您的当前位置:首页正文

【公开课教案】:1.2.4绝对值

来源:九壹网


1.2.4绝对值

教学目标:

1、理解绝对值的概念及其几何意义,通过从数形两个方面理解绝对值的意义,初步了解数形结合的思想方法。

2、会求一个数的绝对值,知道一个数的绝对值,会求这个数。 3、掌握绝对值的有关性质。

4、通过应用绝对值解决实际问题,培养学生深厚的学习兴趣,提高学生学数学的好奇心和求知欲。 重点:绝对值的概念 重点:绝对值的几何意义 教学过程:

一、创设情境,引入新课

问题1:两辆汽车从同一处O出发,分别向东、西方向行驶10km,到达A、B两处。它们行驶的路线相同吗?它们行驶路程的远近相同吗?

首先,先画出一条数轴表示公路,如果以O处为原点,正东方向为正方向,那么正西则为负方向。再以10km为一单位长度,则可用数轴来表示出上题。 问:两辆汽车相距O处,即原点O的距离是多少?两辆汽车的行驶路线一样吗? 学生会答:10km,不一样,一辆向东,一辆向西。

通过这个例子我们可以发现,一个地方的位置要用两个因素来确定——方向和距离。方向通常我们用正、负表示,那么距离呢?它该怎么表示?今天,我们就来学习新的内容——绝对值。 二、讲授新课

问题1:请说出在数轴上,+3和-3分别在原点的哪边?距离原点有几个单位长度?那对于-5,+7,0呢? 请两位同学起来回答。

教师归纳:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值,记作|a|,读作a的绝对值。

填表: 数a a的相反数- a a的绝对值|a| 学生独立完成后,

再对所得的规律205 10.5 1 2进行小

组讨论。

0 1- 对值的定义可知:2 教师归纳:由绝

- 10.5 -205 ①一个正数的绝

对值是它本身 ②一个

负数的绝对值是它的相反数

③0的

绝对值是0

问题2:把绝对值的代数定义用数学符号如何表示? 当a>0时,|a|=a; 三、巩固知识 四、总结

本节课主要学习绝对值的概念、表示方法及其几何意义,并会求一个数的绝对值。主要用到的思想是数形结合。 五、布置作业

当a=0时,|a|=0; 当a<0时,|a|=-a。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top