalflow(includingthecapillarycontribution)equalsfJ
w.In
absenceofcapillarypressure,asshownbelowthewholesteady-stateentranceregionliesonthehorizontaldashedlinefw=fJ
wstartingfrompointEonfoam-freefractional-flowcurvetopointJonfoamfractional-flowcurve.InthisfigurestatesJandIdenotestatesupstreamanddownstreamoftheshockintroducedbyfoaminjection,respectively,shownbythegreendottedlineandgreenrectangleinFig.1.Generally,therecouldbeotherwavesbetweenJandtheshock;iftherewereaspreadingwaveatJitmustlieontheLEfoamfractional-flowcurve.WhetherthereisaconstantstateatJoraspreadingwave,thegradientofsaturationandotherprop-ertiesdownstreamoftheentranceregionarenegligiblecomparedtothosewithintheentranceregion.Therefore,forthepurposesoftheentranceregion,wecantreatJasaregionofconstantstate.Inthecasesweexamine,thereisashockdirectlyfromJtoIandJisindeedaregionofconstantstate.
ThesolutionfrompointEtostateJ,discussedinthispaper,representsthesteady-stateentranceregion.ThetravelingwaveorshockbetweenstatesJandIisthesubjectofAshoorietal.[18].
Atsteadystate,thetime-derivativetermdisappearsfromEq.(1):d
ufw+
wgdPc
dx
w+g∂x
=0(3)
ThesumofthetwotermsintheparenthesisinEq.(3)representsthetotalwatersuperficialvelocityuw,includingbothconvectiveandcapillarity-drivenflow.Eq.(3)impliesthatintheentranceregionatsteadystate,waterandgassuperficialvelocitiesuwandugareeachuniformthroughouttheregion.ThetimederivativealsodisappearsfromEq.(2);usingtheuniformityofug,wecantakeugoutofthespatialderivative:udnDϕ
g
dx
=
nSgrg−rc(4)
maxTheleft-handsideofEq.(4)arisesfromtransportoflamellae.AccordingtoEq.(4),ifugvanishes,rg−rc=0,soweareatsteadystate,evenattheinlet.Inotherwords,thereisnoentranceregionwithouttransportoflamellae.“BreakandReformTheory”ascur-rentlyimplemented[36,37],inwhichlamellaerepeatedlybreakandreforminplace,isnotconsistentwithexperimentalobserva-tionofanentranceregioninfoamcorefloods.
TheentranceregionmustsatisfyEqs.(3)and(4)andthefollow-ingtwoboundaryconditionsatstatesEandJ:
B.C.Ex=0
nED
=0B.C.J
x→+∞SdSW→SJ
J
w
dnD
W,nD→nD,
dx
→0,dx
→0(5)
Thefirstboundaryconditionspecifieszerobubbletextureattheinletbecausethereisnopre-generationoffoam.Iffoamwerepre-generated,thenthegiveninjectedfoamtexturewouldbespecifiedinB.C.E.Thesecondboundaryconditionspecifiesthatwatersatura-tionandfoamtextureasymptoticallyapproachLEvaluesattheendofentranceregion.AccordingtoB.C.J,theentranceregionrequires“infinite”distancetoapproachstateJ,buttheobservableentranceregionisfinite.InthispaperwereporttheapparentwidthoftheentranceregioninSwasthedistanceoverwhichSwgoes95%ofthewayfromEtoJ.TheapparentwidthinnDisdefinedsimilarly.Thewidthoftheentranceregioncanbequitedifferentdependingonwhichmeasuredpropertyisusedinthedefinition.
Thecapillarity-drivenpartofwaterorgassuperficialveloc-itydisappearsatthedownstreamboundarycondition,because,accordingtoB.C.J,gradientsofsaturationapproachzeroasthisstateisapproached;therefore,attheendofaccordingtoEq.(3),uJJtheentranceJ
region,
w=ufw.ThedownstreamstateSwmustbeconsistentwiththewaterfractionintheinjectedfluids.Because
220E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227
Fig.1.Schematicoffoamsteady-stateentranceregion(graysolidrectangleinbottomfigure,lightgraycurveintopfigure)andthefollowingshockfront(dashedrectangleinbottomfigure,dashedlineintopfigure)correspondingstatestoJandIonthefoamfractionalflowcurve.Thin-blackfractional-flowcurvesinbetweenareatconstantbubbletexture;numbersoncurvesaredimensionlessbubble-texture.Solidthickblackcurveintopfigurerepresentssteady-stateorlocal-equilibriumfractional-flowcurve,wherebubbletextureisafunctionofwatersaturation.PointEliesonthe(dashed)foam-freefractionalflowcurve(representinginjectionofgasandsurfactant,with,asyet,
J
nofoam)wheretotalwaterfractionalflowincludingthecapillarycontributionequalsfw.Inabsenceofcapillarypressure,pointEisthestartingpointofentranceregionand
J
thewholesolutionliesonthehorizontaldashedlinefw=fwendingatstateJ.Thelightgraycolorinthebottomplotrepresentswatersaturationalongtheflowdirection.TheinitialstateIisnotimportantinthecontextofthispaper.
capillary-pressuregradientscanbesignificantattheinlet,however,andfwbydefinitionexcludescapillarity-drivenflow,ingeneralattheinletfwisnotequaltothefractionofwaterintheinjectedfluids.
Onasufficientlylargescale,oneneglectstheentranceregion,andtheconditionspecifiedinB.C.Jrepresentstheso-called“injec-tioncondition”Jforthedisplacement.Inanexperimentorfield
J
application,however,onecontrolsinjectionrate,uw(equivalentto
J
.Ifmultiplesteadystatesarepossible,onedoesfixingfw)andnED
notknowinadvancewhichLEstateJwouldformdownstreamoftheentranceregion.Mathematically,weassumeprovisionallya
J
particularLEstateJ(definedbySw)anddetermineifitisconsis-J
andfw.InsometentwithanentranceregionconstrainedbynED
casesthisanalysisrulesoutsomecandidatesteadystatesforJ.Onothercases,morethanonestateJmaybeconsistentwiththegiveninjectionconditions.
Eq.(3)statesthattotalwatersuperficialvelocity(includingthecapillarycontribution)doesnotvarywithxwithintheentranceregion.Consequently,totalsuperficialvelocityuwintheentrance
J
regionisconstant,equaltoufw:
thetotalgassuperficialvelocityug:
dnDϕ
S=r−rggcJdxnmaxu(1−fw)
(7)
Oneshouldkeepinmindthatnotonlydorgandrcdependon
SwandnD,butalsofwandg.SolvingEq.(7)alongwithEq.(6)requiresfoammodels,whicharediscussedbelow.Firstweshowtheprocedureusedtosolvefortheentranceregionforthetwocases,excludingandincludingcapillarypressure.2.1.Excludingcapillarypressure
Inabsenceofcapillarypressure,thediffusivepartinEq.(6)disappears:fw(Sw,nD)=fw
J
(8)
wgdPcdSw
ufw+
w+gdSwdx
=ufw
J
(6)
Asuwisconstantintheentranceregion,soisug.Thus,Eq.(4)canbesimplifiedbysubstitutingtheconstantvalueu(1−fw)for
J
TheentranceregionsatisfiesEq.(7),Eq.(8)andboundarycon-ditionsinEq.(5).Eq.(8)alongwithB.C.EmeansthatthestartingpointEoftheentranceregioncorrespondstothepointonthefoam-J
freefractionalflowcurvewherefw=fw.AccordingtoFig.1,intheentranceregionfwinthiscasefollowsthethinhorizontalgray
J
dashedlinecorrespondingtofwfromEtoJ.AsnDvanishesatthe
EcanbeobtainedinletpointE,bysubstitutingnD=0intoEq.(8),Sw
E,0)=fJ.bysolvingfw(Sww
TheendpointJoftheentranceregionmustlieontheLEfractional-flowcurvesatisfying[rg−rc]=0withtheinjectedfrac-tionalflowgivenbyfw.Thisnonlinearsystemofequationscanhave
J
E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227221
multiplesolutionsforgivenfJ
w;see,e.g.,Fig.4below.Ifso,webeginbyassumingoneofthosestatesJ.
ThebeginningstateEandtheendstateJoftheentranceregionarenowknown.ForanyfixedvalueoffoamtexturewaterfractionalflowismonotonicallyincreasingwithSw(Fig.1).Eq.(8)thereforedeterminesnDuniquelyintermsofSw(callitnD=nD(Sw))whichsatisfies
fw(Sw,nD(Sw))−fJ
w=0
(9)
DifferentiatingEq.(9)withrespecttoSw,oneobtainsdSw/dnD
solelyasafunctionofSw:dS
w
∂fw∂f−1
w
dn(10)
D=−∂nD
∂Sw
wheretheright-handsideiscalculatedat(Sw,nD(Sw))inEq.(9).MultiplyingbothsidesofEq.(7)bydSw/dnDleadsto:
dSwdx=ϕdSw
un(1−Sw)rg−rc(11)
max(1−fJw)dnD
wherethetermontherighthandsideisevaluatedat(Sw,nD(Sw))definedinEq.(9).
Thissingleordinarydifferentialequation(ODE)intheunknown
SwissolvedstartingfromSw=SEw
atx=0;theright-handsidemustbelessthanzero,anditcontinuestobelessthanzerountilstateJ,
where[rg−rc]vanishes.AtthispointSwisthewatersaturationSJ
wattheendofentranceregion.WewillsoonseethatJisthesolutionwithhighestwatersaturationamongallcandidatesteadystatesnomatterwhatthefoamkineticratesare.
Usingnumericalpackages,itiseasytosolveEq.(11).2.2.Includingcapillarypressure
Inthiscasethetotalwatersuperficialvelocityincludescon-vectiveandcapillarityterms,butitisstilluniformintheentranceregionaccordingtoEq.(6).RearrangingthisequationtransformsitintoanODEforwatersaturationasafunctionofposition:dSwu(fJ
w
−fwdx=)
f(12)
wg(dPc/dSw)
ThisequationhastobesolvedtogetherwithEq.(7)andbound-aryconditionsinEq.(5).
Contrarytothepreviouscase,theinletwatersaturationSEw
cannotbecalculateddirectlyfromfJ
w,becausewatersuperficialvelocityincludesacapillarycontribution.However,thiscontribu-tionvanishesatJfromB.C.JinEq.(5),socandidatesforstateJarecalculatedfromEq.(9)asbefore.
TheentranceregionmustsatisfyODEs(7)and(12),butthestateEisstillunknown.SincetheremaybemorethanonecandidateforJ,onemustintegratebackwardsinxfromeachcandidateforJ.SinceeachJisatequilibriumforbothequations(i.e.,theirrighthandsidesvanish),onedoesnotstartatJ,butatJ+JnearJ,asspecifiedinAppendixC.
Therearetwoissues:thefirstoneisthechoiceofpointJ+Jfromwhichtostartthebackwardintegration.Thischoicedependsonthebehavioroftheorbits(solutionpaths)oftheODEsneartheequilibriumpointJ.AsexplainedinAppendixC,suchanequilibriumcanbeofthreegenerictypes:saddle,attractorandrepeller.Inthecaseofasaddle,thereisanessentiallyunique,well-definedwaytoinitiatethebackwardintegration.Inthecaseofanattractor,onecannotintegratebackwards;oneimmediatelyconcludesthatthecandidateforJisnotacceptable.Inotherwords,itisimpossibletoachievethisstatefromfoam-freefluidsinjectedattheinlet.Inthecaseofarepeller,asolutionmayexistinprinciple,butdeterminingitismoredifficult;wedonotaddressthiscasehere.
ThesecondissueisthedeterminationofstateE,whereinte-grationstops.WeintegratebackwardsthesystemofODEsfromJ+J,startingatanarbitrarypositionx=xJ+Jthatwesetinitiallytozero.Asoneintegratesbackwardsinx,thevalueofnDdecreases,andtherearetwopossibilities:eithernDreacheszero(atthevalueofxthatwecallxE)atstateE,orelsenDstayspositive.IntheformercasewehavesatisfiedB.C.EinEq.(5)andreachedstateEandthewidthoftheentranceregionisthedifferencexE−xJ+J.Inthelattercase,thecandidateJisruledout.3.Foammodels
Wesolvetheentranceregionfortwofoammodels.Thefirstonecombinesfamiliarsteady-statefoambehavior(cf.[13,14])withafirst-order-kineticmodelfortheapproachoffoamtexturetoitsLEvalueatagivenwatersaturation.ThedetailsofthismodelaredescribedinAppendixA;Fig.1isbasedonthismodel.ThesecondmodelisthatofKam[5],describedinAppendixB,whichiscom-patiblewithmultiplefoamsteadystatesandfoamgenerationatathresholdpressuregradient,asseeninexperiments.AppendixCdescribesthemathematicalapproachforsolvingtheentrance-regionEqs.(7)and(12).4.Results
4.1.First-order-kineticmodel
WeinvestigatethecaseofinjectingfoamforfJ
w=0.268intoacorewithgasandsurfactantalreadypresent;weusethemodelandparametersthatareconsistentwiththetraveling-waveexampleinAshoorietal.[18].ForthesakeofcompletenessthefoammodelissummarizedinAppendixForknownfJA.
JmustsatisfyEq.(8):fw(SJJJ
wthestatew,nLE(Sw))=fw.Inthisequation,nLEisgivenbyEq.(A.1)inAppendixDA.Wefind(Sw,nD,fw)J=(0.372,D
0.664,0.268).Thereisonlyonefoamlocal
equilibriumforeachvalueoffwinthismodel;seeFig.1.
4.1.1.ExcludingForfJcapillarypressure
0.268,fromEq.(8)theequalityfw(SE,0)=fJSEw=givesw=0.082.SolvingEq.(9)withfww
wgivenin(A.6)wefindnD(Sw)asbelow:nk0gw
wD(Sw)=
r(S)krw(Sw)g(1/fJ
w−1)
(13)
HereweuseEqs.(A.4)and(A.5)forrelativepermeabilities.Sub-stituting[rg-rc]fromEq.(A.2),nD(Sw)anddSw/dnDfromEq.(13)intoEq.(11)producesthesoleODEgoverningtheentranceregioninabsenceofcapillarypressure.TheresultingODEcanbesolvedbytheRunge-KuttamethodusingMATLAB®(TheMathworks,Natick,
Massachusetts,USA)forwatersaturationbetweenSEwandSJw
,start-ingfromSEatx=0(B.C.EinEq.(5)).NotethatforagivenfJww,the
statesatthetwoendsoftheentranceregionarefoundindependentoffoamkineticrates.
Forfastkineticrates(e.g.Kc=200)theentranceregionhasverysmallwidth(oforderhalfofamicron)inSw.Forrelativelyslowerkineticrate(e.g.Kc=1)thewidthisoftheorderofone-tenthofamillimeter,andforKc=0.01,theentranceregioniswider.Forinstance,Fig.2showswatersaturationanddimensionlessbubbletexturevs.xintheentranceregionforKc=0.01.Theentranceregion
startsatx=0withzerobubbletextureandSEw
=0.0.82(thewatersaturationonthefoam-freefractionalflowcurveatfJ
w=0.approachestheLEstateJcorrespondingtothesamefJ
268)and
wonthefoamfractionalflowcurve(seethehorizontalgraydashedlineinFig.1).Foambubbledensityiszeroattheinlet,wheregasmobilityisthatintheabsenceoffoam,and,consequently,Swishighertherethan
222E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227
0.8wS0.6 0.4051015 x (mm)
202530351Dn 0.5005101520253035 x (mm)
Fig.2.Watersaturationanddimensionlessbubbletexturevs.xwithintheentrance
regionforfJ
w=0.268,applyingthefirst-order-kineticfoammodel(Kc=0.01)inabsenceofcapillarypressure.
intherestofthecore.Ourresultsshowthatentrance-regionwidthisinverselyproportionaltoKcbecausethederivativeofSwvs.xintheentranceregionisproportionaltothenetfoam-generationrate,accordingtoEq.(11).Weseethesametrendfortheotherfoammodel.
BycomparingtheentranceregioninSw,observedforinstancebyCTscanning,orinpressuregradient,whichreflectsnD,onecanroughlycalibratethefoamparameterKc.NotethatinthiscasetheapparententranceregioninSwwouldbeabout7mmandforpres-suregradient(ornD)abouttwotimeslonger,14mm.Iftheentranceregionisoforderofcm,asinmanyexperiments,thenclearlyavalueofKcgreaterthan1isnotconsistentwithexperimentaldata.Ashoorietal.[18]showthatfortherangeofKcbetween1and0.1,thetravelingwaveatthedownstreamshockfront(seeFig.1)oscillatesaroundtheinjectionpoint,butsuchalargevalueofKcisnotconsistentwiththeentranceregionobservableinexperi-ments.
4.1.2.Includingcapillarypressure
Inserting[rg-rc]fromEq.(A.2)intoEq.(7)andfwfromEq.(A.6)intoEq.(12)resultsintwoODEsthatshouldbesolvedtogetherwithboundaryconditionsspecifiedinEq.(5)ForthecasestudydefinedabovewithfJ
.
w=0.268,thepresenceofcapillarypressuredoesnotchangestateJ.Asdiscussedabove,stateEisnotknowninadvance.Thus,onemustsolvethesystemofODEsbackwardstartingneartheequilibriumstateJtothepointatwhichbubbletextureiszero,whichisstateE.
Table1showstheasymptoticbehaviorofthesolutionaroundJforsmallasmallvalueofKc,0.01.Inthistable1and2areeigenvaluesand1and2areeigenvectors.Theinjectionpointisasaddle.SeeAppendixCfortheprocedureofsolvingasystemofODEsstartingnearasaddlepoint.
Fig.3showstheentranceregionforthiscase.Theinletwater
saturation(SEw
)isabout0.55andthepractical(apparent)entranceregionwidthisaround1.4cmbothinSwandnD.ComparingFigs.2and3showsthatentranceregioninSwiswiderintheabsenceofcapillarypressure,inagreementwithKovsceketal.[6]foranotherfoammodel.ForlargervaluesofKc(notshown),theinletwatersaturationislowerandtheentranceregionisshorter.
Table1
EntranceregionbehavioraroundstateJ,(Sw,nD,fw)J=(0.372,0.664,0.268),applyingthefirst-kineticfoammodelinpresenceofcapillarypressure(Kc=0.01).1
2
1
2
−936.61033
21908.98651
(−0.05269,0.99861)
(0.80216,0.59710)
0.6w0.5S 0.40.30510 x (mm)1520251Dn 0.500510x 15(mm)2025Fig.3.Watersaturationanddimensionlessbubbletexturevs.xwithintheentrance
regionforfJ
w=0.268applyingthefirst-kineticfoammodel(Kc=0.01)inpresenceofcapillarypressure.
4.2.ModelofKam
Kam[5]proposeamodificationofthefoammodelofKamandRossen[38],whichfitsavarietyofsteady-stateexperimen-taldata:foamgenerationaboveathresholdpressuregradient[39],multiplefoamsteadystatesatgiveninjectionrates[40],andtwoflowregimesforstrongfoamdependingoninjectedwaterfrac-tion[35].DetailsanddefinitionsofallthevariablesandparametersofthismodelareavailableinAppendixB.Amongotherfactors,thelocal-equilibriumbehaviordependsontheratiooftwokineticparameters,CgandCc.Forgivensteady-statebehavior,withtheratiofixed,kineticratesaregovernedbythevalueofeitherparam-eter;belowweshowthebehaviorasafunctionoftheparameterCc.
4.2.1.Highvelocityco-injection
AccordingtoEqs.(B.3)and(B.5),thefractional-flowcurveforthisfoammodeldependsstronglyontotalsuperficialvelocityu.Initiallyweassumerelativelyhigh-velocityco-injectionofgasandwaterwithdissolvedsurfactant(u=5.29×10−5m/s,or4.57m/d).Fig.4showsthefoamfractional-flowcurvesatthishighveloc-ityandthefoam-freefractional-flowcurve,whichcorrespondsto
nD=0.WeassumefJ
w=0.05forthefirstexample,consistentwithacaseinAshoorietal.[18]andKam[5].Asaninitialcasewespec-
10.810.50.30.10.6w0.01f 0.0050.40.00100.2 LE foam fw foam-free fw fJw constant-n0D foam fw0.10.20.30.40.50.60.70.80.91 Sw
Fig.4.LEfractionalflowcurvesatu=5.29×10−5m/s(4.57m/d):foam(thicksolidcurve),withmultiplesteadystatespossible,andfoam-freefractional-flowcurve(thickdashedcurve).Thethinblackcurvesrepresentfractionalflowatconstantbubbletexture;numbersoncurvesaredimensionlessbubbletexture.TheLEfractional-flowcurveforfoamhasfoamtexturethatvarieswithwatersaturation.Horizontallineindicatesinjectionatwaterfractionalflowof0.05andthegreen,squarepointsareLEcandidatesforstateJ.
E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227223
0.7wS 0.50.301234 5678910x (mm)0.001Dn0.0005 0
012345678910x (mm)Fig.5.Watersaturationanddimensionlessbubbletexturevs.xinentranceregion
forfJ
w=0.05inabsenceofcapillarypressure(Cc=1).
ifycoalescenceparameterCc=1,whichmatchesthevalueofCcinsimulationsinKam[5].
4.2.1.1.Excludingcapillarypressure.ForfJ
w=0.05,wefindSEw
fromEq.(8),settingnD=0.TherearethreestateJatintersectionsoflinefw=fJ
possibleLEcandidatesfor
wandtheLEfoamfractional-flowcurve(seegreensquaresinFig.4).Eq.(8)indicatesthatfwisuniformthroughouttheentranceregion.Thereforethesolution
liesonthelinefw=fJ
wstartingfromtheno-foamfractionalflowcurvetothefirstequilibriumpointitencounters.Itisimpossibleforthesolutiontoextendbeyondthispoint,becausedSw/dx→0there(Eq.(11)).Inotherwords,intheabsenceofcapillarypres-sureandwithnopre-generationoffoam,foranyfoammodelwithmultiplesteadystates,thestatedownstreamfromentranceregion(J)istheonewiththehighestwatersaturationamongthepossi-blesteady-states.Intheabsenceofcapillary-pressuregradients,onecanidentifythesteady-stateinjectionpointJwithoutanysimulations,andindependentoffoam-kineticrate.Allthefinite-differencesimulationsofKametal.[4]intheabsenceofcapillary
pressureresultedinastateJthatobeysthisrule.ForknownfJ
w,statesEandJare(Sw,nD,fw)E=(0.62762,0,0.050000)and(Sw,nD,fw)J=(0.371342,0.00095022,0.050000).
WeconstructthesingleODEgoverningtheentranceregion:firstwedeterminedSw/dnDfromEq.(B.5)togetherwithEqs.(B.3)and(B.4)andthensubstitutergfromEq.(B.1),rcfromEq.(B.2)andthederiveddSw/dnDintoEq.(11).
Fig.5plotswatersaturationanddimensionlessbubblevs.positionxintheentranceregionforfJ
texture
w=0.05forCc=1.Accord-ingtothisfigure,theentranceregionstartsathighwatersaturationwithzerobubbletextureandasymptoticallyapproachesthefoam
LEstatewiththesamevalueoffJ
wandthegreatestvalueofSw.
Incontrasttothewidthoftravelingwave[18],theapparentwidthoftheentranceregionissensitivetofoamkineticrate.The
0.0592w0.059S 0.05880.058600.20.4 x 0.6(mm)0.811.21Dn 0.5000.20.4 x 0.6(mm)0.811.2Fig.6.Watersaturationanddimensionlessbubbletexturevs.positionxinentrance
regionforfJ
w=0.05andequilibriumJat(Sw,nD,fw)J=(0.058585,0.65218,0.05)inpresenceofcapillarypressure(Cc=0.001).
10.90.80.710.60.50.30.1wf 0.50.010.0050.40.001 fJ0w0.3 J0.2 LE foam fw0.1 foam-free fw constant-nD foam f0w0.10.20.30.40.50.60.70.80.91 Sw
Fig.7.LEFoamfractionalflowcurvesforu=2.798×10−5m/s(2.42m/d)(thicksolidcurve)andfoam-freefractional-flowcurve(thickdashedcurve);thethinblackcurvesinbetweenrepresentfractionalflowatfixedbubbletexture;numbersoncurvesaredimensionlessbubble-texture.Horizontaldashedlineindicatesinjectionatwaterfractionalflowof0.3.ThestateJcorrespondstotheLEinjectioncondition(seetheargumentinthetext).
entranceregionwidensalmostproportionallyto1/Cc:slowerfoamkineticratestendtoexpandtheentranceregion,andforfasterfoamkineticrates,theentranceregionshrinksalmostproportionally.Moreprecisely,theapparentwidthoftheentranceregionisabout0.15cm,0.16mand1.5mforthekineticparameterCc=1,0.01and0.001,respectively.
4.2.1.2.Includingcapillarypressure.Aswiththefirst-order-kineticfoammodel,thesystemofODEs(7)and(12)canberecastforthisfoammodelbysubstitutingtherespectiveexpressionsforrg,rcandfw(Eqs.(B.1)–(B.5)).
Asdiscussed,SEw
cannotbedeterminedbeforesolvingthesys-temofODEs.InthiscasetherearethreecandidatesforgivenfJ
stateJfor
w=0.05(seegreensquaresinFig.1).Exceptforthemid-dlestateatSw=0.1263,theothertwocandidatesaresaddles,asrevealedbytheasymptoticbehaviorofthesolutionnearthosepoints.(Wediscussthemiddlepointfurtherbelow.)WeassumeinitiallythatpointJis(Sw,nD,fw)J=(0.0585849073,0.65217855,0.0500000).Thisstateisconsistentwithfinite-differencesimula-tionforthecaseatfJ
w=0.05[5].
Theentranceregionisnarrowevenforslowfoamkineticrates.Forinstance,Fig.6showswatersaturationanddimensionlessbub-bletexturedistributionvs.xintheentranceregionatrelativelyslowkineticrates(Cc=0.001).NotethatalthoughthewidthoftheentranceregionissimilarforbothSwandnD,thechangeinSwissoslightthatitwouldnotbedetectableexperimentally.InsuchacaseonewouldobservenoentranceregioninSwand(depending
20000 Pc function (c=0.01) Pc function (c=0)1000cP 10000Pc 50000.70.8 S0.91w000.10.20.30.40.5 S0.60.70.80.91w
Fig.8.Capillary-pressurefunctionusedinfirst-order-kineticmodel(Eq.(A.7)).
224E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227
Table2
EntranceregioncorrespondingtotheJpoint,(Sw,nD,fw)J=(0.5339,0.0015,0.3),specifiedinFig.7:widthandinitialwatersaturationatEfordifferentfoamkineticrates.Anasterix*indicatesanentranceregionwithanundectablysmallchangeinSw.Cc
SEw
Apparent
Apparent
entrance-regionentrance-regionwidthinSw(cm)widthinnD(cm)NoPc10.8110.080.080.010.8117.57.50.0010.8118080WithPc10.534*0.030.010.544*30.001
0.63
50
50
ontheresolutionoftheexperimentalapparatus)anarrowoneinpressuregradient.
InsomecasestheasymptoticbehaviorofthesolutionaroundpossiblecandidatesforstateJcanruleoutoneormoreofthem.
Forexample,forfJ
w=0.05,theasymptoticbehaviornearstateJonthemiddlefoamfractionalflowcurve(Sw=0.1263,seeFig.4)showsthatforfoamkineticparameterCc=1,wehaveanattractorandforsmallerCc(0.001),arepellerwitheigenvalues1,2=8.48454±12.87156i.AsexplainedinAppendixC,arepellercannotbetheendpointofanentranceregion.Thus,onecanruleoutthiscandidateforstateJinthepresenceofcapillarypressureforsufficientlysmallvaluesofCc.
4.2.2.Lowvelocityco-injection
Fig.7showstheLEfractional-flowcurvesfortotalsuperficialvelocityu=2.798×10−5m/s,whichcorrespondsto2.42m/d.TherearethreepossiblestatesJforfw=0.3(seegreensquaresinFig.7).
Inabsenceofcapillarypressure,weshowabovethatstateJistheonewithgreatestwatersaturationamongthecandidates:(Sw,nD,fw)J=(0.5339,0.0015,0.3).StateEisfoundas(Sw,nD,fw)J=(0.811,0,0.3)onthecrossingpointoffw=0.3andno-foamfractional-flowcurve.Thewholeentranceregionliesonthelinefw=0.3betweenstatesEandJ.
Inthepresenceofcapillarypressure,theasymptoticbehaviorofthepossibleentranceregionaroundcandidatestatesJinFig.7showsthattheright-mostone(atSw=0.5339)isasaddlewhiletheothertwoareattractors.Theformerhasthepotentialofauniqueentrance-regionorbitendingatJ;theothertwomighthaveasolu-tionfortheentranceregionbutareruledoutbyconsiderationoftheshockaheadofstateJ.Ashoorietal.[18]reportthatforaninitialstateofhighwatersaturation,forCcbetween0.001and1,theright-mostJstate(Sw,nD,fw)J=(0.5339,0.0015,0.3)inFig.7istheonlystateforwhichtheycouldconstructashockdownstreamofthisstate.Thisfindingisconsistentwithfinite-differencesimulationsofKam[5].Asdiscussedbefore,stateEcanbedeterminedfromthe
Table3
Parametervaluesforfirst-order-kineticmodel.Swc0.2Sgr0.18
w0.001Pas0g0.00002Pask1×10−12m2ϕ0.25
u2.93×10−5m/snmax8×1013m−3S∗w0.37A
400
Table4
Relative-permeabilityandcapillary-pressurefunctions,modelparametersandsomepropertiesusedinfoammodelofKam[5].Relative-permeabilityfunctionskrw0.7888[(Sw−Swc)/(1−Swc−Sgr)]1.9575k0rg
[(1−Sw−Sgr)/(1−Swc−Sgr)]2.2868Capillary-pressurefunctionPc
(ϕ/k)0.5[(Sw−Swc)/(1−Swc−Sgr)]−0.2Foammodelparameters∇p04.2psi/ftn1
Cg/Cc3.6×1016
Cf1.535×10−16Cc
1
OtherparametersSwc0.04Sgr0.0
w0.001Pas0g0.00002Pask30.4×10−12m2ϕ0.31S∗w0.0585
nmax8×1013m−3
0.03N/m
backwardsolutionoftheentranceregionatthepointwherebubbletexturebecomeszero.
WesolvetheentranceregionforthelocalequilibriumJspecifiedinFig.7bothincludingandexcludingcapillarypressure,followingthemethodexplainedbefore.Table2summarizesthecalculatedwatersaturationattheinjectionface(E)andtheapparentwidthoftheentranceregionforeachcasefordifferentfoamkineticparam-eters.
Table2makesseveralpoints.First,thewidthoftheentranceregionpredictedforKam’sfoammodel,creatingeitherstrongfoam(section4.2.1.2)orweakfoam(Table2),ismuchshorterforCc=1thanisoftenreportedinexperimentalwork:fromaround10–15cm[6,12]tosmallervaluesofabout4–6cmdependingongastype[27].Inthepresenceofcapillarypressure,thevariationsinwatersaturationbetweenstatesEtoJaresosmallforCcbetween0.01and1thattheapparententranceregioninSwwouldbeunde-tectablebytypicalCTscanners.
Second,asthepreviouscase,theentranceregioniswider,withagreaterchangeinwatersaturation,intheabsenceofcapillarypres-sure.KovscekandRadke[41]reportthesametrendintheentranceregionfromsimulations.Oneexpectsmoreeffectofaccountingforcapillarypressurewhentheendstateoftheentranceregionisatlowwatersaturations,wherecapillarypressureasafunctionofwatersaturationisverysteep,orwhenfoamisweakerandviscouspressuregradientissmall.
Third,asinthecasewithhigherinjectionrate,accordingtoTable2,inabsenceofcapillarypressurethewidthoftheentranceregionisinverselyproportionaltoCc.Inpresenceofcapillarypres-surethisproportionalityislessquantitative.Thisisinagreementwiththesensitivityanalysisonfoamkineticrateparametersinthefinite-differencesimulationsofKam[5].5.Conclusions
WeassumethatonasufficientlylargescalefoamiseverywhereatLE,withtwoexceptions.Thefirstexceptionisshockfronts,seeAshoorietal.[18].Inthispaper,westudythesecondexception,whichistheentranceregionnearthewellorinjectionfaceinacoreflood.Wereachthefollowingconclusions.
•Weshowhowtoderiveandsolveequationsforwatersaturationandfoampropertiesalongtheentranceregionatsteadystate.Weshowthesolutionforsomecasesapplyingafirst-order-kineticfoammodelandafoammodelwithmultiplesteadystates.
E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227225
•Simplemathematicalconditionsontheentranceregionitselfcancontrolwhichoftheseveralpossiblesteadystatesfoamultimatelytakesdownstream.Forinstance,iffoamisnotpre-generated,andcapillary-pressuregradientsareneglected,asinmanypublishedsimulationstudies,thefinalsteadystatedown-streamistheonewithhighestwatersaturation–theweakestfoam.Inthepresenceofcapillarypressure,analysisoftheasymp-toticdynamicbehaviorinthevicinityofpossibledownstreamsteadystatesmayruleoutcandidatesinsomecases.
•Wefitfoamkineticparameterstothelengthoftheentranceregioninexperiments.Asinexperiments,theapparentwidthoftheentranceregioncandifferifonemeasureswatersaturationorpressuregradient.
•Inabsenceofcapillarypressure,thewidthoftheentranceregionisinverselyproportionaltofoamkineticrate;inpresenceofcap-illarypressurethisproportionalityisapproximatelyvalid.Acknowledgments
ThisworkwassupportedinpartbyagrantfromResearchCentreDelftEarth,aprogramofDelftUniversityofTechnology;CNPqunderGrants301564/2009-4,472923/2010-2,490707/2008-4;FAPERJunderGrantsE-26/110.972/2008,E-26/102.723/2008,E-26/112.220/2008,E-26/110.310/2007,E-26/112.112/2008.TheauthorsalsothankTUDelftforhospitalityduringthevisits.AppendixA.First-order-kineticmodel
Thisfoammodelreflectswell-knownsteady-statebehavioroffoaminporousmedia:specificallyalarge,nearlyconstantgasmobilityreductionathighwatersaturationsandanabruptweak-eningorcollapseoffoamatalimitingcapillarypressureorlimitingwatersaturation[13,14,42,43].Local-equilibriumtexturenLEisgiven
bythefollowingfunctionofwatersaturationSfw:
nLED(Sw)≡nLEf
/nmax=tanh(A(Sw−S∗w
))Sw>S∗wnLE(Sw)=0Sw≤S∗(A.1)
D
w
HerenLE
isdimensionless∗isthelimitingwatersaturationD
LEbubbletexture,Swatwhichfoamcollapses,nmaxistheupperlimittofoamtexture(reflectingalowerlimittobubblesize)[35],andAaconstant.Wetakenmax=8×1013m−3(cf.[4]).SeeTable3forotherparametervaluesandfluidpropertiesusedinthemodel.InthispaperweworkwithdimensionlessfoamtexturenD≡nf/nmaxratherthannf.
Fordynamicfoamtexturesweproposeafirst-orderapproachtolocal-equilibriumbubbletextureatanysaturation,withatimeconstant
1/Kc:
rg−rc=Kcnmax(nLED(Sw)−nD)
(A.2)
Eq.(A.2)appliesfornD≤1;ifnD>1,nDisresetto1andthenEq.(A.2)isapplied.Thisassumesthatthemechanismsthatcontrolthelowerlimittobubblesize(interbubblediffusionanddifficultyincreatingbubblessmallerthanpores)arerapidcomparedtoothermechanismsoffoamgenerationandcollapse;seeChenetal.[7]foradifferentapproach.
Althoughgasrelativepermeabilityandgasviscosityareinsepa-rableinthepresenceoffoam,forsimplicity,werepresentthewholeeffectoffoamasareductioningasrelativepermeabilityandleavegasviscosityunaltered.Weassumealargemobilityreductionfac-torMRF(18500)forthestrongestfoam(cf.[14])andMRF=1fornofoam.Finally,weinterpolateMRFasalinearfunctionoffoamtexturebetweenthosetwofoamextremes:
krg(Sw,nD)=korg(Sw)/MRF(Sw
)MRF(Sw)=18500nD(Sw)+1
(A.3)
wherek0rg(Sw
)isgasrelativepermeabilityintheabsenceoffoam.Bythisdefinition,waterfractionalflowisnotsolelyafunctionofsaturation,becauseindynamicfoamflowfoamtexturecandeviatefromitslocal-equilibriumvalueforagivenwatersaturation.
Thefoam-freerelativepermeabilitiesarethoseofZhouandRossen[14],basedondataofPersoffetal.[11]fornitrogenandwaterflowinginBoisesandstone:
kS4.2
rw=0.2
w−Swc1−S(A.4)
wc−SSgr
w>Swc
1.3
ko−Sw−Sgr
rg=0.94
11−Swc−SS−Sgr
w<1gr
(A.5)
Obviously,krwiszeroforSw≤Swcandthesamefork0if1−Srg
Sw≥gr.Thefractional-flowforfoamisasfollows:
fw(Sw,nD)=
1
0(A.6)
1+
w
krg(Sw)krw(Sw)0MRF(nD)
Thelocal-equilibriumfoamfractionalflow,fw(Sw,nLE
),andfoam-freefractional-flowcurve,fSD
w(w,0),areshowninFig.1.
Thecapillary-pressurefunctionisgivenbyP0.022(1−Sc=15000×w−Sgr)c
(S,c=0.01
(A.7)
w−Swc)
wherethecapillarypressurePcisinunitsofPa.Incorporatedintothisfunctionisourassumptionofgas–watersurfacetensionof0.03N/m(30dyne/cm).ThisfunctionisroughlyconsistentwiththatgivenbyKovsceketal.[6],thoughwithirreduciblesatura-tionsadjustedtothesamevaluesasintherelative-permeabilityfunctions.Thefactor(1−Swc−Sgr)cwithverysmallcguaranteesacontinuousfunctionatresidualgassaturation,whilehardlyaffect-ingcapillary-pressurevaluesattheotherwatersaturations(seeFig.8).Thisassumptiondoesnotaffectourresultsbecauseourexamplesoccurathighergassaturationsthanresidual.ThisfactorinEq.(A.7)doesnotaffectourresults.However,tobeconsis-tentwithtraveling-wavesolutionsforanalogouscasesinAshoorietal.[18]weapplythiscapillary-pressurefunction.Thiscapillary-pressurecurvecorrespondstodrainage,asdothedisplacementswemodelwithit.AppendixB.Kammodel
InthemodelofKam[5],lamellaecreation(rg)requiresexceed-ingaminimumpressuregradient;abovethethreshold,creationincreasesrapidlywithincreasingpressuregradient,reflectinglamellamobilizationanddivision,andathighpressuregradientsitreachesaplateau,ontheassumptionthatlamellacreationratemusthaveanupperbound.r=
C
gg
p−2
erf
∇√∇p0
−2−erf
√∇p0
2(B.1)
∇pmeans∂p/∂xinthispaper.Notethatthefoammodelequations
inthisAppendixrequirequantitiesinunitsspecifiedinTable3.Asinotherpopulation-balancemodels[6,41],therateoffilmbreakage(rc)isdescribedbyafunctionthatapproachesinfinityaseitherwatersaturationorcapillarypressureapproachalimit-ingvalue[42].WemodifythisfunctiontoincludedimensionlessfoamtexturenD≡nf/nmaxwherenmaxisfoamtextureatminimumbubblesizewhichisthoughttocorrespondtoaverageporesize:
rSn
c=CcnmaxnD
w
S(B.2)
w−S∗w
Asinthefirst-order-kineticmodel,Eqs.(B.1)and(B.2)applyfor
n≤nmax;ifn>nmax,nisresettonmax.
226E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227
InEqs.(B.1)and(B.2)∇pispressuregradientand∇p0,n,CgandCcaremodelparameters.Asinotherpopulation-balancemodels[41,44]effectivefoamviscosityisashear-thinningfunctionofgasvelocity:
fg=o
g+
CfnmaxnD
ug1/3
(B.3)
ϕSg
where0gisgasviscosityintheabsenceoffoamandCfisamodelparameter.TransportofliquidandgasisgovernedbyDarcy’slaw.Liquidandgasrelative-permeabilityfunctionsandliquid-phaseviscosityareassumedtobeunaffectedbyfoam.Hence,forhori-zontaldisplacements,neglectingcapillary-pressuregradients,gasvelocityandfractionalflowofwatercanbeevaluatedfromukk0g=
rg
f∇p
(B.4)
g
f1
w=
(B.5)
1k0+
wrgkrwf
Therelative-permeabilityandcapillary-pressurefunctionsandothermodelparametersandfluidpropertiesaregiveninTable4.FoamtextureatlocalequilibriumcanbeobtainedbyequatingEqs.(B.1)and(B.2).nLE=
Cg
Sw−S∗w
n∇p−√∇p0
D
2Ccnmax
Serf
w
2−erf
−√∇p0
2(B.6)
Atsteady-state,onecandetermine
fg,
ugandnDbysimultaneouslysolvingEqs.(B.3)–(B.6),andthenconstructthefractional-flowcurveusingEq.(B.5).AsshownbyKam[5]theresultingfractional-flowcurvescanbequitecomplex.AppendixC.Mathematicalapproachforsolvingentranceregion
TosolvefortheentranceregionatsteadystateinthepresenceofcapillarypressureonemustsolveEqs.(7)and(12)simultaneously.Forsimplicity,letFandGrepresenttheright-handsideofthesetwo⎧equationsrespectively:
⎪⎨dSwdx
=F(Sw,nD)⎪⎩
dn(C.1)
f
dx
=G(Sw,nD)whereSwandnDareevaluatedat(SJJ
w,nfindD).Eq.(C.1)representsasystemofnonlinearODEs.OurgoalistoSwandnfasfunctionsofxforanentranceregionwithknowndownstreamboundarycon-ditionJ.NotethatJisatequilibrium:i.e.SwandnDapproachtheirLEvaluesasymptotically.Inotherwords,dSw/dx=0anddnD/dx=0atJ.Asaresult,thissystemofnonlinearODEscanbelinearizedinthevicinityofJbyTaylorapproximationofFandG.Neglectingtermshigherthanfirstorder
⎡dS⎤⎡
∂F(Sw,nD)
∂F(Sw,nD)
⎤⎢w⎣
dx⎥∂Sw∂nf⎥
dnf⎦=⎢⎣
∂G(Sw,nD)
∂G(Sw,nD)
⎦
Swn(C.2)
D
dx
∂Sw
∂nf
J
ThebehaviorofthefinalorbitasthesolutionapproachesJcanbedeterminedbycalculatingtheeigenvalues(1and2)andeigen-vectors(1and2)oftheabovematrix.SolutionsofEq.(C.2)are
given
by
S
w
n2x
(C.3)
D
=c11e1x+c22ewherec1andc2areconstants.Equilibriumpointsareclassifiedaccordingtotheireigenvaluesasfollows:anequilibriumwithtworealnegativeeigenvaluesiscalledanattractorpoint;anequilib-riumwithtwopositiveeigenvaluesiscalledarepellerpoint;anequilibriumwithtwoeigenvaluesofdifferentsigniscalledasaddlepoint;andonewithtwocomplexconjugateeigenvaluesiscalledanattractororrepeller(spiral)pointdependingonwhetherthesignoftherealpartoftheeigenvaluesisnegativeorpositive[45].
ConstructionofasolutionfortheentranceregionapproachingpointDasymptoticallyandsatisfyingthesystemofODEsisnotalwaysfeasible:forinstance,thereisnoorbitendingatarepellerpoint;therefore,anequilibriumpointwiththisbehaviorisruledout.
Oncethisnecessaryconditionissatisfied,weappliedtheODEsolverinMATLAB®(TheMathworks,Natick,Massachusetts,USA)tocalculatethesolutionofEq.(C.1).KnowingtheasymptoticbehaviorofthesolutionneartheendingequilibriumpointisneededtosolvetheODE.Forinstance,ifthedownstreamstateisasaddle,weknowthesolutionmustconvergetothesaddlealongtheeigenvector(1)correspondingtothenegativeeigenvalue1;thus,wesolvetheequationsinreversebymultiplyingourequationsby(−1),startingfromthepointJ+JnearthesaddleJ.inthiscaseeitherJ=ε(1)orJ=−ε(1),whereεissmallnumberdeterminedbythedesiredaccuracyofthecalculation.Theentrance-regionsolutioncontinuestothepointatwhichbubbletexturebecomeszero.References
[1]J.J.Bikerman,Foams,Springer-Verlag,NewYork,1973.
[2]A.H.Falls,G.J.Hirasaki,T.W.Patzek,P.A.Gauglitz,D.D.Miller,J.Ratulowski,
Developmentofamechanisticfoamsimulator:thepopulationbalanceandgenerationbysnap-off,SPERE3(1988)884–892.
[3]F.Friedmann,W.H.Chen,P.A.Gauglitz,Experimentalandsimulationstudyof
high-temperaturefoamdisplacementinporousmedia,SPERE6(1991)37–45.[4]S.I.Kam,Q.P.Nguyen,Q.Li,W.R.Rossen,Dynamicsimulationswithan
improvedmodelforfoamgeneration,SPEJ.12(2007)35–48.
[5]S.I.Kam,Improvedmechanisticfoamsimulationwithfoamcatastrophetheory,
ColloidsSurf.A:Physicochem.Eng.Aspects318(2008)62–77.
[6]A.R.Kovscek,T.W.Patzek,C.J.Radke,Amechanisticpopulationbalancemodel
fortransientandsteady-statefoamflowinboisesandstone,Chem.Eng.Sci.50(1995)3783–3799.
[7]Q.Chen,M.G.Gerritsen,A.R.Kovscek,Modelingfoamdisplacementwiththe
local-equilibriumapproximation:theoryandexperimentalverification,SPEJ.15(2010)171–183.
[8]ComputerModelingGroup,STARSUser’sGuide,Version2009,Calgary,Alberta,
Canada,2009.
[9]A.W.Fisher,R.W.Foulser,S.G.Goodyear,MathematicalModelingofFoam
Flooding,in:PaperSPE20195PresentedattheSPE/DOEEnhancedOilRecoverySymposium,Tulsa,OK,22–25April,1990.
[10]A.S.deVries,K.Wit,Rheologyofgas/waterfoaminthequalityrangerelevant
tosteamfoam,SPERE5(1990)185–192.
[11]P.Persoff,C.J.Radke,K.Pruess,S.M.Benson,P.A.Witherspoon,Alaboratory
investigationoffoamflowinsandstoneatelevatedpressure,SPERE6(1991)365–372.
[12]R.A.Ettinger,C.J.Radke,Theinfluenceoftextureonsteadyfoamflowinberea
sandstone,SPERE7(1992)83–90.
[13]L.Cheng,A.B.Reme,D.Shan,D.A.Coombe,W.R.Rossen,SimulatingFoamPro-cessesatHighandLowFoamQualities,in:PaperSPE59287PresentedattheSPE/DOEEnhancedOilRecoverySymposium,Tulsa,OK,3–5April,2000.
[14]Z.H.Zhou,W.R.Rossen,Applyingfractional-flowtheorytofoamprocessesat
the‘limitingcapillarypressure’,SPEAdv.Technol.3(1995)154–162.
[15]W.R.Rossen,S.C.Zeilinger,J.-X.Shi,M.T.Lim,Simplifiedmechanisticsimulation
offoamprocessesinporousmedia,SPEJ.4(1999)279–287.
[16]D.Shan,W.R.Rossen,OptimalinjectionstrategiesforfoamIOR,SPEJ.9(2004)
132–150.
[17]E.Ashoori,T.L.M.vanderHeijden,W.R.Rossen,Fractional-flowtheoryoffoam
displacementswithoil,SPEJ.15(2010)260–273.
[18]E.Ashoori,D.Marchesin,W.R.Rossen,Rolesoftransientandlocalequilibrium
foambehaviorinporousmedia:Travelingwave,ColloidsSurf.A:Physicochem.Eng.Aspects377(2011)228–242.
[19]A.H.Falls,J.J.Musters,J.Ratulowski,Theapparentviscosityoffoamsinhomo-geneousbeadpacks,Soc.Pet.Eng.Res.Eng.4(1989)155–164.
E.Ashoorietal./ColloidsandSurfacesA:Physicochem.Eng.Aspects377 (2011) 217–227
227
[20]F.Friedmann,J.A.Jensen,SomeParametersInfluencingFormationandProp-agationofFoaminPorousMedia,in:PaperSPE15087PresentedattheSPECaliforniaRegionalMeeting,Oakland,CA,2–4April,1986.
[21]G.-Q.Tang,A.R.Kovscek,Trappedgasfractionduringsteady-statefoamflow,
TransportPorousMedia65(2006)287–307.
[22]L.Minssieux,Oildisplacementbyfoamsinrelationtotheirphysicalproperties
inporousmedia,J.Petrol.Technol.26(1974)100–108.
[23]Q.P.Nguyen,P.K.Currie,P.L.J.Zitha,DeterminationofFoamInducedFluidPar-titioninginPorousMediausingX-rayComputedTomography,in:PaperSPE80245PresentedattheSPEInternationalSymposiumonOilfieldChemistry,Houston,Texas,USA,5–8February,2003.
[24]S.I.Chou,Conditionsforgeneratingfoaminporousmedia,in:PaperSPE
22628PresentedatSPEannualtechnicalconferenceandexhibition,Dallas,TX,1991.
[25]K.R.Kibodeaux,S.C.Zeilinger,W.R.Rossen,SensitivityStudyofFoamDiversion
ProcessesforMatrixAcidization,in:PaperSPE28550PresentedatSPEAnnualTechnicalConferenceandExhibition,NewOrleans,LA,26–28September,1994.
[26]T.J.Myers,C.J.Radke,Transientfoamdisplacementinthepresenceofresidual
oil:experimentandsimulationusingapopulation-balancemodel,Ind.Eng.Chem.Res.39(2000)2725–2741.
[27]R.Farajzadeh,A.Andrianov,H.Bruining,P.L.J.Zitha,ComparativestudyofCO2
andN2foamsinporousmediaatlowandhighpressure–temperatures,Ind.Eng.Chem.Res.48(2009)4542–4552.
[28]S.I.Kam,W.W.Frenier,S.N.Davies,W.R.Rossen,Experimentalstudyof
high-temperaturefoamforaciddiversion,J.Petrol.Sci.Eng.58(2007)138–160.
[29]Q.P.Nguyen,DynamicsofFoaminPorousMedia.PhDdissertation,Technical
UniversityofDelft,2004.
[30]K.T.Raterman,AnInvestigationofOilDestabilizationofNitrogen
FoamsinPorousMedia,in:PaperSPE19692PresentedatSPEAnnualTechnicalConferenceandExhibition,SanAntonio,TX,8–11October,1989.
[31]V.Bergeron,M.E.Fagan,C.J.Radke,Generalizedenteringcoefficients–Acri-terionforfoamstabilityagainstoilinporousmedia,Langmuir9(1993)1704–1713.
[32]S.Y.Baghdikian,L.L.Handy,Transientbehaviorofsimultaneousflowofgasand
surfactantsolutioninconsolidatedporousmedia.TopicalReportperformedunderU.S.DOEcontractFG22-90BC14600,1991.
[33]G.I.Barenblatt,V.M.Entov,V.M.Ryzhik,TheoryofFluidsThroughNaturalRocks,
KluwerAcademicPublishers,Dordrecht/Boston/London,1991.
[34]P.G.Bedrikovetsky,K.T.Potsch,A.D.Polyanin,A.I.Zhurov,Upscalingofthe
WaterfloodReservoirPropertiesontheCoreLevel:LaboratoryStudy,MacroandMicroModeling,in:PaperSPE29870Presentedatthe1995SPEMiddleEastOilShow,Bahrain,11–14March,1995.
[35]J.Alvarez,H.Rivas,W.R.Rossen,Unifiedmodelforsteady-statefoambehavior
athighandlowfoamqualities,SPEJ.6(2001)325–333.
[36]S.H.Yang,R.L.Reed,MobilitycontrolusingCO2foams,in:PaperSPE19689
Presentedatthe1989AnnualTechnicalConferenceandExhibitionSanAntonio,8–11October,1989.
[37]S.I.Chou,Percolationtheoryoffoaminporousmedia,in:PaperSPE20239
Presentedatthe1990SPE/DOESymposiumonEORTulsa,OK,22–23April,1990.
[38]S.I.Kam,W.R.Rossen,Amodelforfoamgenerationinhomogeneousporous
media,SPEJ.8(2003)417–425.
[39]W.R.Rossen,P.A.Gauglitz,Percolationtheoryandmobilizationoffoamsin
porousmedia,Am.Inst.Chem.Eng.J.37(1990)1176–1188.
[40]P.A.Gauglitz,F.Friedmann,S.I.Kam,W.R.Rossen,Foamgenerationinhomo-geneousporousmedia,Chem.Eng.Sci.57(2002)4037–4052.
[41]A.R.Kovscek,C.J.Radke,FundamentalsofFoamTransportinPorousMedia,
in:L.Schramm(Ed.),Foams:FundamentalsandApplicationsinthePetroleumIndustry,AmericanChemicalSociety,WashingtonD.C.,1994,pp.115–163,ACSSymposiumSeriesNo.242.
[42]Z.I.Khatib,G.J.Hirasaki,A.H.Falls,Effectsofcapillarypressureoncoalescence
andphasemobilitiesinfoamsflowingthroughporousmedia,SPERE3(1988)919–926.
[43]F.Vassenden,T.Holt,Experimentalfoundationforrelativepermeabilitymod-elingoffoam,SPERE3(2000)179–185.
[44]G.J.Hirasaki,J.B.Lawson,Mechanismsoffoamflowthroughporousmedia–
apparentviscosityinsmoothcapillaries,SPEJ.25(1985)176–190.
[45]W.E.Boyce,R.C.DiPrima,ElementaryDifferentialEquationsandBoundary
ValueProblems,4thed.Wiley,NewYork,1986.
因篇幅问题不能全部显示,请点此查看更多更全内容