Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgby China Agricultural University on 07/12/10. For personal use only.¨Kudla,2andDaleSanders1AntonyN.Dodd,1Jorg
1
DepartmentofBiology,UniversityofYork,YorkYO105YW,UnitedKingdom;
email:ad542@york.ac.uk,ds100@york.ac.uk
¨Botanik,Universit¨¨MolekulareEntwicklungsbiologiederPflanzen,InstitutfuratMunster,
¨48149Munster,Germany;email:jkudla@uni-muenster.de
2
Annu.Rev.PlantBiol.2010.61:593–620FirstpublishedonlineasaReviewinAdvanceon
January25,2010
TheAnnualReviewofPlantBiologyisonlineatplant.annualreviews.org
Thisarticle’sdoi:
10.1146/annurev-arplant-070109-104628c2010byAnnualReviews.Copyright
Allrightsreserved
1543-5008/10/0602-0593$20.00
KeyWords
calcium,signaltransduction,membranetransport,systemsbiology
Abstract
Ca2+signalsareacoreregulatorofplantcellphysiologyandcellularresponsestotheenvironment.Thechannels,pumps,andcarriersthatunderlieCa2+homeostasisprovidethemechanisticbasisforgenerationofCa2+signalsbyregulatingmovementofCa2+ionsbetweensubcel-lularcompartmentsandbetweenthecellanditsextracellularenviron-ment.TheinformationencodedwithintheCa2+transientsisdecodedandtransmittedbyatoolkitofCa2+-bindingproteinsthatregulatetranscriptionviaCa2+-responsivepromoterelementsandthatregulateproteinphosphorylation.Ca2+-signalingnetworkshavearchitecturalstructurescomparabletoscale-freenetworksandbowtienetworksincomputing,andthesesimilaritieshelpexplainsuchpropertiesofCa2+-signalingnetworksasrobustness,evolvability,andtheabilitytoprocessmultiplesignalssimultaneously.
593
Contents
INTRODUCTION..................EvolutionofCa2+Signaling........CELLULARFUNCTIONS
OFCa2+SIGNALS................Organ-andCell-TypeSpecificityofAbioticStressSignaling.......RegulationofStomatalAperture....Plant-PathogenInteractions........NodulationandOtherSymbioses...TheCircadianClock
andPhototransduction..........ControlofPolarTipGrowth
byTip-FocusedCa2+Gradients.TheSelf-Incompatibility
Response.......................TRANSPORTSYSTEMSTHAT
ENCODECa2+SIGNALS........EnergizedSystems:
Ca2+-PumpingATPases.........EnergizedSystems:
Calcium–ProtonExchangers....
594595595595595596596597598598599599600
CalciumEntrytotheCytosol.......CyclicNucleotide–Gated
Channels.......................Glutamate-Receptor-Like
Channels.......................Two-PoreChannels................AnnexinsasNovelPlant
Ca2+-PermeableChannels......PERCEPTIONANDDECODINGOFCa2+SIGNALS................ConnectingCa2+with
Transcription...................ConnectingCa2+withProtein
Phosphorylation................2+
CaSIGNALINGSYSTEMS........Scale-FreeNetworkArchitecture...Bow-TieNetworkArchitecture.....PredictiveModels
ofNetworkFunction............SimulationofCa2+HomeostasisandDynamics..................
601601602602603603604606608608609610611
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgby China Agricultural University on 07/12/10. For personal use only.INTRODUCTION
Ca2+isanastonishinglyversatilesignalingionthatispoisedatthecoreofasophisticatednet-workofsignalingpathways.Thesepathwaysintegrateinformationfrombioticandabioticsourcesandhavearesultantimpactongeneexpressionandcellphysiology.Inplants,cal-ciumsignalstaketheformoftransientincreasesincytosolicfreeCa2+(specifically,theactiv-ityofcytosolicfreeCa2+,[Ca2+]cyt)thatarisefromthefluxofCa2+intothecytosol,fromtheexternalmediumandfromsubcellularcom-partmentsinwhichtheconcentrationofCa2+ishighcomparedwiththecytosol.Stimulus-induced[Ca2+]cytincreasesinplantcellsof-tenoccurasrepetitiveoscillationsorspikingof[Ca2+]cytwherethefrequency(period),am-plitudeandshape(e.g.sinusoidal,square-wave)oftheCa2+increasearedeterminedbythena-tureofthestimulus.Itisthoughtthatstimulus-
[Ca2+]cyt:activityofcytosolic-freeCa2+
specifictemporalchangesin[Ca2+]cytenabletheiontoencodestimulus-specificinformationwithinthisso-calledcalciumsignature,andthusdefinethenatureandmagnitudeofthere-sponse(4,108).Anadditionallevelofregula-tionandspecificityisachievedbyCa2+-bindingproteinsthatfunctionasCa2+signalsensors,whichsenseCa2+alterationsbyCa2+bindingtodomainssuchasEFhands(10,98,141).TheseCa2+-bindingproteinsdecodeandre-laytheinformationencodedwithincalciumsignatures.Diverseproteinsencompassingcellulartransporters,enzymaticandsignalingproteinsincludingproteinkinases,andtran-scriptionfactorsaretargetsofcalcium-bindingproteins(44,136).TheinterplaybetweenCa2+signaturesandCa2+sensingtherebycon-tributestothestimulusspecificityofCa2+signaling.Here,weidentifyemergingfunc-tionsforCa2+signalinginplants,examinethe
594Dodd
·
Kudla
·
Sanders
membranetransportmechanismsthatcontrolCa2+movementwithinthecelltherebydrivingCa2+signaling,andexplorehowCa2+-bindingproteinsrecognizespecificCa2+increasesinordertotranslatetheseintospecificcellularre-sponses.Finally,weconsiderthenewtypesofknowledgeconcerningcellsignalingthathaveemergedfromstudiesoftheintegratedfunc-tioningofentireCa2+signalingnetworks.
EvolutionofCa2+Signaling
Maintenanceof[Ca2+]cytatsubmicromolaractivitieswouldhavebeenanearlycon-straintduringtheevolutionofcells.Inter-.ymediarymetabolismbasedonenergycon-lnotainedwithinphosphoanhydrideesters(e.g. esuphosphate-phosphatebondswithinATP)re- lanquiresthatfreeCa2+besustainedatalowlevelosreotherwiseprecipitationofcalciumsaltsensuesp roasaresultofthelowsolubilityproductofCa2+F .withP0i(139).Thisconstraintdrovetheevo-/12lutionoftransportsystemsthatexportCa2+1/7fromthecytosol.Intheearliestunicellularor-0 noganisms,calciumhomeostasiswouldhavere- ytiquiredexportacrosstheplasmamembrane.Insrevalleukaryotes,sequestrationsystemshavealsoinUevolvedatendomembranes.Importantly,the larevolutionoftransportsystemsthatmaintainex-utlutremelylowcytosolicfreeCa2+createdacel-cirglularenvironmentfortheevolutionofasignal-A aingmechanismthatelevatescytosolicfreeCa2+niChveryrapidlybycapitalizingupontheenormous ybelectrochemicalpotentialdifferenceforCa2+acrossmembranesystemsthatseparate“stores”ofCa2+fromthecytosol(139).
CELLULARFUNCTIONSOFCa2+SIGNALS
Ca2+signalsregulatealargenumberofabi-oticstressresponses(108),aswellasstomatalaperture(121),self-incompatibilityduringfer-tilization(49),interactionswithpathogenicandsymbioticmicroorganisms(103,124),andthedevelopmentoftip-growingstructuressuchaspollentubesandroothairs(63).Ca2+signalsalsoparticipateinlightandcircadiansignaling(39,72,147,149).Wehighlightrecentadvances
inthefunctionsofCa2+signalsthatraiseim-portantquestionsforfutureresearch.
Organ-andCell-TypeSpecificityofAbioticStressSignaling
Ca2+elevationswithstimulus-specificproper-tiesareevokedbyextracellularsodium,osmoticstress,oxidativestress,lowtemperature,ozone,andmechanicalcues(108).Dose-dependentre-lationshipsbetweentheconcentrationofex-ternalNaClandNaCl-induced[Ca2+]cytspikemagnitudeinArabidopsisroots(155)recentlydemonstratedthatinformationconcerningabi-oticstimulusstrengthisencodedwithinthis[Ca2+]cytsignal.Stress-inducedCa2+signalshaveintriguingcelltype–specificproperties.[Ca2+]cytoscillationswithdifferentpropertiesoccurinthepericycleandendodermisaf-terchallengebyNaClorosmoticstresswithmannitol.Mannitolcausesrepetitive[Ca2+]cytincreasesintheendodermiswithapeakin[Ca2+]cytevery20–30s,comparedwithasus-tained[Ca2+]cytincreaseinthepericycle(76),buttheoutcomeofthedifferentcalciumsig-naturesinthesecelltypesintermsofcellularacclimationtoabioticstressremainsunknown.Analternativeexplanationforthedifferentcell-specificCa2+signaturesoftheendodermisandpericycleisthatthesecelltypesexperiencedif-feringlevelsofexposuretothestressasare-sultoftheirlocationwithintherootstructure,andsothedifferentCa2+signaturesinthecelltypesarecausedbydifferingstimulusmagni-tudes.Whethercelltype–specificCa2+signalscausecelltype–specificstressresponsesremainsanimportantandopenquestion.
RegulationofStomatalAperture
Ca2+signalsarecoreregulatorsofstom-atalaperture(121).Informationencodedin[Ca2+]cytoscillationsalonecanprogramstom-atalaperturebecauseartificiallyimposedos-cillationsinguardcell[Ca2+]cytclosestom-ata,andthe[Ca2+]cytoscillationfrequencyandamplitudedeterminesteady-stateaperture(4).Thegreatestdegreeofsteady-stateclo-sureiscausedbyartificial[Ca2+]cytincreases
www.annualreviews.org•Ca2+Signaling
595
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgCAMTA:
calmodulin-bindingtranscriptionfactor(strictly,calmodulin-bindingtranscriptionthathaveaperiodof10minutesandwheneachincreaselastsforapproximately5minutes(4),whichiscomparablewithABA-induced[Ca2+]cytoscillationsinguardcellsthatclosestomataandhaveperiodsof6to8minutes.AnemerginghypothesisisthatpreexposureofguardcellstoABAandCOincreasesthesen-comparedwiththoseinducedinthecytosol(e.g.harpincauses5minand150minin-creasesincytosolicandnuclear[Ca2+],re-spectively)andtheCa2+increasesmeasuredfromcellculturesaresustainedratherthanoscillatory(86).MAMP-induced[Ca2+]in-creasesleadtothecombinedCa2+-dependentactivator)
.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh yb2sitivityofCa2+sensorstosubsequentCa2+in-creases(71,148).Forexample,guardcellpre-exposuretoABAincreasesboththemagnitudeofS-typeanioneffluxcurrentsandthedown-regulationofK+incurrentsinresponsetoCa2+(148).Theauthors(71)thereforeproposethatspecificstimuliprimespecificCa2+sensorssothatthesensorismorereadilyactivatedbyanincreasein[Ca2+]cyt.Themechanisticba-sisfortheprimingofCa2+sensorsbyABAandCO2isunclearbutcouldinvolvedirectinterac-tionsbetweenCa2+sensor(s)andanABA/CO2-responsiveproteinorproteinkinase,oralterna-tivelytheconvergenceofCa2+-dependentandCa2+-independentcomponentsofABAsignal-ingdownstreamfromCa2+increases.Stomatalclosureisattenuatedbutnotpreventedbysup-pressionofABA-induced[Ca2+]cytoscillations(148).ThisdoesnotnecessarilyindicatethatthereisaCa2+-independentpathwaytostom-atalclosure,becauseifCa2+sensorsareprimed,resting[Ca2+]cytmightbesufficienttoactivateguardcellionefflux.Thisisconsistentwithre-portsofABAactivationofanionchannelsintheabsenceof[Ca2+]cytincreases(91).
Plant-PathogenInteractions
Ca2+
signalsareanearlyresponsebycellstothepresenceofpathogenicandsymbioticmi-croorganisms.Surprisingly,defenseresponsesarebothsuppressedandactivatedbyCa2+sig-nals,whichsuggeststhatCa2+-responsivebutantagonisticsignalingmechanismsarepresent.Moleculeswithmicrobe-associatedmolecu-larpatterns(MAMPs)mobilizeCa2+frombothextracellular(apoplast)andintracellu-lar(vacuole/endoplasmicreticulum)storesofCa2+andcausealterationsinnuclear[Ca2+].TheincreasesinnuclearCa2+thatarein-ducedbyspecificMAMPsareprolonged
596
Dodd
·
Kudla
·
Sanders
activationofmitogen-,salicylicacid(SA)–,andwound-activatedproteinkinases(86,103).Incontrasttothegeneralprinciplethatstimulus-inducedCa2+increasescanencodestimulus-specificinformation,itisproposedthatMAMP-specificpatternsof[Ca2+]cytin-creaseareunusualbecausetheydonoten-codeMAMP-specificinformation.Thisispri-marilybecauseprolonged[Ca2+]cytincreasesinducesimilardefenseresponsesirrespectiveoftheelicitor(103andreferenceswithin).IncontrasttoMAMP-inducedCa2+inductionofdefenseresponses,Ca2+signalsalsosup-pressSA-mediatedacquisitionofsystemicac-quiredresistance(41).ThepositiveregulatorofbasalresistanceandSAlevels,ENHANCEDDISEASESUSCEPTIBILITY1(EDS1),isre-pressedfollowingCa2+/calmodulinbindingtotheCa2+/calmodulin-bindingtranscriptionac-tivator(CAMTA)CAMTA3(41).Incombina-tionthesestudiessuggestthattheintegrationofCa2+signalingwithdefenseresponsesisex-traordinarilycomplexandcouldincoroporateseveralindependentsignalingpathways.
NodulationandOtherSymbioses
Nitrogen-fixingbacteriainproximitytolegumerootssecretenodulation(Nod)fac-tors.Nodfactorscauseperinuclear[Ca2+]cytspikinginrootepidermalcells,whichinitiatescellularinternalizationofrhizobiaandrootnoduledevelopment(123).ThecoreNodfactorreceptorcomprisestheNODFACTORRECEPTOR1(NFR1)/NFR5heterodimerandisrequiredforNodfactor–induced[Ca2+]cytspikingandmembranedepolariza-tion(123).InteractionsoccurbetweenABAandNodfactorsignalingupstreamofCa2+spiking(38),soitwouldbeinterestingtodiscoverwhetherinositol1,4,5-trisphosphate
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org(InsP3),whichmobilizesCa2+andparticipatesinABAsignaling,isinvolvedinthisinteraction.Nodfactor–inducedCa2+spikesresultinCa2+/calmodulinbindingtotheCa2+/calmodulin–dependentproteinkinase(CCaMK)DOESN’TMAKEINFECTIONS3(DMI3)inMedicagotruncatula(123).ThisactivatesDMI3whichpromotesearlynodulation(ENOD)genes.ENODgenesareactivatedbyinductionof(a)theGRAS-familydomaintranscriptionfactorsNSP1andNSP2thattogetherformaDNA-bindingcomplexthatbindstheAATTTpromotermotif,and(b)theERF-subfamilytranscriptionfactorERN(65,123).
.yln[Ca2+]cyttransientsalsooccurinplantcellso eduringtheformationofsymbioticrelationshipssu labetweenplantsandothermicro-organisms.no2+s[Ca]cyttransientsoccurduringdevelopmentrepofsymbioseswithotherarbuscular-mycorrhizal roF(AM)fungi(82,120)andafterexposureto .0cellwallextracts(CWEs)fromthegrowth-/121promotingfungusPiriformosporaindica(158)./70 Thesesignalsinteractwith,butarenotiden-no yticalto,defensesignalingbecausebothP.in-tisredicaCWEsandMAMPsincreaseexpressionvinofdefense-relatedMAPKINASE6(MPK6),U lbutCWEsdonotcausedownstreamde-arutfenseresponsesandinsteadincreasethetran-luciscriptabundanceofCYCLICNUCLEOTIDErgAGATEDCHANNEL10(CNGC10),CNGC13, aniCALMODULIN-LIKEPROTEIN42(CML42),Ch andCML38(158).ThisimpliesthatCa2+sig-ybnalingisacommonfeatureofplant-microbeinteractions.
TheCircadianClockandPhototransduction
Ca2+signalscontributetoredlight(RL),bluelight(BL),andUV-Bsignaling.Ca2+signal-ingduringphytochrome-mediatedRLpho-totransductionhasbeenreviewedelsewhere(147,149)soherewefocusontheinvolve-mentofCa2+inBLsignaling.BLandRLcausebrief(60s)[Ca2+]cyttransientswithoutapparentoscillations(13,149)andtheBLspectrumcauses[Ca2+]cyttransientmaxima
atthe440nmand470nmwavelengths.BLcausesCa2+influxthroughplasmamembrane(lanthanum-sensitive)voltage-gatedCa2+channelsbutdoesnotcauseCa2+re-leasefromtheER(thapsigargin-insensitive)(13).ThisCa2+increaseismediatedbyBL-activationofphototropinbluelightphotore-ceptors(PHOTs)ratherthancryptochromebluelightphotoreceptors(CRYs)(13,58,59).BLCa2+signalsarealsorequiredforBLinhibitionofseedlinggrowth(46).Sev-eralproteinsmightparticipateinsensingBL-inducedCa2+increases.Ca2+-bindingproteinsthathavebeenlinkedtoBLincludeSHORTUNDERBLUELIGHT1(SUB1),anEF-hand–containingproteininvolvedincontrolofHY5-mediatedseedlingde-etiolationbyphy-tochromeandcryptochrome(55).However,sinceSUB1isinvolvedinCRYandPHYsig-naling,butCRYsdonotappeartomediateBL-inducedCa2+increases(13),theinvolvementofSUB1withlightinducedCa2+signalsmightre-lateprimarilytothedecodingofphytochrome-mediatedCa2+alterations.PLASTIDMOVE-MENTIMPAIRED1(PMI1)hasregionswithhomologytobindingdomainsforinteractionwithC-domainCa2+-bindingproteinsandisrequiredforBL-inducedchloroplastrearrange-ment(34).Incontrasttohigherplants,inthebryophytePhyscomitrellapatensBL-induced[Ca2+]cytincreasesaremediatedbybothCRYsandPHOTs(156).ThisraisestheintriguingpossibilitythatinhigherplantsCRYsmightcontributetoBL-inducedCa2+signals,butthisisnotalwaysdetectedwiththeaequorin-basedtechnologyusedforCa2+measurements.Fu-turecomparativestudiesinvolvingthemea-surementofBL-inducedCa2+increasesinsin-glecellscouldexpandourunderstandingofwhetherCRYsareassociatedwithBL-inducedCa2+signalsinhigherplantsorwhetherthismechanismwaslostduringtheevolutionofhigherplants.
Circadianoscillationsof[Ca2+]cytoccurincontinuouslightandarecontrolledbythemolecularcircadianoscillator(72,168).Underconstantlightthereisasinusoidalvariationin[Ca2+]cytover24hthatisestimated
www.annualreviews.org•Ca2+Signaling
597
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh ybtoreachpeakconcentrationsof300–700nMbetweenthemiddleandendofthesubjectiveday(72,96).Similar[Ca2+]cytvariationsoccurunderlight–darkcycles(96)butdonotpersistundercontinuousdarkness,requiringlightinputviaPHYTOCHROMEB(PHYB),CRYPTOCHROME1(CRY1),andCRY2(168).CircadianrhythmsofCa2+arethoughttobepositioneddownstreamofthecalcium-mobilizingmoleculecyclicADPribose(cADPR)(39).Inlight–darkcycles,thereisarhythmofADPribosylcyclaseactivityinEuglenagraciliswithpeakactivityduringthelightperiod(106);incontinuouslight,circa-diancADPRfluctuationsoccurinArabidopsis(39).InArabidopsis,perturbationofcircadianCa2+oscillationsorcADPRsignalingaltercircadianclockfunction,whichsuggeststhatCa2+/cADPRformsafeedbackloopwithintheclockbecausethecircadianclockisrequiredforcircadian[Ca2+]cytoscillationstooccur(39,168).AswithmanyCa2+signalsinplants,thedownstreamCa2+-bindingproteinsthatdecodecircadian[Ca2+]cytoscillationsareunidentified.Itisnotknownwhethercircadian[Ca2+]cytdynamicsaredistributeduniformlywithinthecytosolorarealternativelyanaggregationoffrequency-oramplitude-modulated[Ca2+]cytspikes.Theextensivecrosstalkbetweencircadiantimingandstresssignalingnetworks(39)indicatesthatitwillbeimportantinthefuturetodiscoverwhethercircadian[Ca2+]cytoscillationsparticipateinabioticstressresponses,particularlygiventhecontributionofcADPR-mediatedCa2+releasetoabscisicacidsignaling.
ControlofPolarTipGrowthbyTip-FocusedCa2+Gradients
Tip-focusedCa2+gradientsareimportantde-terminantsofpolarityintip-growingcellssuchasroothairs,pollentubes,fungalhyphae,andalgalrhizoids(63).Here,weconsiderresearchdevelopmentsinCa2+signalingduringroothairextensionbecausetherehavebeensev-eralrecentdevelopmentsinourknowledgeofCa2+signalinginthiscelltype.TheNADPH
598
Dodd
·
Kudla
·
Sanders
oxidaseROOTHAIRDEFECTIVE2(RHD2,alsoAtRBOHC)islocalizedtotheplasmamembraneofthegrowingtipofroothairs(152).RHD2producesreactiveoxygenspecies(ROS)thatstimulatehyperpolarization-activatedCa2+channelsofunknownmolecularidentity,leadingtoformationofatip-focusedCa2+gradient(47).Thisisthoughttotar-getthecytoskeletonandsecretoryapparatustothegrowingtip.Polarityisproposedtobeself-sustainedthoughpositivefeedback,inwhichROS-inducedCa2+influxmaintainsel-evatedCa2+attheroothairtip,whichre-sultsinsynergisticactivationofRHD2bybothCa2+bindingtotwoEF-handsonRHD2andCa2+-dependentphosphorylationoftwoserineresiduesonRHD2(152).Consistentwiththishypothesis,thereareoscillationsintheelevatedtip-focused[Ca2+]cytgradientandinroothairextension,separatedbyalagofapproximately5s(112).TheoscillationsareproposedtoarisefromaburstofroothairextensioncausingapulseofCa2+influxthatsubsequentlyinducesROSproduction,furtherCa2+influxandthenextpulseofgrowth(112).Thismodelisdependentuponthelocaliza-tionofRHD2andrelevantchannelstothetipsothatCa2+influxoccursonlyinthisre-gion,butthemechanismscontrollingthisdis-tributionareunclearandthisrepresentsanimportantareaforfutureresearch.Annexins,whichcangenerateCa2+-permeableconduc-tances(85),areconcentratedintip-growingstructures(114)andareanattractivepoten-tialregulatorofroothairpolarity.TheRhoGTPaseGDPdissociationinhibitor(RhoGDI)SUPERCENTIPEDE1(SCN1)regulatestip-focusedROSproduction(18),andtheRopGTPaseROP2mightdosoaswell(73).
TheSelf-IncompatibilityResponse
Ca2+signalsareinvolvedinreproductiveself-incompatibilityinpoppy(Papaverrhoeas).Topreventinbreeding,self-producedpollenthatsharesthesameS-alleleasthestigmaisrecognizedbythegrowingpollentubewhenitdevelopsonthestigma.Thiscauses
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgtheself-incompatibility(SI)responsethatstopspollentubegrowthandpreventsself-fertilization.Inpoppy[Ca2+]cytalterationsactasanearlysignalinpreventionofself-fertilizationandactivateseveralinhibitorymechanisms.Withinsecondsofpollentubechallengewithself-(i.e.,incompatible)pistilS-proteins(PrsS),[Ca2+]cytinthepollentubeshankincreasesfrom∼200nMto1.5μMforseveralminutesandtheoscillatorytip-focused[Ca2+]cytgradientdissipates(48).Arti-ficial[Ca2+]cytelevationwithinthepollentubemimicstheSIresponse(49).ThepollenSIdeterminantistheplasmamembraneproteinPrpSandthisinteractswiththepistilself-.ylndeterminantPrsStotriggertheSIresponseo ewhenpollenPrpSinteractswithpistilself-su lPrsS(164).ThemolecularidentityoftheCa2+anoschannelsthatcauseCa2+influxduringtherepSIresponseremainstobediscovered.The roFSIresponsealsoinvolvesCa2+/calmodulin- .0dependentinhibitoryhyperphosphorylationof/121thesolubleinorganicpyrophosphatasesPr-/70 p26.1aandPr-p26.2b.Thisisproposedtocauseno yPitoincreaseduringtheSIresponseandsoin-tisrhibitpollentubemetabolism(33).TheSICa2+evinsignalalsopromotescaspase(cysteine-asparticU lprotease)-likeactivity,whichisacomponentarutofmechanismscausingprogrammedcelldeathluci(153).
rgA aniChTRANSPORTSYSTEMSTHAT ybENCODECa2+SIGNALS
Calciumtransportsystemshavetomaintainlow[Ca2+]cytagainstasignificantelectrochem-icalpotentialdifferenceforCa2+(i.e.,notonlyaconcentrationdifferencebutalsoanelec-tricalpotential)andthusareenergized(141).InplantsenergizationisaccomplishedeitherthroughCa2+pumpspoweredbyATPhydrol-ysisorthroughCa2+-H+antiporterspoweredbyaproton-motiveforce(141).AconventionalviewoftheseenergizedsystemsinplantcellsisthattheyprovidethehomeostaticbackgroundagainstwhichCa2+-releasechannelsoperatetransientlytoelevatefree[Ca2+]cyt(139).Open-ingofsuchchannelsshouldthereforeprovide
atleasttheinitialspikefortheelevationof[Ca2+]cyt.Ingeneral,thisparadigmremainsin-tact.However,asdiscussedinthenextsection,researchinvolvingmutantsingenesencodingenergizedtransportsystemshasyieldedintrigu-ingresultsdemonstratingthatenergizedtrans-portofCa2+fromthecytosolmightprovidemuchmorethanahousekeepingbackgroundtoCa2+signaling.
EnergizedSystems:
Ca2+-PumpingATPases
ATP-dependentexportofCa2+fromthecy-tosolisaccomplishedbyP-typeATPasesoftheP2class.P2Ca2+-pumpingATPasescom-prisetwodistinctclades.InArabidopsistheseareER(endoplasmicreticulum)-typeCa2+-ATPases(ECAs)oftheP2Agroup,andAUTO-INHIBITEDCa2+-ATPases(ACAs)oftheP2Bgroup.TwomajorfeaturesdistinguishECAsfromACAs(17).First,anN-terminalcytosolicdomainpresentonlyinACAsbindscalmod-ulinthatisboundtoCa2+,andthisinteractionactivatesCa2+pumping(8).Second,therearedifferencesinmembrane-locatedresiduesthatarethoughttobeinvolvedinCa2+binding.ThislatterdifferencemightaccountforthefactthatinsertionalmutantsinatleasttwoofthefourArabidopsisECAgeneshaveMn2+-aswellasCa2+-relatedphenotypes.Thus,whileplantslackingtheER-localizedECA1pump(166)andthoselackingtheGolgi-orendosome/post-Golgi-localizedECA3(93,111)exhibitgrowth-sensitivephenotypestolowCa2+concentrations,allmutantsalsoex-hibitphenotypeswithrespecttoMn2+.There-fore,thisgroupofCa2+-ATPasesseemstobeinvolvedprincipallyindeliveryofcationstoin-tracellularcompartmentswherethereisare-quirementforsecretionorasacofactorforen-zymaticactivity,ratherthanincytosolicCa2+homeostasisandsignalingperse.
Bycontrast,ACApumps,whichcomprisea10-membergenefamilyinArabidopsis,areemergingaspotentialkeyplayersinplantCa2+signaling.Hintsatthisrolecomefromex-pressionprofiling.Forexample,ACA12and
www.annualreviews.org•Ca2+Signaling
599
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh ybACA13transcriptsaredramaticallyupregulatedbypathogenstress(17).Furthermore,tran-scriptabundanceoftheclosely-relatedACA8andACA10isdifferentiallyregulatedbycold(142),whereastranscriptsofACA8andACA9arebothacutelyupregulatedbyABA(21).ACAs8,9,and10areplasmamembranelo-calized(16,142,143),anddistinctrolesinsig-nalinganddevelopmenthavebecomeapparent.T-DNAinsertionalmutantsintheACA9geneexhibitpartialmalesterility,consistentwithex-pressionprimarilyinpollen(143).Thisfind-ingneednotofitselfindicateakeysignalingroleforACA9,despitethecentralfunctionofCa2+indictatingpollentubegrowthandguid-ance(63):Itispossiblethatageneraldisrup-tionofcytosolicCa2+homeostasisinaca9mu-tantsimpactsthephenotypesofreducedpollentubegrowthanddischargeofspermcellsintoovules.
However,anintriguingphenotypeofaca10mutantssuggeststhatACApumpsplaycriti-caldevelopmentalroles.Acompactinflores-cence(cif)phenotypeinArabidopsisisspecifictoaca10mutantsbutnottoaca8oraca9mutants(53).Nevertheless,overexpressionofACA8inanaca10backgroundwillcomplementthecifphenotype,suggestingthatdifferencesinex-pressionamongmembersofthissubgroupofP2BATPasescanimpactdevelopment.
ACApumpsarealsosubjecttocomplexposttranslationalregulation,includingactiva-tionbycalmodulin,regulationbyacidicphos-pholipids(15),andinthecaseoftheER-localizedACA2,phosphorylation(68).Thesemultiplemodesofcontrol,differentialintracel-lularlocations(e.g.,ACA4andACA11localizetovacuoles;52,88),anddifferingtissue-specificexpressionofACAsarechallengingintermsofunderstandingtheextenttowhichACAshavespecificrolesinCa2+signaling.InPhyscomitrellaanACA-typedeletionofCa2+-ATPasegenere-sultsinenhancedsensitivitytoNaClandthisisassociatedwithaberrantregulationof[Ca2+]cyt(134).Todate,therehavebeennosuchstudiesinhigherplants,makingthisafruitfulareaforfurtherinvestigation.
600Dodd
·
Kudla
·
Sanders
EnergizedSystems:
Calcium–ProtonExchangers
WithrespecttoP2ATPases,calcium-protonexchangersarelow-affinitycytosolicexportsys-tems,coupledtothethermodynamicallydown-hillexchangefluxofH+.Itislikelythattherearesixbonafidecalcium–protonexchang-ers,knownasCATIONEXCHANGER1to-6(CAX)(146),encodedintheArabidopsisgenome.CAXtransportersaremembersoftheMajorFacilitatorSuperfamilyandarepredictedtohave11transmembranedomains(TMDs).Wheremembranelocationhasbeencharacter-ized,inthecasesofCAX1toCAX4,thelocal-izationisvacuolar(146).
InArabidopsis,CAX1andCAX3appeartobeprominentinCa2+homeostasis.cax1mutantsexhibitdevelopmentalreductionsinlateralrootlengthandnumber,adramaticreductioninthelengthoftheprimaryinflo-rescence(24),andincreasedcapacityforcoldacclimationassociatedwithenhancedexpres-sionofCBF/DREB1(20).AlthoughCAX1ismorestronglyexpressedinshoottissueandCAX3moresoinroots,cax1/cax3doublemu-tantshavesignificantlymoreseverephenotypesthaneitherofthesinglemutants,includingleaftipnecrosisandioniccontent(25).cax3mu-tantsarealsomoresusceptibletosaltstress(171).
CAXtransporters,likeACApumps,aresub-jecttoposttranslationalregulationinplantsthroughanautoinhibitoryN-terminus(110)andpossiblyalsothroughregulatoryprotein–proteininteractions(23,26).Incombinationwithcaxmutantphenotypes,thisposttrans-lationalregulationsuggestsanacuteroleforCAXsinCa2+homeostasis.Acriticalcurrentquestionrevolvesaroundthenatureofthemu-tantphenotypesoftheseenergizedcytosolicexportsystems:AretheymerelydisruptedinCa2+homeostasis,asupregulationofalterna-tiveCa2+transporterscanimplyinsomemu-tants(24,25),oristhereamorefundamentalroleinCa2+signaling?
WhetherenergizedCa2+transportsys-temsaremorethanbackgroundplayersin
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgtheCa2+signalingtoolbox,and,likePCAIinnicotinicacidadeninedinucleotidephosphatePhyscomitrella,playanactiveroleinshaping(NAADP;118).
Ca2+signals,willonlybeestablishedoncemea-InsP3participatesinpollentubeorientation,surementsof[Ca2+]cythavebeenperformedinsaltandhyperosmoticstresssignaling,ABAsig-mutantslackingthesetransportsystems.
nalingandgravitropism,whilecADPRmedi-atestheactivationofsomedefensegenesandCalciumEntrytotheCytosol
functionsinABAandcircadiansignaling(39,141).Thesefindingsconfirmthephysiologi-PassivereturnflowofCa2+downtheelectro-calrelevanceofthetwoligandsand,incom-chemicalpotentialgeneratedbyATPasesandbinationwithresultsdemonstratingthatInsP3CAXsisthoughttobetheprimarydriverforandcADPRmobilizeCa2+,suggestthepres-Ca2+signaling(141).ThisfluxoccursthroughenceofreceptorsthatalsofunctionasCa2+ionchannels.Forexample,plasmamembranechannels,asisthecaseinmammaliancells.Ca2+-permeablechannels,whichareinnormalHowever,homologuesofmammalianInsP3conditionsrelativelyinactive,areactivatedbyreceptorandryanodinereceptor(therecep-.ylnABAorbyROSinguardcells(117,127),twotorforcADPR)arenotencodedbyhighero estimulithateffectstomatalclosure.ROSalsoplantgenomes,andthemolecularidentitiesofsu lactivateCa2+-permeablechannelsattheplasmatheInsPa3-andcADPR-activatedCa2+-releasenosmembraneofroothairsduringCa2+-regulatedpathwaysinhigherplantsremainunknown.repcellexpansion(47).TheseROS-relatedactiva-Theabsenceofthismolecularhandlehasim- roFtioneventsmightinvolveextracellularATPsig-pededprogressinunderstandingtherolesof .0naling(36).However,dependingonthestimu-InsP3andcADPRinplantCa2+signaling./121lus,Ca2+signalscanbegeneratedacrossmem-Untilrelativelyrecently,themoleculariden-/70 branesotherthantheplasmamembrane:ColdtitiesofplasmamembraneCa2+-permeableno yshockinducesmobilizationofvacuolarCa2+channelsandthosenotcontrolledbyligandsattisr(79),whileNodfactorsgenerate[Ca2+]cytsig-endomembraneswereunknown.ForwardandevinnalsthatemanatefromtheperinuclearregionreversegeneticapproacheshavenowyieldedU lERoflegumeroothairs(123).
specificinformationonthemolecularidenti-arutElectrophysiologicalstudies,particularlytiesandphysiologicalrolesofsomeplantCa2+-luciduringthe1990s,establishedthatavarietyofpermeablechannels(161).
rgAdifferentCa2+-permeablechanneltypesexist aniinplants(reviewedin35,141).TheplasmaChCyclicNucleotide–GatedChannels
membranepossessesCa2+-permeablechannelsybwitharangeofvoltage-dependencies:someArabidopsispossessesalargegenefamilyof20areactivatedbymembranehyperpolarizationmembersthatencodecyclicnucleotide-gatedorbydepolarization,andsomearevoltage-channels(CNGCs)(105).Thesechannelshaveinsensitive.InaccordwiththenotionthatsixTMDsandaporedomain,andproba-Ca2+canbemobilizedacrossendomembranes,blyassembletetramericallytoformthepore.voltage-dependentchannelsalsoresideintheSomeplantCNGCsareCa2+-permeablewhenvacuolarmembraneandER.Additionally,elec-expressedheterologously(90,157),althoughtrophysiologicalapproacheswithintactvac-somearealsopermeabletomonovalentionsuolesandradiometricapproachesusingmem-(9,89).Besidesacyclicnucleotide-bindingdo-branevesicleshaveestablishedthepresencemain,CNGCsalsobindcalmodulin(144).Allofligand-gatedCa2+-permeablepathwaysatCNGCsstudiedtodatelocalizetotheplasmaendomembranes.Secondmessengerssuchasmembrane(7,54,157).
InsP3andcADPRreleaseCa2+fromthevac-MutantsinArabidopsisCNGC2,CNGC4,uolarlumen(e.g.,5).Bothligandsalsoliber-CNGC11,andCNGC12haveaberrantregula-ateCa2+fromtheER(116,119),alongwith
tionofpathogendefenseresponses(9,29,170),
www.annualreviews.org•Ca2+Signaling
601
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh ybandcngc2mutantsadditionallylackacAMP-gatedCa2+currentattheplasmamembraneofguardcells(3).ThemannerinwhichCNGCsareactivatedduringdefensesignalinghasyettobedetermined.Amorediverseroleformem-bersoftheCNGCfamilyhasbeenindicatedincngc18mutants,whicharedefectiveinpollentubegrowth(50).Glutamate-Receptor-LikeChannels
Plantscontainhomologuesofanimalionotropicglutamatereceptorsthatfunctionasnonselectivecationchannelsatpostsynapticmembranes.TheGLUTAMATERECEPTOR(GLR)genefamilyinArabidopsiscomprises20members,eachofwhichencodesaproteinwiththreepredictedTMDs.Theentirechannelisprobablyformedasatetramerorpentamer(32).
Glutamate,aswellasfiveotheraminoacidsandevenglutathione,appliedtoArabidopsisseedlingsgeneratesaninwardcurrentandacy-tosolicCa2+spike,andbothresponsesareat-tenuatedinglr3.3mutants(37,132).DifferentmembersoftheGLRfamilyresponddiffer-entlytoactivatingligands(150),butitisnotclearwhichligandsarephysiologicallyactive.Nevertheless,exogenousglutamateandglycinehaverolesinprocessesasdiverseashypocotylelongation(43)andtheregulationofCandNmetabolism(74).
ForbothGLRandCNGCionchannels,thepotentialformembersoflargegenefamiliestoformheteromultimericcomplexesmightexplainthediversityofplantplasmamembraneCa2+-permeablechannelsthathavebeenreportedinelectrophysiologicalstudies.However,anoteofcautionisalsonecessary.ChannelsthatdepolarizeamembranewhenactivatedmightcontributetoacytosolicCa2+responsemerelybyactivatingsomeothervoltage-sensitivepathway.OneexampleforwhichthisisalmostcertainlythecaserelatestoperinuclearCa2+spikingduringNod-factorperception.CASTORandPOLLUX(inLotus)andDMI1(inMedicago)arenucleus-localizedchannels,andmutantslackNod-factor-602
Dodd
·
Kudla
·
Sanders
inducedCa2+spiking.However,allthreechannels,whenstudiedheterologously,havecharacteristicsthatsuggesttheyareregulatorsofCa2+-permeablechannelsbutdonotthem-selvesformthephysiologicalpathwayforCa2+release(22,129).Indeed,perinuclearCa2+spikinginMedicagocanbeelicitedindmi1mu-tantsbymastoparan,aG-proteinagonist(151).
Two-PoreChannels
TheArabidopsisgenomecontainsasinglemem-beroftheTWO-PORECHANNEL(TPC)family,TPC1.Theproteinispredictedtohave12TMDsandincorporatetwoporedomains(hencethename),andislikelytoformahomo-dimer.AcytosolicloopbetweenTMDs6and7includestwoputativecalcium-bindingEF-handsanda14-3-3bindingdomain,andTMDs4and10havepositivelychargedresiduesthatsuggestthechannelshouldbevoltagegated(128).
TPC1localizesinArabidopsistothevac-uolarmembrane,andmutantslackactivityoftheso-calledslowvacuolar(SV)channel(128)thatdominatesthevacuolarmembraneconduc-tanceathigh[Ca2+]cyt(62).SV/TPC1channelsappeartobeexpressedubiquitously(62).TheTPC1proteinisunusuallyhighlyexpressedforachannelprotein,appearinginanumberofvacuolarproteomicsanalyses(19,165).Elec-trophysiologicalstudiesdemonstratethatthisCa2+-activatedchannelisCa2+permeable(6,162),suggestingthatthechannelprovidesapathwayforCa2+-inducedCa+release.Thishasbeenconfirmedinacarefulstudyinvolvingpatchclampelectrophysiologycombinedwithnoninvasiveionfluxmeasurementsusingion-selectivemicroelectrodes(131).
DeletionmutantsinTPC1aredefectiveintwoCa2+signalingpathways—Ca2+-inducedstomatalclosureandABA-delayedgermination(128)—butnotinaselectiverangeofothertypesofCa2+signaling(135),demonstrat-ingthestimulusspecificityofCa2+-permeablechannelactivation.Aconstitutivelyactivemu-tantofTPC1(fou2)exhibitsjasmonateover-production(14).OnewaythatTPC1channel
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgactivationmightoccuratthevacuolarmem-braneisillustratedinFigure1(140,162).
AnnexinsasNovelPlantCa2+-PermeableChannels
Annexinproteinspurifiedfrommaizecanfunc-tionasCa2+-permeablechannelswhenincor-poratedintoplanarlipidbilayersandcanalsoelicitelevationsof[Ca2+]cytwhenaddedtopro-toplasts(85).Thepurifiedproteinalsohasper-oxidaseactivity,anditissuggestedthatannexinsmightformplasmamembraneCa2+-permeablechannelsduringstressresponses.
.ylno PERCEPTIONANDDECODINGesu OFCa2+SIGNALS
lanosTheincreasesincytosolicandnuclearfreecal-repciumthatoccurduringsignaltransductionare roFdetectedbycalciumsensorproteins.Proteins .0involvedintheperceptionanddecodingof/121Ca2+signalsarepresentinthecytosolandnu-/70 cleus,andarebothfreeandattachedtomem-no ybranes.ThelargenumberofcalciumsensortisrproteinswithdifferentCa2+-bindingcharacter-evinistics,subcellularlocalizationsanddownstreamU lsignalinginteractionsisthoughttoprovideaaruttoolkitthatenablesthedecodingofinforma-lucitionwithinCa2+oscillationsandspikesandthergAprocessingofthisinformationintoalterations aniincellfunction.
Ch Calciumsensorproteinsareclassifiedasybeithersensorrelaysorsensorresponders(141).SensorresponderproteinssuchasCa2+-dependentproteinkinases(CDPKs)combinewithinasingleprotein(a)asensingfunction,mediatedbycalcium-bindingdomainsthatoftencauseCa2+-inducedconformationalchanges,and(b)aresponseactivity(e.g.,kinaseactivity).Incontrast,sensorrelayproteinssuchascalmodulinalsocontainmultiplecalcium-bindingdomainsandusuallyundergoCa2+-inducedconformationalchangesbutlackothereffectordomains(Figure2).TotransmittheCa2+signal,sensorrelayproteins
“limitless” VacuoleCa2+VacuolarmembraneCytosolInsP3limited ER+Ca2+InsP2+3RCaInsP3R−−cADPR+cADPR-RCa2+cADPR-R+TPC1 (SV)Ca2+PNAADP+Ca2+NAADP-RH+Ca2+CAXs+Ca2+ATPER membraneADPECAs+Figure1
Ca2+-inducedCa2+releaseinplantcellsinvolvesthevacuoleandER.ThevacuoleandERstoredifferentquantitiesofCa2+andtheirmembranesystemsaresensitivetodifferentcombinationsofsmallmolecules.TriggerCa2+,
releasedthroughligand-activatedCa2+channels,mightactivatetheTPC1/SVchannel(a)directlythroughbindingtotheEF-hands,(b)indirectlythroughmembranedepolarizationresultingfromcytosol-directedmovementofCa2+,or(c)throughelicitingCa2+-activatedK+channels(notshown).ThisdualformofactivationwouldtriggerregenerativeCa2+release,forwhichsomekindofnegativefeedback—perhapsthroughkinaseinhibition—wouldberequired.Abbreviations:cADPR,cyclicadenosinediphosphateribose;cADPR-R,receptorforcADPR(unknowninplants);CAX,Ca2+/H+
antiporter(cationexchanger);ECA,ER-typeCa2+ATPase;InsP3,inositol1,4,5-trisphosphate;InsP3R,receptorforinositol1,4,5-trisphosphate
(unknowninplants);NAADP,nicotinicacidadeninedinucleotidephosphate;NAADP-R,receptorforNAADP;TPC1,TWO-PORECHANNEL1.
www.annualreviews.org•Ca2+Signaling603
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgStimulusAKT1CBL1/9.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh ybCDPK:
Ca2+-dependentproteinkinase
604
CIPK23CBL1/4K+CAMDiverseproteinstargetNa+CIPK24Ca2+CAMsSOS1H+CBLs/CIPKsCAM7CIPK24CBL10Light-inducible genesUnknownCAMNa+CAMTA1/3CAMCold-inducible genesCCaMKNucleusVacuoleCDPKRSGCDPKsCPK3/6CDPKanion channelsS-typeoxidases
NADPHFigure2
AnarrayofmechanismsdecodeCa2+signalsandelicithighlyspecificresponsesthatdependonspatialandtemporal[Ca2+]cytvariations.Abbreviations:CAM,calmodulin;CAMTA,Ca2+/calmodulin-bindingtranscriptionactivator;CBL,calcineurinB-likeprotein;CCaMK,calcium/calmodulin-dependentkinase;CDPK,Ca2+-dependentproteinkinase;CIPK,CBL-interactingproteinkinase;CPK,proteinencodedbyCALCIUMDEPENDENTPROTEINKINASEgenefamily;RSG,promoterofREPRESSIONOFSHOOTGROWTH;SOS1,theNa+/H+antiporterSALTOVERLYSENSITIVE1.
mustthereforeinteractwithtargetproteinsdefinedCa2+signaturesintospecificdown-andregulatetheiractivity(98).Althoughthisstreamreactionsandarediscussedindetailconceptoffunctionalclassificationwasini-here.
tiallyappliedtotheconversionofCa2+sig-nalsintophosphorylationresponses,itsrel-evancefortheregulationoftranscriptionalConnectingCa2+withTranscription
processesbyCa2+signalsisbecomingappar-ThemechanismsofCa2+-dependenttran-ent.WhileCa2+bindingtoCALMODULIN7scriptionalregulationinvolvenumeroussignal(CAM7)appearstoresultindirectpromotertransducersincludingCa2+-bindingproteinsinteractionandregulation,othercalmodulins(69).However,despitetheimportanceofarelikelytomediategeneregulationviainter-definedCa2+signaturesduringreactionsactingCAMTAsthatfunctionastranscriptionalto,e.g.,distinctabioticstressconditions(co)regulators.Metabolicandbiosyntheticpro-suchascold,drought,andsalinity(108),thecesseslikebrassinosteroidsynthesisareimpor-molecularidentityofthosegenessubjecttotanttargetsofdirectCa2+-dependentmodula-Ca2+-dependentregulationandthemoleculartion(42),butCa2+-dependentphosphorylationmechanismsmediatingCa2+-responsivegeneandCa2+-dependentgeneregulationrepresentexpressionhaveremainedlittleunderstood.themajorcellularcurrenciesforconverting
Inpart,thisisbecauseofthedifficultyin
Dodd
·
Kudla
·
Sanders
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgdistinguishingstress-dependentCa2+re-sponsesfromstress-dependentbutCa2+-independentreactions(45,115).Theinduc-tionofdefinedartificialCa2+transientsbytheuseofthecalmodulinantagonistsWP7andSKF-7171allowedidentificationof230Ca2+-responsivegenesthatweredifferentiallyexpressed1hpoststimulus(75).Consideringthatthisstudycoveredonly25%ofknownArabidopsisgenes,theseresultssuggestthatapproximately3.3%ofArabidopsisgenesaresubjecttoregulationbyCa2+.ManyoftheCa2+-regulatedgenesidentifiedbythisstudywereknownearlystress-inducedgenes.Impor-tantly,thisinvestigationestablishedthatknown.ylnABRE(abscisicacid–responsiveelement)-o erelatedcis-promoterelementsaresufficienttosu laconfertranscriptionalregulationinresponsenostocytosolicCa2+signatures.SinceABREsarereppresentinthepromoterofC-REPEAT/DRE roFBINDINGFACTOR(CBForDREB1)tran- .0scriptionfactorsthatfunctionasmasterregula-/121torsofabioticstressresponses(45),thesefind-/70 ingspointtoadirectinterconnectionbetweenno yCa2+regulationoftranscriptionandabiotictisrstressresponsesbutraisethequestionofhowevinCa2+signalsaretransducedtothetranscriptionU lmachinery.TheanswermaybeprovidedinarutpartbythefunctionofCAMTAproteins.
luciCAMTAsareafamilyofeukaryoticCa2+-rgAdependentcalmodulin-bindingtranscription anifactorswithsixmembersinArabidopsis(44).Ch Thesetranscriptionfactorsshareaconservedybdomainstructure,includingaC-terminalcalmodulin-bindingdomainthatmediatesin-teractionswithcalmodulinandanN-terminalCG-1domainthatmediatesbindingtoDNAcis-elements(CAMTAbindingsites),thelatterincludingABREsandadditionalCGCGele-ments(44).CAMTAgeneexpressioninAra-bidopsisrespondsrapidlyandtransientlytovar-iousstresses(e.g.,cold,salinity)andhormones(e.g.,ABA,jasmonicacid)(169),suggestingtheirinvolvementinmultiplesignaltransduc-tionpathwaysthatarecriticalforplantstresstolerance.FirstinsightsintothephysiologicalfunctionofplantCAMTAproteinswerepro-videdbyareversegeneticanalysisofArabidopsisCAMTA3functionthatrevealedacriticalroleforthisproteininsuppressingplantre-sponsestopathogenssuchasPseudomonassy-ringaeandBotrytiscinerea(51).Importantly,arecentstudy(40)providedevidenceforadi-rectlinkbetweenCa2+signaling(viaCAMTA1andCAMTA3)andcoldtoleranceinplantsbydiscoveringthattheseCAMTAproteinsbindtoregulatoryelements(CAMTAbindingsites)inthepromoteroftheDREB1c/CBF2gene.WhilstcoldinductionofCBF2andothercold-inducedgenesisreducedinasinglecamta3mutant,camta1/camta3doublemutantsareimpairedintheircoldacclimationtofreezingtolerance(40).
ThesefindingsestablisharoleforCa2+
/calmodulin-regulatedCAMTAtran-scriptionfactorsincontrollingtheCBFregulonofcold-regulatedgenesandpromotingfreez-ingtolerance.Moreover,theysuggestamodelinwhichCAMTAsmayfunctiondirectlyinthetransductionofcold-inducedcytosolicCa2+signaturesintotheregulationofgeneexpressionthroughinteractionwithoneormoreofthesevenArabidopsisCa2+/calmodulinsensors(109).Furtherinvestigationswillneedtoaddressexactlyhowchangesin[Ca2+]cytleadtochangesinnucleartranscription.
CalmodulinsareprototypicalCa2+sensorrelayproteins,andtheirgenomics,structuralproperties,andfunctionalprincipleshavebeenreviewedcomprehensively(98,109).Asur-prisingtwisttoourviewaboutcalmodulinfunctioninplantswasprovidedbyarecentstudyofCALMODULIN7(CAM7)fromAra-bidopsis(84).InArabidopsissevengenesencodefourCAMisoforms,ofwhichCAM1/CAM4differbyfouraminoacidsubstitutionsfromCAM7,whereasCAM2/3/5andCAM6differbyoneaminoacidfromCAM7(109).Kush-wahaetal.(84)establishedthatCAM7,butnotCAM2/3/5,isatranscriptionalregulatorthatinteractsdirectlywithpromotersofsev-erallight-induciblegenes.cam7mutantsdidnothavephotomorphogenicgrowthalterations,mostlikelyduetooverlappingfunctions,butcam7mutantshadreducedexpressionoflight-induciblegenes.Conversely,overexpression
www.annualreviews.org•Ca2+Signaling
605
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgCIPK:CBL-interactingproteinofCAM7causedanincreaseinexpressionoflight-induciblegenesandhyperphotomor-phogenicgrowth.ThesefindingssuggestthatthecalciumsensorCAM7translatescytosoliccontributestofullactivationofthekinases(100).
ThefirstinvivoevidenceforCDPKfunc-tionwasobtainedbysuppressionofNtCDPK2kinase
.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh ybCa2+signaturesintogeneexpressionthroughDNAbinding.However,futureworkneedstoinvestigatewhetherthisrequirestheinteractionofCAM7withadditional(transcriptionfactor)proteinsandexactlyhowtheinterconnectionbetweencytosolicCa2+signaturesandnucleargeneregulationisachieved.
ConnectingCa2+withProteinPhosphorylation
Phosphorylationcascadesregulatedbykinasesandphosphatasesareprimarydownstreamin-terpretersofCa2+signals.Ca2+transientsareperceivedandtransmittedbyCa2+-dependentkinasesandphosphatases.Theseproteinscanalterbiochemicalfunctiondirectlyandrapidlythroughreversiblephosphorylation,andalsocausealterationsingeneexpressionbymodu-latingtranscriptionfactoractivity(139).PlantshaveauniquerepertoireofCa2+-dependentproteinkinasesthatcomprisethefamiliesofCCaMKs(Calcium-Calmodulin-DependentKinases),CDPKs(Calcium-DependentProteinKinases),andCIPKs(CBL-InteractingProteinKinases)thatformanintricatecellularnetworkfordecodingCa2+signalsandregulatingcel-lularprocesses,includingionhomeostasis(seeFigure2)(10,141).WhileCDPKsandCCaMKsaretypicalsensorresponders,theCIPKsaretargetsofCalcineurinB–like(CBL)sensorrelayproteins(notethatCCaMKsareabsentfromtheArabidopsisgenome).
TheArabidopsisgenomeencodes34CDPKsand8additionalCDPK-relatedkinases(66).ThebiochemistryandregulationofCDPKshavebeenreviewed(60,61,100).Activa-tionofCDPKsisassumedtooccurafterbindingofCa2+totheC-terminalEF-hand-containingregulatorydomain,causingconfor-mationalchangesthatrelievetheactivesiteofthekinasedomainfrommaskingbyanau-toinhibitorydomain.ThisprocessisparalleledbyautophosphorylationoftheCDPKsthat
606
Dodd
·
Kudla
·
Sanders
byviral-inducedgenesilencing(VIGS)inNico-tianabenthamiana(137).CDPK-silencedplantshadareducedanddelayedhypersensitivere-sponseafterrace-specificAvr9elicitationinagene-for-geneinteraction,andlackedanac-companyingwiltingphenotype.Remarkably,furtheranalysisofNtCDPK2functionsuggeststhatelevatedCDPKsignalinginhibitsstress-inducedMAPKactivation,andthisinhibi-tionrequiresethylenesynthesisandperception(101).ThisindicatesthatCDPKandMAPKpathwaysdonotfunctionindependentlyandconcertedregulationofbothpathwayscon-trolsresponsespecificitytobioticandabioticstress.
Reversegeneticanalyseshavesubstantiallyextendedourknowledgeonthephysiolog-icalfunctionofseveralCDPKs.ArabidopsisCALCIUMDEPENDENTPROTEINKI-NASE3(CPK3)andCPK6functioninABAregulationofstomatalclosureandmodulateguardcellS-typeanionchannels(113).Inaddition,CPK4andCPK11arecriticalforABAresponsivenessofguardcellsandtheyphosphorylatetheABA-responsivetranscrip-tionfactorsABSCISICACIDRESPONSIVEELEMENT-BINDINGFACTOR1(ABF1)andABF4invitro(172).Experimentsinto-baccorevealedthatCDPK1regulatesthetran-scriptionfactorREPRESSIONOFSHOOTGROWTH(RSG)inresponsetogibberellins(70),andworkinpotatosuggeststhatseveralCDPKsregulateROSproductionbyNADPHoxidases(80).Together,thesefindingsindicatecriticalrolesforCDPK-mediatedCa2+signal-inginaverydiversearrayofprocesses.How-ever,itwillbemostimportanttodiscoverthemechanisticbasisforhowspecificCDPKscon-tributetothedecodingofspecificCa2+signa-tures(seeFigure2).
TheCBLproteinfamilyandtheirinter-actingkinases(CIPKs)separateCa2+-bindingfunctionality(sensorrelayfunction)andkinaseactivity(responseactivity)intotwoflexible,
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgcombinablemodules.Thisallowsforthefor-mationofacomplexanddynamicCa2+-decodingsignalingnetwork.Sincethediscov-eryofCBLsandCIPKsinArabidopsis(83,145),advancesinourknowledgeofthestructuralfeatures,evolution,andfunctionalprinciplesofthisCa2+-decodingsystemhavebeenre-viewed(10,11,97–99,163).CBLproteinshavesignificantsimilaritytotheregulatoryBsub-unitofcalcineurinandneuronalcalciumsen-sor(NCS)proteinsfromanimalsandyeast(83).CBLscontainfourCa2+-bindingEF-handdo-mainsthatarearrangedwithinvariantspacing(81).CIPK-typekinasescompriseaconservedN-terminalkinasedomainwithhighsimilar-.ylnitytoyeastSNF1,andaC-terminalregula-o etorydomainthatisseparatedfromthekinasesu ldomainbyavariablejunctiondomain.Withinanostheratherdivergentregulatorydomain,therepconservedNAFdomainisrequiredandsuffi- roFcientforinteractionwithCBLs(1).Moreover,a .0protein-phosphataseinteraction(PPI)domain/121thatmediatesCIPKinteractionwithPP2C/70 phosphatasesispresentintheC-terminusofno ythesekinases(122).ItisassumedthatCBLtisrbindingtotheNAFdomainofCIPKsreleasesevintheC-terminal(autoinhibitory)domainfromU lthekinasedomain,therebytransformingthearutkinaseintoanactivestate(56).Comprehen-lucisivebioinformaticanalysesofbothproteinfam-rgAilieshaveidentified10CBLsand26CIPKsin anitheArabidopsisgenome,and10CBLsand30Ch CIPKsinrice(1,81,163).SingleCBLandCIPKybgenesarepresentinseveralspeciesofgreenalgae,whilePhyscomitrellacontainsfourCBLsandsevenCIPKsandthegenomeofthefernSelaginellamoellendorfiihasfiveCBLsandfiveCIPKs(11,163).ThesefindingssuggestthattheevolutionofplantswasaccompaniedbytheevolutionofcomplexityoftheCBLandCIPKproteinfamilies.
Spatialspecificityisanimportantaspectofcellularinformationprocessing.LocalizationstudiesofArabidopsisCBLproteinsrevealedthatfourCBLsarepresentattheplasmamem-brane,fourarelocalizedtothevacuolarmem-brane,andtwoarepresentinthecytoplasmandnucleus(12,28,31,77,163).ThissuggeststhatCBL-CIPKcomplexescouldfunctionasfastresponderstolocalCa2+releaseeventsfrominternalandexternalstoresandthatthespatialseparationofdistinctCBL-CIPKcom-plexescontributestospatialspecificityinCa2+signaling.Fortheplasmamembrane–localizedCBL1,duallipidmodificationbymyristoy-lationandS-acylationarerequiredforbothitsfunctionanditslocalizationtotheplasmamembrane.CBL1localizationisachievedbyatwo-steptargetingprocessinwhichinitialmyristoylationresultsinlocalizationtotheen-doplasmaticreticulum(ER)andsubsequentS-acylationiscrucialforER-to-plasmamem-branetrafficking(12).
MostCIPK-GFPfusionproteinshavecy-tosolicandnuclearlocalization(11,31,163).However,CBL-CIPKinteractionanalysesus-ingbimolecularfluorescencecomplementation(BiFC)revealedthatCIPKsaretargetedtodif-ferentcompartmentsofthecellbytheirre-spectiveinteractingCBLproteins(12,28,31,160).Forexample,CIPK1istargetedtotheplasmamembranebyCBL1orCBL9(28,160)butuponinteractionwithCBL2theresultingCBL2/CIPK1complexesareexclusivelyvacuo-larmembrane-localized(12).
Initialinsightsintothephysiologicalfunc-tionofCBLsandCIPKscamefromfor-wardgeneticscreens.TheCBLcalciumsen-sorSOS3(AtCBL4)andtheCIPK-typekinaseSOS2(AtCIPK24)appeartobepartofaCa2+-regulatedsignalingpathwaythatspecificallymediatessaltstressadaptationbyregulatingtheNa+/H+antiporterSOS1(seeFigure2)(57,94,95).RecentstudiesrevealedthatthecalciumsensorCBL10alsointeractswithandactivatesthekinaseCIPK24(77,133).CBL10/CIPK24complexesarevacuolarmembrane-localized,therebysupportingthefunctionalconceptthatalternativecomplexformationofCIPK24ki-naseswitheitherCBL4orCBL10createsadual-functionkinasewithseparatefunctionsattheplasmaandvacuolarmembranes(seeFigure2).WhileCBL4/CIPK24complexesmediateNa+extrusionviatheregulationoftheH+/Na+antiporterSOS1attheplasmamem-brane,formationofCBL10/CIPK24resultsin
www.annualreviews.org•Ca2+Signaling
607
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh ybvacuolarNa+sequestrationbyregulatingun-knowntargets(seeFigure2).
ReversegeneticshasgreatlyadvancedourunderstandingofCBLsandCIPKsandrevealedcrucialfunctionsofdistinctCBLpro-teinsandCIPKsformineralnutrition,aswellasresponsestoabioticstressesandtoABA.Anal-ysisofaCIPK3loss-of-functionalleleestab-lishedthatthiskinaseregulatesABAresponsesduringseedgerminationandregulatesABA-inducedgeneexpression(78).TwoindependentreversegeneticanalysesofCBL1functionrevealedthatCBL1isacentralintegratorofresponsestodrought,cold,andsalinity(2,27).WhilethemutantstudiesofCBL1revealedanABA-independentfunctionofthisproteininseveralabioticstressresponses,lossoffunctionofthecloselyrelatedCa2+sensorCBL9rendersplantshypersensitivetoABA(125).AlternativecomplexformationbetweenthekinaseCIPK1andeitherCBL1orCBL9me-diatesABA-dependentandABA-independentresponses(31).CBL9alsoappearstocomplexwithCIPK3formodulatingABAresponses(126).
TheCBL/CIPKsystemalsoregulatesK+homeostasis.CIPK23istargetedtotheplasmamembraneandisactivatedbythetwohighlyrelatedCa2+sensorsCBL1andCBL9(28,167),andthecomplexesregulatetheactivityoftheshaker-likeK+channelARABIDOPSISK+TRANSPORTER1(AKT1).CIPK23in-teractsexclusivelywithAKT1andnootherK+transportersfromArabidopsis(87).BesidestheregulationofK+uptakeinroots,theCa2+-decodingCBL1/CBL9/CIPK23moduleisin-volvedinstomatalregulationunderdehydrat-ingconditions(28).
ThefindingsofallthesestudiesindicatethattheCBL-CIPKnetworkisacentralandcriti-calsystemfordecodingCa2+signalsinresponsetoabroadvarietyofstimuli.ItisalsobecomingapparentthateachCBLandeachCIPKrep-resentsamultifunctionalsignalingcomponentthatcanundergoalternativeproteininterac-tions,determiningtheflowofinformationpro-cessingthroughthissignalingsystem.There-fore,elucidatingthemechanisticfactorsthat
608
Dodd
·
Kudla
·
Sanders
determinethe“decisionmaking”inthisflexibleinteractionnetworkwillbeofeminentimpor-tancetofurtherourunderstandingofCa2+-decodingmechanisms.
Ca2+SIGNALINGSYSTEMS
Ca2+signalingnetworksarecomplexandso-phisticated.Predictionofnetworkfunctionisoftennonintuitiveduetothehighdegreeofin-terconnectivitybetweennetworkcomponents.Here,we(a)considersystems-basedinvestiga-tionsofnetworkarchitecture,and(b)discussthemodelingof[Ca2+]alterationsduringthegenerationanddecodingofCa2+signals.
Scale-FreeNetworkArchitecture
Somesignalingnetworksareproposedtohavepropertiessimilartoscale-freenetworksincomputing.Scale-freenetworkshavemanyin-terconnectednodes(i.e.,signalingintermedi-ates).Asmallnumberofthenodesareveryhighlyconnectedandcalledhubs(64).Scale-freenetworksarerobusttonoderemoval,aresensitivetohubremoval,andcanpro-cessmultiplesignalssimultaneously(64).Intheguardcell,theextensiveconnectivityofCa2+withothernetworkcomponentsandde-pendencyofstomatalclosureuponstimulus-inducedCa2+alterationsimplythatCa2+isahub(64).Theparadigmofscale-freenetworkarchitectureisnotaformalismofnetworkfunc-tionbutprovidesatoolfordevelopmentofmathematicalmodels,advancesunderstandingoftheevolutionarybasisofthenetwork,andal-lowsidentificationofoptimalmanipulationtar-getsforresearchoragriculturalpurposes.
Knowledgeofinterconnectivitiesbetweenalargenumberofnodes(>1000)isnecessarytoconcludescale-freearchitecture(64).AnAra-bidopsiswhole-genomenetworkderivedfromtranscriptomedatahasscale-freepropertiesbutisnotcompletelyscale-free(102).Thisnet-work(102)reflectsgeneregulationandsodidnotspecificallyincorporateCa2+.Interestingly,thecold-regulatedsubnetworkincludesknownanduncharacterizedproteinslinkedtoCa2+
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgsignaling(102).TranscriptsassociatedwithBow-TieNetworkArchitecture
Ca2+signalingalsooccupyseparateandwell-connectednodeswithinsubnetworksassociatedPlantCa2+signalingnetworkshavecharacter-withERstressresponses(CALRETICULIN2),isticsofbow-tienetworksinneuralnetworkbioticstress(CAX3),jasmonicacid/ethylenecomputing(30,130)(Figure3).Thesenet-signaling(Ca2+-bindingTSK-ASSOCIATINGworksconnectdiverseinputsandoutputsbyPROTEIN1),andsalicylicacidmetabolismandprocessinginformationthroughasmallnumberpathogenresponses(calmodulin-bindingpro-ofcoreintermediatesknownasthehiddenlayer,teinencodedbyAt1g73805)(102).WhenCa2+usingparametersthatbecomedefinedduringsignalingisconsideredwithingenenetworks,networktraining(Figure3a).TheparametersgenesassociatedwithCa2+signalingappearthatdefinerelationshipsbetweeninputsandthetooccupyindependentpositionswithinsev-hiddenlayer,andbetweenthehiddenlayeranderalsubnetworks.Thismightderivefromtheoutputs,causeclassification,wherebyaspecificcapacityofCa2+signalstoencodespecificity,setofinputsleadstoaspecificsetofoutputs.whichallowsthesesignalstooccupymultipleInsignaling,classificationoccurswhenaspe-.cificCa2+signatureisdefinedbytheinputpa-ylnpositionswithinthenetwork.Scale-freenet-orameterset,andalsoduringsubsequentCa2+ eworkarchitectureisalsoausefulparadigmwithsusignaturedecodingintoastimulus-specificout- lwhichtoconsidersmallernetworks.Forexam-anput.Forexample,severalabioticstimulicauseosple,theCBL/CIPKCa2+sensorrelaysystemr[Ca2+]cytandROSalterations,withdifferentep(10)isproposedtohavescale-freearchitecture rpropertiesthatinducestimulus-specifictran-oFbecausethemajorityofCBLsinteractwitha .scriptsets(Figure3b).WhetherCa2+signalsin0smallnumberofCIPKs,whilealimitednum-/1plantcellsperformneuralnetwork–likeclassi-21berofhublikeCBLs(e.g.,CBL2)interactwith/7ficationhasnotbeenformallytested,although0 manyCIPKs(10).Thisprovidesthecapac-nthisappearstobethecaseforCa2+andcGMPo yitytoprocessmultiplesignalssimultaneouslytsignalinginsomeanimalcells(130).Thisarchi-isrthoughformationofalternativeCBL/CIPKetectureisproposedto(a)controlcellfunctionvincomplexes,dependingonlocalizationandcon-Uefficientlybecausealterationsinrelativelyfew lcentrationofCa2+alterationsandlocalizationaintermediatescanevokeavarietyoflarge-scalerutofCBL/CIPKs(31,160).
luoutputalterations,(b)beevolvablebecausenew
cirgA ania
Input layer
bStimuliCh ybyz2+ClassificationHidden layerCaROSATPxOutput layerTranscripts
Figure3
(a)Bow-tiefeedforwardneuralnetworkarchitectureinwhichdiverseinputsregulatediverseoutputsbyprocessing(classification)withinacorehiddenlayer.(b)TranslationofthisconcepttoplantCa2+signalingwithclassificationinvolvingspatiotemporalvariationsinCa2+,ROS,andATP.Conceptfrom(130).Abbreviations:ROS,reactiveoxygenspecies;ATP,adenosinetriphosphate.
www.annualreviews.org•Ca2+Signaling
609
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orginputsandoutputsintegratereadilywiththetoolboxofcoremolecules,and(c)havefragilitytofailureofthecoremechanismandsuscep-tibilitytohijacking(30).ThisfinalpropertymightexplaintheevolutionaryrecruitmentofroothairCa2+signalingintoinitiationofrootnoduleformation.
PredictiveModelsofNetworkFunction
Thedynamicinteractionswithinmanysignal-ingnetworksarewellcharacterized,butquan-titativedescriptionsofnetworkfunctionarein-.frequent(67).Here,weconsidersimulationsofylnnetworksthatincludeCa2+signaling.
o esOnemodelforABA-inducedstomatalclo-u lasurehasgeneratednewquestionsconcerningnosrCa2+signalingintheguardcell(92).Inthisep modelinteractionsofsignalingintermediatesroF aredescribedwithBooleanlogic,withtheul-.0/1timateoutcomethattheporeiseitheropenor21/7closed(92).Themosthighlyconnectedcompo-0 nnentsare[Ca2+]cyt(12interconnections),pHcyto yt(9interconnections),andplasmamembranede-isrepolarization(9interconnections).Withinthisvinnetworkthereareatleasttwosemiindepen-U ladentpathwaysconnectingABAperceptionwithrutlstomatalclosure,involvingchangesin[Ca2+]cytucirandpHcyt,respectively(92).OnehypothesisgA formedfromthismodelisthatstomataareaniclosedbyABA-induced[Ca2+]cytincreases,butCh y[Ca2+]cytincreasesarenotaprerequisiteforbstomatalclosure(92).Testingthishypothesis
a
AM
b
Nod
5 min
Figure4
(a)Arbuscular-mycorrhizal(AM),and(b)Nod-factor-induced[Ca2+]cytspikinginroothairs;from(82).(Copyright2008NationalAcademyofSciences,U.S.A.)
610
Dodd
·
Kudla
·
Sanders
revealedthatABAcausesslowandpartialstom-atalclosurewhen[Ca2+]cytincreaseswereex-perimentallyprevented(148).TheBooleanmodelincludesOST1,ABI1,andphospholi-paseDascomponentsoftheclosurepath-waythatarerelativelyCa2+independent(92).However,inhibitionofABA-inducedclosureintheABA-insensitivemutantsost1–2andabi1–1ismorepronouncedwhen[Ca2+]cytincreasesareprevented,andacomparableresponseoccurredintheABA-hyposensitivepldα1mutant,suggestingthattheCa2+-dependentABAsignalingpathwayisdomi-nantorthataCa2+-independentmechanismprimesthesignalingnetworktoCa2+increases(148).
Severalcircadianclocktranscriptsareup-ordownregulatedbycADPR,suggestingthatcADPRorCa2+affectscircadianclockfunction(39,138).Toinvestigatethis,parameterswithinanexistingmodelforthecircadianclockwereconstrainedtoforcethesimulatedabundanceoftheclocktranscriptsCCA1/LHY,GIandTOC1toadoptthefoldchangescausedbyinduc-tionofcADPRsynthesis(39,138).Thesim-ulationspredictedthat(a)temporaryparame-terconstraints(inductionofcADPRsynthesis)wouldcausetransientalterationsinclockfunc-tion,(b)continuousparameterconstraint(con-stitutivecADPRsynthesis)wouldalterthecir-cadianperiod,dependingonthemodelparam-etersconstrained,and(c)formanyparameterpairs,aninvertedparameterconstraint(inhibi-tionofcADPRsynthesis)wouldcausealongersimulatedperiod(39).ItwassubsequentlyfoundthatmanipulationofcADPRsynthesiscanaltercircadianclockfunction(39).FuturemodelingmayuncovercandidatemechanisticlinksbetweencADPR/Ca2+andthecircadianclock.
PropertiesofCa2+oscillationsthoughttoconferspecificityincludetheperiod,ampli-tude,andwaveform;theseareamenabletomathematicalanalysis.Arbuscular-mycorrhizal(AM)fungicauseirregularpatterningofCa2+spikingcomparedwithconsistentlyrepetitiveCa2+oscillationsinducedbyNodfactor(com-pareFigure4awith4b)(82).Theauthors
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orginvestigatedmathematicallywhetherAM-inducedCa2+spikesareunpredictable(stochas-tic)ordeterministicbutwithchaoticprop-erties,andconcludedfrommultiplemeasuresthatbothAM-andNod-inducedCa2+spikeshaverecurrentproperties.Thevariablepat-terningofAM-inducedCa2+spikesisthere-forelikelyduetochaoticratherthanstochasticpropertiesofthesystem(82).Thissuggeststhatthetransportprocessescausingtheoscillationshavechaoticregulatorypropertiesthatallowslightdifferencesinthestimulustoevokehighlydifferentiatedoutputresponses(82),aconclu-sionthatmayhelpexplainhowmanydistinctCa2+signaturescanbecausedbyasmallsetof.ylnchannels.
o esu lanoSimulationofCa2+HomeostasissreandDynamics
p ro+FClassicalsimulationsofstimulus-inducedCa2 .0oscillationsinanimalcellsparameterizetwoor/121moreCa2+stores,aCa2+releasemechanism,/70 cytosolicCa2+-scavengingCa2+ATPases,andno ymembraneleakcurrents(154).ThesemodelstisrsimulateCa2+oscillationswithpropertiessim-evinilartoCa2+oscillationsinanimalcells.MoreU lsophisticatedmodelsincorporatefeaturesarutsuchastheligandbindingkineticsofCa2+lucireleasechannels(154).ImportantdifferencesrgAbetweenplantandanimalcellsrequireincor- aniporationintosimulations.cADPRandInsP3Ch arethoughttoactivateseparateCa2+storesinybanimalcells,whereascommoncADPR-andInsP3-sensitiveCa2+storesexistinplantcellsbecausethevacuolarmembraneiscADPR-andInsP3-sensitive(5),whereasERmembranesareInsP3-,cADPR-,andNAADP-sensitive(seeFigure1)(5,116,118,119).ThenotionofanERstorethatcontainsfinitequantitiesofCa2+thatfunctionsincombinationwithavacuolarstorecontainingvirtuallylimitlessCa2+wasincorporatedwithinasimulationofABA-induced[Ca2+]cytoscillations(159).Thestudyconcludedthat[Ca2+]cytoscillations
withcomparablepropertiesareevokedbyABAconcentrationsthatspanseveralordersofmagnitudebecausethedifferentkineticsofCa2+scavengingCa2+ATPasesandCa2+/H+antiportersmeanthatathigh[ABA],Ca2+/H+antiportersremoveCa2+fromthecytosolandallow[Ca2+]cytoscillations;whereas,atlow[ABA],[Ca2+]cytoscillationscanoccurwithonlyCa2+-ATPaseactivity(seeFigure1)(159).Thelongperiodof[Ca2+]cytoscillationsinplantcellscomparedwithanimalcellsmightarisefromdifferencesintherateofactivationbyInsP3ofInsP3-sensitiveCa2+channels(strictly,relieffromCa2+inhibitionofthechannelbyInsP3),anddifferentCa2+signaturesmayarisefromvariationsinthisparameter(159).ThesimulationassumedthatCa2+releasewasentirelymediatedbycADPRandInsP3-gatedchannels,sofuturesimulationsincorporat-ingregulatorykineticsofTPC1-mediatedCa2+release(128)wouldbeinformative(seeFigure1).ThecontributionofextracellularCa2+influxtostimulus-inducedCa2+signals,whichisimportantinatleastthoseguardcellsthatarerelativelyinsensitivetoABA(104),couldprovidefurtherinformationconcerningthecontributionofeachCa2+storetoCa2+oscillations.
Four-dimensionalsimulationofCa2+waveshasbeenperformedusingasatemplatethe3Dgeometryofmembranesystemsinanimalcellsfromtomographicelectronmicroscopy(107).Simulationspredictedthatregionsofclosemembraneproximityparticipateinfor-mationofsignalingmicrodomains.Applicationtoplantcellsseemsappropriategiventhedis-tinctivearrangementofalargecentralvacuolesurroundedbyarelativelysmall-volume,ER-containingcytosol,whichprovidesaverydif-ferenttopologyforthepropagationofCa2+signalscomparedwithanimalcells.Wesuggestthat,infuture,computationalapproacheswillbeessentialforadvancingourunderstandingofthecomplexintracellularlanguageofCa2+signaling.
www.annualreviews.org•Ca2+Signaling611
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh ybSUMMARYPOINTS
1.ManyenergizedtransporterspreviouslythoughttofunctiononlyinCa2+homeostasismayhavesignalingroles.2.SpecificCa2+signaturesaredecodedbyacomplextoolkitofCa2+-bindingproteinsthattranslatetheinformationencodedwithinCa2+signalsintophosphorylationeventsanddefinedtranscriptionalresponses.3.Ca2+-signalingnetworkscouldhavearchitecturalandfunctionalpropertiesthatarecom-parabletoscale-freenetworksandbow-tienetworks.
FUTUREISSUES
1.UnderstandthetransportandsignalingfunctionsofspecificgeneproductsthatarelikelytoformmultisubunitCa2+-permeablechannels.2.Identifygenesencodingligand-gatedchannelstoestablishthemechanisticbasisforcADPR,InsP3andNAADPsignalinginplantcellsandtheevolutionarybasisforthesemechanisms,particularlygiventheabsenceofanimalcADPRandInsP3receptorsfromtheplantgenome.3.Measure[Ca2+]cytinCa2+pumpandCa2+exchangermutantstopositiontheseproteinswithintheCa2+signalingnetwork.4.UnderstandthebiologicalsignificanceofthespatialdistributionofCa2+signalswithinsingleplantcellsduringsignaling.5.DeveloppredictivemodelsforCa2+signalsthatincorporatethekineticsandregulationofspecificgeneproducts.6.UnderstandhowcircadianCa2+oscillationsaredecoded:(a)WhatistheidentityoftheCa2+sensorprotein(s)thatareinvolvedinthispathway?(b)Whatarethedown-streammechanismsthatconvertthesignalsarisingfromactivationoftheseproteinsintoalterationsingeneexpressionorenzymeactivity?7.UncoverthefunctionalinterconnectionsbetweenthesystemsthatdecodeCa2+signalsandothercellsignalingsystemssuchasPP2C-typephosphatases,receptor-likekinases,andMAPKmodules.
DISCLOSURESTATEMENT
Theauthorsarenotawareofanyaffiliations,memberships,funding,orfinancialholdingsthatmightbeperceivedasaffectingtheobjectivityofthisreview.
ACKNOWLEDGMENTS
Weapologizetoresearcherswhoseworkisnotcitedduetospacelimitations.WethankDr.LorellaNavazioforcriticalreadingofourmanuscript.A.N.D.isgratefultotheRoyalSocietyfortheawardofaUniversityResearchFellowship.J.K.thanksDr.HillelFrommforhelpfuldiscussionsaboutCAMTAproteinsandDr.KenjiHashimotoforhelpwithFigure2.Workin
612
Dodd
·
Kudla
·
Sanders
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgtheJ.K.laboratorywassupportedbytheD.F.G.,theAlexandervonHumboldtfoundation,theD.A.A.D.,theG.I.F.,andtheH.F.S.P.
LITERATURECITED
1.AlbrechtV,RitzO,LinderS,HarterK,KudlaJ.2001.TheNAFdomaindefinesanovelprotein-proteininteractionmoduleconservedinCa2+-regulatedkinases.EMBOJ.20:1051–632.AlbrechtV,WeinlS,BlazevicD,D’AngeloC,BatistiˇcO,etal.2003.ThecalciumsensorCBL1integratesplantresponsestoabioticstresses.PlantJ.36:457–70
3.AliR,MaW,Lemtiri-ChliehF,TsaltasD,LengQ,etal.2007.DeathDon’tHaveNoMercyandNeitherDoesCalcium:ArabidopsisCYCLICNUCLEOTIDEGATEDCHANNEL2andInnateImmunity.PlantCell19:1081–95
4.AllenGJ,ChuSP,HarringtonCL,SchumacherK,HoffmanT,etal.2001.Adefinedrangeofguardcellcalciumoscillationparametersencodesstomatalmovements.Nature411:1053–57
5.AllenGJ,MuirSR,SandersD.1995.ReleaseofCa2+fromindividualplantvacuolesbybothInsP(3).andcyclicADP-ribose.Science268:735–37
yln6.AllenGJ,SandersD.1995.Calcineurin,atype2Bproteinphosphatase,modulatestheCa2+-permeableo esslowvacuolarion-channelofstomatalguard-cells.PlantCell7:1473–83
u la7.AraziT,KaplanB,FrommH.2000.Ahigh-affinitycalmodulin-bindingsiteinatobaccoplasma-nosmembranechannelproteincoincideswithacharacteristicelementofcyclicnucleotide-bindingdomains.repPlantMol.Biol.42:591–601
roF8.BaekgaardL,FuglsangAT,PalmgrenMG.2005.RegulationofplantplasmamembraneH+-andCa2+- .0ATPasesbyterminaldomains.J.Bioenerg.Biomembr.37:369–74
/1219.BalagueC,LinBQ,AlconC,FlottesG,MalmstromS,etal.2003.HLM1,anessentialsignaling/70componentinthehypersensitiveresponse,isamemberofthecyclicnucleotide-gatedchannelionchannel nofamily.PlantCell15:365–79 yti10.BatistiˇcO,KudlaJ.2004.IntegrationandchannelingofcalciumsignalingthroughtheCBLcalcium
srevsensor/CIPKproteinkinasenetwork.Planta219:915–24inU11.BatistiˇcO,KudlaJ.2009.PlantcalcineurinB–likeproteinsandtheirinteractingproteinkinases.Biochim.
larBiophys.Acta1793:985–92
utl12.BatistiˇcO,SorekN,Schultke¨S,YalovskyS,KudlaJ.2008.Dualfattyacylmodificationdeterminesthe
ucirlocalizationandplasmamembranetargetingofCBL/CIPKCa2+signalingcomplexesinArabidopsis.gA PlantCell20:1346–62
ani13.BaumG,LongJC,JenkinsGI,TrewavasAJ.1999.Stimulationofthebluelightphototropicreceptor
Ch NPH1causesatransientincreaseincytosolicCa2+.Proc.Natl.Acad.Sci.USA96:13554–59
yb14.BonaventureG,GfellerA,ProebstingWM,HortensteinerS,ChetelatA,etal.2007.Again-of-function
alleleofTPC1activatesoxylipinbiogenesisafterleafwoundinginArabidopsis.PlantJ.49:889–98
15.BonzaMC,LuoniL,DeMichelisMI.2001.StimulationofplantplasmamembraneCa2+-ATPase
activitybyacidicphospholipids.Physiol.Plantarum112:315–20
16.BonzaMC,MorandiniP,LuoniL,GeislerM,PalmgrenMG,DeMichelisMI.2000.AtACA8encodes
aplasmamembrane–localizedcalcium-ATPaseofArabidopsiswithacalmodulin-bindingdomainattheNterminus.PlantPhysiol.123:1495–505
17.BoursiacY,HarperJF.2007.TheoriginandfunctionofcalmodulinregulatedCa2+pumpsinplants.
J.Bioenerg.Biomembr.39:409–14
18.CarolRJ,TakedaS,LinsteadP,DurrantMC,KakesovaH,etal.2005.ARhoGDPdissociationinhibitor
spatiallyregulatesgrowthinroothaircells.Nature438:1013–16
19.CarterC,PanS,ZouharJ,AvilaEL,GirkeT,RaikhelNV.2004.Thevegetativevacuoleproteomeof
Arabidopsisthalianarevealspredictedandunexpectedproteins.PlantCell16:3285–303
20.CatalaR,SantosE,AlonsoJM,EckerJR,Martinez-ZapaterJM,SalinasJ.2003.Mutationsinthe
Ca2+/H+transporterCAX1increaseCBF/DREB1expressionandthecold-acclimationresponseinArabidopsis.PlantCell15:2940–51
www.annualreviews.org•Ca2+Signaling
613
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh yb21.CeranaM,BonzaMC,HarrisR,SandersD,DeMichelisMI.2006.Abscisicacidstimulatestheexpression
oftwoisoformsofplasmamembraneCa2+-ATPaseinArabidopsisthalianaseedlings.PlantBiol.8:572–7822.CharpentierM,BredemeierR,WannerG,TakedaN,SchleiffE,ParniskeM.2008.Lotusjaponicus
CASTORandPOLLUXareionchannelsessentialforperinuclearcalciumspikinginlegumerootendosymbiosis.PlantCell20:3467–79
23.ChengNH,LiuJZ,NelsonRS,HirschiKD.2004.CharacterizationofCXIP4,anovelArabidopsis
proteinthatactivatestheH+/Ca2+antiporter,CAX1.FEBSLett.559:99–106
24.ChengNH,PittmanJK,BarklaBJ,ShigakiT,HirschiKD.2003.TheArabidopsiscax1mutantexhibits
impairedionhomeostasis,development,andhormonalresponsesandrevealsinterplayamongvacuolartransporters.PlantCell15:347–64
25.ChengNH,PittmanJK,ShigakiT,LachmansinghJ,LeClereS,etal.2005.Functionalassociationof
ArabidopsisCAX1andCAX3isrequiredfornormalgrowthandionhomeostasis.PlantPhysiol.138:2048–60
26.ChengNH,PittmanJK,ZhuJK,HirschiKD.2004.TheproteinkinaseSOS2activatestheArabidopsis
H+/Ca2+antiporterCAX1tointegratecalciumtransportandsalttolerance.J.Biol.Chem.279:2922–2627.CheongYH,KimKN,PandeyGK,GuptaR,GrantJJ,LuanS.2003.CBL1,acalciumsensorthat
differentiallyregulatessalt,drought,andcoldresponsesinArabidopsis.PlantCell15:1833–4528.CheongYH,PandeyGK,GrantJJ,BatistiˇcO,LiL,etal.2007.TwocalcineurinB-likecalciumsen-sors,interactingwithproteinkinaseCIPK23,regulateleaftranspirationandrootpotassiumuptakein
Arabidopsis.PlantJ.52:223–39
29.CloughSJ,FenglerKA,YuIC,LippokB,SmithRK,BentAF.2000.TheArabidopsisdnd1“defense,no
death”geneencodesamutatedcyclicnucleotide-gatedionchannel.Proc.Natl.Acad.Sci.USA97:9323–2830.CseteM,DoyleJ.2004.Bowties,metabolismanddisease.TrendsBiotechnol.22:446–5031.D’AngeloC,WeinlS,BatistiˇcO,PandeyGK,CheongYH,etal.2006.Alternativecomplexformation
oftheCa2+-regulatedproteinkinaseCIPK1controlsabscisicacid-dependentandindependentstress
responsesinArabidopsis.PlantJ.48:857–72
32.DavenportR.2002.Glutamatereceptorsinplants.Ann.Bot.90:549–57
33.deGraafBHJ,RuddJJ,WheelerMJ,PerryRM,BellEM,etal.2006.Self-incompatibilityinPapaver
targetssolubleinorganicpyrophosphatasesinpollen.Nature444:490–93
34.DeBlasioSL,LuesseDL,HangarterRP.2005.Aplant-specificproteinessentialforblue-light-induced
chloroplastmovements.PlantPhysiol.139:101–14
35.DemidchikV,MaathuisFJM.2007.Physiologicalrolesofnonselectivecationchannelsinplants:from
saltstresstosignalinganddevelopment.NewPhytol.175:387–404
36.DemidchikV,ShangZL,ShinR,ThompsonE,RubioL,etal.2009.PlantextracellularATPsignaling
byplasmamembraneNADPHoxidaseandCa2+channels.PlantJ.58:903–13
37.DennisonKL,SpaldingEP.2000.Glutamate-gatedcalciumfluxesinArabidopsis.PlantPhysiol.124:1511–
14
38.DingYL,KaloP,YendrekC,SunJH,LiangY,etal.2008.AbscisicacidcoordinatesNodfactorand
cytokininsignalingduringtheregulationofnodulationinMedicagotruncatula.PlantCell20:2681–9539.DoddAN,GardnerMJ,HottaCT,HubbardKE,DalchauN,etal.2007.TheArabidopsiscircadian
clockincorporatesacADPR-basedfeedbackloop.Science318:1789–92
40.DohertyCJ,VanBuskirkHA,MyersSJ,ThomashowMF.2009.RolesforArabidopsisCAMTAtran-scriptionfactorsincold-regulatedgeneexpressionandfreezingtolerance.PlantCell21:972–84
41.DuL,AliGS,SimonsKA,HouJ,YangT,etal.2009.Ca2+/calmodulinregulatessalicylic-acid-mediated
plantimmunity.Nature457:1154–58
42.DuLQ,PoovaiahBW.2005.Ca2+/calmoduliniscriticalforbrassinosteroidbiosynthesisandplant
growth.Nature437:741–45
43.DubosC,HugginsD,GrantGH,KnightMR,CampbellMM.2003.Aroleforglycineinthegatingof
plantNMDA-likereceptors.PlantJ.35:800–10
44.FinklerA,Ashery-PadanR,FrommH.2007.CAMTAs:Calmodulin-bindingtranscriptionactivators
fromplantstohuman.FEBSLett.581:3893–98
45.FinklerA,KaplanB,FrommH.2007.Ca2+-responsiveciselementsinplants.PlantSignal.Behav.2:17–19
614
Dodd
·
Kudla
·
Sanders
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org46.FoltaKM,LiegEJ,DurhamT,SpaldingEP.2003.Primaryinhibitionofhypocotylgrowthandpho-totropismdependdifferentlyonphototropin-mediatedincreasesincytoplasmiccalciuminducedbybluelight.PlantPhysiol.133:1464–70
47.ForemanJ,DemidchikV,BothwellJHF,MylonaP,MiedemaH,etal.2003.Reactiveoxygenspecies
producedbyNADPHoxidaseregulateplantcellgrowth.Nature422:442–46
48.Franklin-TongVE,HackettG,HeplerPK.1997.Ratio-imagingofCai2+intheself-incompatibility
responseinpollentubesofPapaverrhoeas.PlantJ.12:1375–86
49.Franklin-TongVE,RideJP,ReadND,TrewavasAJ,FranklinFCH.1993.Theselfincompatibility
responseofPapaverrhoeasismediatedbycytosolicfreecalcium.PlantJ.4:163–77
50.FrietschS,WangYF,SladekC,PoulsenLR,RomanowskySM,etal.2007.Acyclicnucleotide-gated
channelisessentialforpolarizedtipgrowthofpollen.Proc.Natl.Acad.Sci.USA104:14531–36
51.GalonY,NaveR,BoyceJM,NachmiasD,KnightMR,FrommH.2008.Calmodulin-bindingtran-scriptionactivator(CAMTA)3mediatesbioticdefenseresponsesinArabidopsis.FEBSLett.582:943–4852.GeislerM,FrangneN,GomesE,MartinoiaE,PalmgrenMG.2000.TheACA4geneofArabidopsis
encodesavacuolarmembranecalciumpumpthatimprovessalttoleranceinyeast.PlantPhysiol.124:1814–27
.y53.GeorgeL,RomanowskySM,HarperJF,SharrockRA.2008.TheACA10Ca2+-ATPaseregulatesadult
lnovegetativedevelopmentandinflorescencearchitectureinArabidopsis.PlantPhysiol.146:716–28
es54.GobertA,ParkG,AmtmannA,SandersD,MaathuisFJM.2006.ArabidopsisthalianaCyclicNucleotide
u laGatedChannel3formsanonselectiveiontransporterinvolvedingerminationandcationtransport.nosJ.Exp.Bot.57:791–800
rep55.GuoHW,MocklerT,DuongH,LinCT.2001.SUB1,anArabidopsisCa2+-bindingproteininvolved
roFincryptochromeandphytochromecoaction.Science291:487–90
.056.GuoY,HalfterU,IshitaniM,ZhuJK.2001.Molecularcharacterizationoffunctionaldomainsinthe
/12proteinkinaseSOS2thatisrequiredforplantsalttolerance.PlantCell13:1383–99
1/757.HalfterU,IshitaniM,ZhuJK.2000.TheArabidopsisSOS2proteinkinasephysicallyinteractswithand
0 noisactivatedbythecalcium-bindingproteinSOS3.Proc.Natl.Acad.Sci.USA97:3735–40
yt58.HaradaA,SakaiT,OkadaK.2003.phot1andphot2mediatebluelight–inducedtransientincreasesin
isrecytosolicCa2+differentlyinArabidopsisleaves.Proc.Natl.Acad.Sci.USA100:8583–88
vin59.HaradaA,ShimazakiK.2009.MeasurementofchangesincytosolicCa2+inArabidopsisguardcellsand
U lmesophyllcellsinresponsetobluelight.PlantCellPhysiol.50:360–73
arut60.HarperJE,BretonG,HarmonA.2004.DecodingCa2+signalsthroughplantproteinkinases.Annu.
luciRev.PlantBiol.55:263–88
rgA61.HarperJF,HarmonA.2005.Plants,symbiosisandparasites:Acalciumsignalingconnection.Nat.Rev.
anMol.CellBiol.6:555–66
iCh62.HedrichR,BarbierbrygooH,FelleH,FluggeUI,LuttgeU,etal.1988.Generalmechanismsforsolute
ybtransportacrossthetonoplastofplantvacuoles—apatch-clampsurveyofionchannelsandprotonpumps.BotanicaActa101:7–13
63.HeplerPK,VidaliL,CheungAY.2001.Polarizedcellgrowthinhigherplants.Annu.Rev.CellDev.Biol.
17:159–87
64.HetheringtonAM,WoodwardFI.2003.Theroleofstomatainsensinganddrivingenvironmental
change.Nature424:901–8
65.HirschS,KimJ,MunozA,HeckmannAB,DownieJA,OldroydGED.2009.GRASproteinsforma
DNAbindingcomplextoinducegeneexpressionduringnodulationsignalinginMedicagotruncatula.PlantCell21:545–57
66.HrabakEM,ChanCWM,GribskovM,HarperJF,ChoiJH,etal.2003.TheArabidopsisCDPK-SnRK
superfamilyofproteinkinases.PlantPhysiol.132:666–80
67.HuangZ,HahnJ.2009.Fuzzymodelingofsignaltransductionnetworks.Chem.Eng.Sci.64:2044–5668.HwangI,SzeH,HarperJF.2000.Acalcium-dependentproteinkinasecaninhibitacalmodulin-stimulatedCa2+pump(ACA2)locatedintheendoplasmicreticulumofArabidopsis.Proc.Natl.Acad.Sci.USA97:6224–29
69.IkuraM,OsawaM,AmesJB.2002.Theroleofcalcium-bindingproteinsinthecontroloftranscription:
structuretofunction.BioEssays24:625–36
www.annualreviews.org•Ca2+Signaling
615
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh yb70.IshidaS,YuasaT,NakataM,TakahashiY.2008.Atobaccocalcium-dependentproteinkinase,CDPK1,
regulatesthetranscriptionfactorREPRESSIONOFSHOOTGROWTHinresponsetogibberellins.PlantCell20:3273–88
71.IsraelssonM,SiegelRS,YoungJ,HashimotoM,IbaK,SchroederJI.2006.GuardcellABAandCO2
signalingnetworkupdatesandCa2+sensorpriminghypothesis.Curr.Opin.PlantBiol.9:654–63
72.JohnsonCH,KnightMR,KondoT,MassonP,SedbrookJ,etal.1995.Circadianoscillationsofcytosolic
andchloroplasticfreecalciuminplants.Science269:1863–65
73.JonesMA,RaymondMJ,YangZB,SmirnoffN.2007.NADPHoxidase-dependentreactiveoxygen
speciesformationrequiredforroothairgrowthdependsonROPGTPase.J.Exp.Bot.58:1261–7074.KangJM,TuranoFJ.2003.Theputativeglutamatereceptor1.1(AtGLR1.1)functionsasaregulatorof
carbonandnitrogenmetabolisminArabidopsisthaliana.Proc.Natl.Acad.Sci.USA100:6872–77
75.KaplanB,DavydovO,KnightH,GalonY,KnightMR,etal.2006.Rapidtranscriptomechanges
inducedbycytosolicCa2+transientsrevealABRE-relatedsequencesasCa2+-responsiveciselementsinArabidopsis.PlantCell18:2733–48
76.KiegleE,MooreCA,HaseloffJ,TesterMA,KnightMR.2000.Cell-type-specificcalciumresponsesto
drought,saltandcoldintheArabidopsisroot.PlantJ.23:267–78
77.KimBG,WaadtR,CheongYH,PandeyGK,Dominguez-SolisJR,etal.2007.Thecalciumsensor
CBL10mediatessalttolerancebyregulatingionhomeostasisinArabidopsis.PlantJ.52:473–84
78.KimKN,CheongYH,GrantJJ,PandeyGK,LuanS.2003.CIPK3,acalciumsensor-associatedprotein
kinasethatregulatesabscisicacidandcoldsignaltransductioninArabidopsis.PlantCell15:411–23
79.KnightH,TrewavasAJ,KnightMR.1996.ColdcalciumsignalinginArabidopsisinvolvestwocellular
poolsandachangeincalciumsignatureafteracclimation.PlantCell8:489–503
80.KobayashiM,OhuraI,KawakitaK,YokotaN,FujiwaraM,etal.2007.Calcium-dependentprotein
kinasesregulatetheproductionofreactiveoxygenspeciesbypotatoNADPHoxidase.PlantCell19:1065–80
81.KolukisaogluU,¨WeinlS,BlazevicD,BatistiˇcO,KudlaJ.2004.Calciumsensorsandtheirinteracting
proteinkinases:GenomicsoftheArabidopsisandriceCBL-CIPKsignalingnetworks.PlantPhysiol.134:43–58
82.KosutaS,HazledineS,SunJ,MiwaH,MorrisRJ,etal.2008.Differentialandchaoticcalciumsignatures
inthesymbiosissignalingpathwayoflegumes.Proc.Natl.Acad.Sci.USA105:9823–28
83.KudlaJ,XuQ,HarterK,GruissemW,LuanS.1999.GenesforcalcineurinB–likeproteinsinArabidopsis
aredifferentiallyregulatedbystresssignals.Proc.Natl.Acad.Sci.USA96:4718–23
84.KushwahaR,SinghA,ChattopadhyayS.2008.Calmodulin7playsanimportantroleastranscriptional
regulatorinArabidopsisseedlingdevelopment.PlantCell20:1747–59
85.LaohavisitA,MortimerJC,DemidchikV,CoxonKM,StancombeMA,etal.2009.Zeamaysannexins
modulatecytosolicfreeCa2+andgenerateaCa2+-permeableconductance.PlantCell21:479–93
86.LecourieuxD,LamotteO,BourqueS,WendehenneD,MazarsC,etal.2005.Proteinaceousand
oligosaccharidicelicitorsinducedifferentcalciumsignaturesinthenucleusoftobaccocells.CellCalcium38:527–38
87.LeeSC,LanWZ,KimBG,LiLG,CheongYH,etal.2007.Aproteinphosphorylation/
dephosphorylationnetworkregulatesaplantpotassiumchannel.Proc.Natl.Acad.Sci.USA104:15959–6488.LeeSM,KimHS,HanHJ,MoonBC,KimCY,etal.2007.Identificationofacalmodulin-regulated
autoinhibitedCa2+-ATPase(ACA11)thatislocalizedtovacuolemembranesinArabidopsis.FEBSLett.581:3943–49
89.LengQ,MercierRW,HuaBG,FrommH,BerkowitzGA.2002.Electrophysiologicalanalysisofcloned
cyclicnucleotide-gatedionchannels.PlantPhysiol.128:400–10
90.LengQ,MercierRW,YaoWZ,BerkowitzGA.1999.Cloningandfirstfunctionalcharacterizationofa
plantcyclicnucleotide-gatedcationchannel.PlantPhysiol.121:753–61
91.LevchenkoV,KonradKR,DietrichP,RoelfsemaMRG,HedrichR.2005.Cytosolicabscisicacid
activatesguardcellanionchannelswithoutprecedingCa2+signals.Proc.Natl.Acad.Sci.USA102:4203–8
92.LiS,AssmannSM,AlbertR.2006.Predictingessentialcomponentsofsignaltransductionnetworks:A
dynamicmodelofguardcellabscisicacidsignaling.PLoSBiol.4:1732–48
616
Dodd
·
Kudla
·
Sanders
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org93.LiXY,ChanrojS,WuZY,RomanowskySM,HarperJF,SzeH.2008.AdistinctendosomalCa2+/Mn2+
pumpaffectsrootgrowththroughthesecretoryprocess.PlantPhysiol.147:1675–89
94.LiuJP,IshitaniM,HalfterU,KimCS,ZhuJK.2000.TheArabidopsisthalianaSOS2geneencodesa
proteinkinasethatisrequiredforsalttolerance.Proc.Natl.Acad.Sci.USA97:3730–34
95.LiuJP,ZhuJK.1997.AnArabidopsismutantthatrequiresincreasedcalciumforpotassiumnutritionand
salttolerance.Proc.Natl.Acad.Sci.USA94:14960–64
96.LoveJ,DoddAN,WebbAAR.2004.Circadiananddiurnalcalciumoscillationsencodephotoperiodic
informationinArabidopsis.PlantCell16:956–66
97.LuanS.2009.TheCBL-CIPKnetworkinplantcalciumsignaling.TrendsPlantSci.14:37–42
98.LuanS,KudlaJ,Rodriguez-ConcepcionM,YalovskyS,GruissemW.2002.Calmodulinsandcalcineurin
B–likeproteins:Calciumsensorsforspecificsignalresponsecouplinginplants.PlantCell14:S389–40099.LuanS,LanW,ChulLeeS.2009.Potassiumnutrition,sodiumtoxicity,andcalciumsignaling:connec-tionsthroughtheCBL-CIPKnetwork.Curr.Opin.PlantBiol.12:339–46
100.LudwigAA,RomeisT,JonesJDG.2004.CDPK-mediatedsignalingpathways:specificityandcross-talk.
J.Exp.Bot.55:181–88
101.LudwigAA,SaitohH,FelixG,FreymarkG,MierschO,etal.2005.Ethylene-mediatedcross-talk
betweencalcium-dependentproteinkinaseandMAPKsignalingcontrolsstressresponsesinplants..ylnProc.Natl.Acad.Sci.USA102:10736–41
o e102.MaS,GongQ,BohnertHJ.2007.AnArabidopsisgenenetworkbasedonthegraphicalGaussianmodel.
su lGenomeRes.17:1614–25
an103.MaW,BerkowitzGA.2007.Thegratefuldead:calciumandcelldeathinplantinnateimmunity.
osreCell.Microbiol.9:2571–85
p r104.MacRobbieEAC.2000.ABAactivatesmultipleCa2+fluxesinstomatalguardcells,triggeringvacuolar
oF K+(Rb+)release.Proc.Natl.Acad.Sci.USA97:12361–68
.0105.MaserP,ThomineS,SchroederJI,WardJM,HirschiK,etal.2001.Phylogeneticrelationshipswithin
/121/cationtransporterfamiliesofArabidopsis.PlantPhysiol.126:1646–67
70 106.MasudaW,TakenakaS,InagedaK,NishinaH,TakahashiK,etal.1997.OscillationofADP-ribosyl
no cyclaseactivityduringthecellcycleandfunctionofcyclicADP-riboseinaunicellularorganism,Euglenaytisgracilis.FEBSLett.405:104–6
rev107.MazelT,RaymondR,Raymond-StintzM,JettS,WilsonBS.2009.Stochasticmodelingofcalciumin
inU3Dgeometry.Biophys.J.96:1691–706
lar108.McAinshMR,PittmanJK.2009.Shapingthecalciumsignature.NewPhytol.181:275–94
utl109.McCormackE,TsaiYC,BraamJ.2005.Handlingcalciumsignaling:ArabidopsisCaMsandCMLs.Trends
ucirPlantSci.10:383–89
gA110.MeiH,ZhaoJ,PittmanJK,LachmansinghJ,ParkS,HirschiKD.2007.Inplantaregulationofthe
aniArabidopsisCa2+/H+antiporterCAX1.J.Exp.Bot.58:3419–27
Ch111.MillsRF,DohertyML,Lopez-MarquesRL,WeimarT,DupreeP,etal.2008.ECA3,aGolgi-localized
ybP-2A-typeATPase,playsacrucialroleinmanganesenutritioninArabidopsis.PlantPhysiol.146:116–28112.MonshausenGB,MesserliMA,GilroyS.2008.ImagingoftheYellowCameleon3.6indicatorreveals
thatelevationsincytosolicCa2+followoscillatingincreasesingrowthinroothairsofArabidopsis.PlantPhysiol.147:1690–98
113.MoriIC,MurataY,YangYZ,MunemasaS,WangYF,etal.2006.CDPKs,CPK6,andCPK3function
inABAregulationofguardcellS-typeanion-andCa2+-permeablechannelsandstomatalclosure.PLoSBiol.4:1749–62
114.MortimerJC,LaohavisitA,MacphersonN,WebbA,BrownleeC,etal.2008.Annexins:multifunctional
componentsofgrowthandadaptation.PresentedatAnnu.Meet.Soc.Exper.Biol.,Glasgow,UK
115.MoscatielloR,MarianiP,SandersD,MaathuisFJM.2006.Transcriptionalanalysisofcalcium-dependent
andcalcium-independentsignalingpathwaysinducedbyoligogalacturonides.J.Exp.Bot.57:2847–65116.MuirSR,SandersD.1997.Inositol1,4,5-trisphosphate-sensitiveCa2+releaseacrossnonvacuolarmem-branesincauliflower.PlantPhysiol.114:1511–21
117.MurataY,PeiZM,MoriIC,SchroederJ.2001.AbscisicacidactivationofplasmamembraneCa2+chan-nelsinguardcellsrequirescytosolicNAD(P)Handisdifferentiallydisruptedupstreamanddownstreamofreactiveoxygenspeciesproductioninabi1-1andabi2-1proteinphosphatase2Cmutants.PlantCell13:2513–23
www.annualreviews.org•Ca2+Signaling
617
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh yb118.NavazioL,BewellMA,SiddiquaA,DickinsonGD,GalioneA,SandersD.2000.Calciumreleasefrom
theendoplasmicreticulumofhigherplantselicitedbytheNADPmetabolitenicotinicacidadeninedinucleotidephosphate.Proc.Natl.Acad.Sci.USA97:8693–98
119.NavazioL,MarianiP,SandersD.2001.MobilizationofCa2+bycyclicADP-ribosefromtheendoplasmic
reticulumofcauliflowerflorets.PlantPhysiol.125:2129–38
120.NavazioL,MoscatielloR,GenreA,NoveroM,BaldanB,etal.2007.Adiffusiblesignalfromarbuscular
mycorrhizalfungielicitsatransientcytosoliccalciumelevationinhostplantcells.PlantPhysiol.144:673–81
121.NgCKY,McAinshMR,GrayJE,HuntL,LeckieCP,etal.2001.Calcium-basedsignalingsystemsin
guardcells.NewPhytol.151:109–20
122.OhtaM,GuoY,HalfterU,ZhuJK.2003.AnoveldomainintheproteinkinaseSOS2mediatesinteraction
withtheproteinphosphatase2CAB12.Proc.Natl.Acad.Sci.USA100:11771–76
123.OldroydGED,DownieJA.2008.Coordinatingnodulemorphogenesiswithrhizobialinfectionin
legumes.Annu.Rev.PlantBiol.59:519–46
124.OldroydGED,HarrisonMJ,PaszkowskiU.2009.Reprogrammingplantcellsforendosymbiosis.Science
324:753–54
125.PandeyGK,CheongYH,KimKN,GrantJJ,LiLG,etal.2004.ThecalciumsensorcalcineurinB–like
CBL9modulatesabscisicacidsensitivityandbiosynthesisinArabidopsis.PlantCell16:1912–24
126.PandeyGK,GrantJJ,CheongYH,KimBG,LiLG,LuanS.2008.Calcineurin-B-likeproteinCBL9
interactswithtargetkinaseCIPK3intheregulationofABAresponseinseedgermination.Mol.Plant1:238–48
127.PeiZM,MurataY,BenningG,ThomineS,KlusenerB,etal.2000.Calciumchannelsactivatedby
hydrogenperoxidemediateabscisicacidsignalinginguardcells.Nature406:731–34
128.PeiterE,MaathuisFJM,MillsLN,KnightH,PellouxJ,etal.2005.ThevacuolarCa2+-activatedchannel
TPC1regulatesgerminationandstomatalmovement.Nature434:404–8
129.PeiterE,SunJ,HeckmannAB,VenkateshwaranM,RielyBK,etal.2007.TheMedicagotruncatulaDMI1
proteinmodulatescytosoliccalciumsignaling.PlantPhysiol.145:192–203
130.PolouliakhN,NockR,NielsenF,KitanoH.2009.G-proteincoupledreceptorsignalingarchitecture
ofmammalianimmunecells.PLoSOne4:e4189
131.PottosinI,WherrettT,ShabalaS.2009.SVchannelsdominatethevacuolarCa2+releaseduringintra-cellularsignaling.FEBSLett.583:921–26
132.QiZ,StephensNR,SpaldingEP.2006.CalciumentrymediatedbyGLR3.3,anArabidopsisglutamate
receptorwithabroadagonistprofile.PlantPhysiol.142:963–71
133.QuanRD,LinHX,MendozaI,ZhangYG,CaoWH,etal.2007.SCABP8/CBL10,aputativecalcium
sensor,interactswiththeproteinkinaseSOS2toprotectArabidopsisshootsfromsaltstress.PlantCell19:1415–31
134.QudeimatE,FaltuszAMC,WheelerG,LangD,BrownleeC,etal.2008.AP-IIB-typeCa2+-ATPase
isessentialforstressadaptationinPhyscomitrellapatens.Proc.Natl.Acad.Sci.USA105:19555–60
135.RanfS,WunnenbergP,LeeJ,BeckerD,DunkelM,etal.2008.Lossofthevacuolarcationchannel,
AtTPC1,doesnotimpairCa2+signalsinducedbyabioticandbioticstresses.PlantJ.53:287–99
136.ReddyVS,ReddyASN.2004.Proteomicsofcalcium-signalingcomponentsinplants.Phytochemistry
65:1745–76
137.RomeisT,LudwigAA,MartinR,JonesJDG.2001.Calcium-dependentproteinkinasesplayanessential
roleinaplantdefenseresponse.EMBOJ.20:5556–67138.S´anchezJP,DuqueP,ChuaNH.2004.ABAactivatesADPRcyclaseandcADPRinducesasubsetof
ABA-responsivegenesinArabidopsis.PlantJ.38:381–95
139.SandersD,BrownleeC,HarperJF.1999.Communicatingwithcalcium.PlantCell11:691–706140.SandersD,JohannesE,HedrichR.1990.Openingplantcalciumchannels.Nature344:593–94
141.SandersD,PellouxJ,BrownleeC,HarperJF.2002.Calciumatthecrossroadsofsignaling.PlantCell
14:S401–17
142.SchiottM,PalmgrenMG.2005.TwoplantCa2+pumpsexpressedinstomatalguardcellsshowopposite
expressionpatternsduringcoldstress.Physiol.Plantarum124:278–83
618
Dodd
·
Kudla
·
Sanders
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org143.SchiottM,RomanowskySM,BaekgaardL,JakobsenMK,PalmgrenMG,HarperJF.2004.Aplant
plasmamembraneCa2+pumpisrequiredfornormalpollentubegrowthandfertilization.Proc.Natl.Acad.Sci.USA101:9502–7
144.SchuurinkRC,ShartzerSF,FathA,JonesRL.1998.Characterizationofacalmodulin-bindingtrans-porterfromtheplasmamembraneofbarleyaleurone.Proc.Natl.Acad.Sci.USA95:1944–49
145.ShiJR,KimKN,RitzO,AlbrechtV,GuptaR,etal.1999.Novelproteinkinasesassociatedwith
calcineurinB–likecalciumsensorsinArabidopsis.PlantCell11:2393–405
146.ShigakiT,HirschiKD.2006.DiversefunctionsandmolecularpropertiesemergingforCAXcation/H+
exchangersinplants.PlantBiol.8:419–29
147.ShimazakiKI,DoiM,AssmannSM,KinoshitaT.2007.Lightregulationofstomatalmovement.Annu.
Rev.PlantBiol.58:219–47
148.SiegelRS,XueS,MurataY,YangY,NishimuraN,etal.2009.Calciumelevation-dependentandatten-uatedrestingcalcium-dependentabscisicacidinductionofstomatalclosureandabscisicacid-inducedenhancementofcalciumsensitivitiesofS-typeanionandinward-rectifyingK+channelsinArabidopsisguardcells.PlantJ.59:207–20
149.SpaldingEP.2000.Ionchannelsandthetransductionoflightsignals.PlantCellEnviron.23:665–74.y150.StephensNR,QiZ,SpaldingEP.2008.Glutamatereceptorsubtypesevidencedbydifferencesinde-lno sensitizationanddependenceontheGLR3.3andGLR3.4genes.PlantPhysiol.146:529–38
esu151.SunJ,MiwaH,DownieJA,OldroydGED.2007.Mastoparanactivatescalciumspikinganalogousto
lannodfactor-inducedresponsesinMedicagotruncatularoothaircells.PlantPhysiol.144:695–702
osr152.TakedaS,GapperC,KayaH,BellE,KuchitsuK,DolanL.2008.Localpositivefeedbackregulation
ep rdeterminescellshapeinroothaircells.Science319:1241–44
oF 153.ThomasSG,Franklin-TongVE.2004.Self-incompatibilitytriggersprogrammedcelldeathinPapaver
.0pollen.Nature429:305–9
/121/154.ThulR,BellamyTC,RoderickHL,BootmanMD,CoombesS.2008.Calciumoscillations.InAd-70 nvancesinExperimentalMedicineandBiology:CellularOscillatoryMechanisms,ed.MMaroto,NAMMonk,o ypp.1–22.NewYork:Springer
tis155.TracyFE,GillihamM,DoddAN,WebbAAR,TesterM.2008.NaCl-inducedchangesincytosolicfree
reviCa2+inArabidopsisthalianaareheterogeneousandmodifiedbyexternalioniccomposition.PlantCellnU Environ.31:1063–73
laru156.TuckerEB,LeeM,AlliS,SookhdeoV,WadaM,etal.2005.UV-Ainducestwocalciumwavesin
tluPhyscomitrellapatens.PlantCellPhysiol.46:1226–36
cirg157.UrquhartW,GunawardenaA,MoederW,AliR,BerkowitzGA,YoshiokaK.2007.Thechimericcyclic
A anucleotide-gatedionchannelATCNGC11/12constitutivelyinducesprogrammedcelldeathinaCa2+nidependentmanner.PlantMol.Biol.65:747–61
Ch y158.VadasseryJ,RanfS,DrewieckiC,Mithofer¨A,MazarsC,etal.2009.Acellwallextractfromthe
bendophyticfungusPiriformosporaindicapromotesgrowthofArabidopsisseedlingsandinducesintracellularcalciumelevationinroots.PlantJ.59:193–206
159.VeresovVG,KabakAG,VolotovskyID.2003.Modelingthecalciumsignalinginstomatalguardcells
undertheactionofabscisicacid.RussianJ.PlantPhysiol.50:573–79
160.WaadtR,SchmidtLK,LohseM,HashimotoK,BockR,KudlaJ.2008.Multicolorbimolecularfluores-cencecomplementationrevealssimultaneousformationofalternativeCBL/CIPKcomplexesinplanta.PlantJ.56:505–16
161.WardJM,MaserP,SchroederJI.2009.Plantionchannels:genefamilies,physiology,andfunctional
genomicsanalyses.Annu.Rev.Physiol.71:59–82
162.WardJM,SchroederJI.1994.Calcium-activatedK+channelsandcalcium-inducedcalcium-releaseby
slowvacuolarionchannelsinguard-cellvacuolesimplicatedinthecontrolofstomatalclosure.PlantCell6:669–83
163.WeinlS,KudlaJ.2009.TheCBL-CIPKCa2+-decodingnetwork:functionandperspectives.NewPhy-tologist.184:517–28
164.WheelerMJ,deGraafBHJ,HadjiosifN,PerryRM,PoulterNS,etal.2009.Identificationofthepollen
self-incompatibilitydeterminantinPapaverrhoeas.Nature459:992–5
www.annualreviews.org•Ca2+Signaling
619
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep roF .0/121/70 no ytisrevinU larutlucirgA aniCh yb165.WhitemanSA,NuhseTS,AshfordDA,SandersD,MaathuisFJM.2008.Aproteomicandphospho-proteomicanalysisofOryzasativaplasmamembraneandvacuolarmembrane.PlantJ.56:146–56
166.WuZY,LiangF,HongBM,YoungJC,SussmanMR,etal.2002.Anendoplasmicreticulum–bound
Ca2+/Mn2+pump,ECA1,supportsplantgrowthandconferstolerancetoMn2+stress.PlantPhysiol.130:128–37
167.XuJ,LiHD,ChenLQ,WangY,LiuLL,etal.2006.Aproteinkinase,interactingwithtwocalcineurin
B–likeproteins,regulatesK+transporterAKT1inArabidopsis.Cell125:1347–60
168.XuXD,HottaCT,DoddAN,LoveJ,SharrockR,etal.2007.Distinctlightandclockmodulationof
cytosolicfreeCa2+oscillationsandrhythmicCHLOROPHYLLA/BBINDINGPROTEIN2promoteractivityinArabidopsis.PlantCell19:3474–90
169.YangT,PoovaiahBW.2002.Acalmodulin-binding/CGCGboxDNA-bindingproteinfamilyinvolved
inmultiplesignalingpathwaysinplants.J.Biol.Chem.277:45049–58
170.YoshiokaK,MoederW,KangHG,KachrooP,MasmoudiK,etal.2006.ThechimericArabidopsis
CYCLICNUCLEOTIDE-GATEDIONCHANNEL11/12activatesmultiplepathogenresistanceresponses.PlantCell18:747–63
171.ZhaoJ,BarklaBJ,MarshallJ,PittmanJK,HirschiKD.2008.TheArabidopsiscax3mutantsdisplayaltered
salttolerance,pHsensitivityandreducedplasmamembraneH+-ATPaseactivity.Planta227:659–69172.ZhuSY,YuXC,WangXJ,ZhaoR,LiY,etal.2007.Twocalcium-dependentproteinkinases,CPK4
andCPK11,regulateabscisicacidsignaltransductioninArabidopsis.PlantCell19:3019–36
620Dodd
·
Kudla
·
Sanders
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgContents
AWanderingPathwayinPlantBiology:FromWildflowerstoPhototropinstoBacterialVirulence
WinslowR.Briggspppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp1.yStructureandFunctionofPlantPhotoreceptorslno AndreasM¨oglich,XiaojingYang,RebeccaA.Ayers,andKeithMoffatppppppppppppppppppppp21esu laAuxinBiosynthesisandItsRoleinPlantDevelopment
nosrYundeZhaopppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp49ep rFoComputationalMorphodynamics:AModelingFrameworkto .01UnderstandPlantGrowth
/21/VijayChickarmane,AdrienneH.K.Roeder,PaulT.Tarr,AlexandreCunha,
70 nCoryTobin,andElliotM.Meyerowitzppppppppppppppppppppppppppppppppppppppppppppppppppppp65o tyisFemaleGametophyteDevelopmentinFloweringPlants
revinWei-CaiYang,Dong-QiaoShi,andYan-HongChenppppppppppppppppppppppppppppppppppppppp89U larDoomedLovers:MechanismsofIsolationandIncompatibilityinPlants
utluKirstenBombliesppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp109cirgAChloroplastRNAMetabolism
anihDavidB.Stern,MichelGoldschmidt-Clermont,andMaureenR.Hansonpppppppppppppp125C ybProteinTransportintoChloroplasts
Hsou-minLiandChi-ChouChiupppppppppppppppppppppppppppppppppppppppppppppppppppppppppp157TheRegulationofGeneExpressionRequiredforC4Photosynthesis
JulianM.HibberdandSarahCovshoffpppppppppppppppppppppppppppppppppppppppppppppppppppp181Starch:ItsMetabolism,Evolution,andBiotechnologicalModificationinPlants
SamuelC.Zeeman,JensKossmann,andAlisonM.Smithppppppppppppppppppppppppppppppp209ImprovingPhotosyntheticEfficiencyforGreaterYield
Xin-GuangZhu,StephenP.Long,andDonaldR.Ortppppppppppppppppppppppppppppppppppp235Hemicelluloses
HenrikVibeSchellerandPeterUlvskovppppppppppppppppppppppppppppppppppppppppppppppppppp263DiversificationofP450GenesDuringLandPlantEvolution
MasaharuMizutaniandDaisakuOhtappppppppppppppppppppppppppppppppppppppppppppppppppp291
AnnualReviewofPlantBiology
Volume61,2010
v
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org.ylno esu lanosrep rFo .01/21/70 no tyisrevinU larutlucirgA anihC ybEvolutioninAction:PlantsResistanttoHerbicides
StephenB.PowlesandQinYupppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp317InsightsfromtheComparisonofPlantGenomeSequences
AndrewH.Paterson,MichaelFreeling,HaibaoTang,andXiyinWangpppppppppppppppp349High-ThroughputCharacterizationofPlantGeneFunctionsbyUsingGain-of-FunctionTechnology
YouichiKondou,MiekoHiguchi,andMinamiMatsuipppppppppppppppppppppppppppppppppppp373HistoneMethylationinHigherPlants
ChunyanLiu,FalongLu,XiaCui,andXiaofengCaopppppppppppppppppppppppppppppppppppp395GeneticandMolecularBasisofRiceYield
YongzhongXingandQifaZhangpppppppppppppppppppppppppppppppppppppppppppppppppppppppppp421GeneticEngineeringforModernAgriculture:ChallengesandPerspectives
RonMittlerandEduardoBlumwaldppppppppppppppppppppppppppppppppppppppppppppppppppppppp443MetabolomicsforFunctionalGenomics,SystemsBiology,andBiotechnology
KazukiSaitoandFumioMatsudappppppppppppppppppppppppppppppppppppppppppppppppppppppppp463QuantitationinMass-Spectrometry-BasedProteomicsWaltraudX.SchulzeandBj¨ornUsadelpppppppppppppppppppppppppppppppppppppppppppppppppppp491MetalHyperaccumulationinPlantsUteKr¨amerpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp517ArsenicasaFoodChainContaminant:MechanismsofPlantUptakeandMetabolismandMitigationStrategies
Fang-JieZhao,SteveP.McGrath,andAndrewA.Mehargppppppppppppppppppppppppppppp535GuardCellSignalTransductionNetwork:AdvancesinUnderstandingAbscisicAcid,CO2,andCa2+SignalingTae-HounKim,MaikB¨ohmer,HonghongHu,NoriyukiNishimura,
andJulianI.Schroederppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp561TheLanguageofCalciumSignalingAntonyN.Dodd,J¨orgKudla,andDaleSanderspppppppppppppppppppppppppppppppppppppppppp593Mitogen-ActivatedProteinKinaseSignalinginPlants
MariaCristinaSuarezRodriguez,MortenPetersen,andJohnMundyppppppppppppppppp621AbscisicAcid:EmergenceofaCoreSignalingNetwork
SeanR.Cutler,PedroL.Rodriguez,RuthR.Finkelstein,andSuzanneR.Abramspppp651BrassinosteroidSignalTransductionfromReceptorKinasestoTranscriptionFactors
Tae-WukKimandZhi-YongWangpppppppppppppppppppppppppppppppppppppppppppppppppppppppp681
viContents
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.orgDirectionalGravitySensinginGravitropism
MiyoTeraoMoritapppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp705Indexes
CumulativeIndexofContributingAuthors,Volumes51–61ppppppppppppppppppppppppppp721CumulativeIndexofChapterTitles,Volumes51–61pppppppppppppppppppppppppppppppppppp726Errata
AnonlinelogofcorrectionstoAnnualReviewofPlantBiologyarticlesmaybefoundathttp://plant.annualreviews.org
.ylno esu lanosrep rFo .01/21/70 no tyisrevinU larutlucirgA anihC ybContentsvii
Annu. Rev. Plant Biol. 2010.61:593-620. Downloaded from arjournals.annualreviews.org
因篇幅问题不能全部显示,请点此查看更多更全内容