800andaproblemofAldous
2 guTimAustin
A 61Abstract
]RInhissurvey[4]ofnotionsofexchangeability,Aldousintroducedaformofex-Pchangeabilitycorrespondingtothesymmetriesoftheinfinitediscretecube,andasked.hwhethertheseexchangeableprobabilitymeasuresenjoyarepresentationtheoremsim-tailartothoseforexchangeablesequences[11],arrays[12,13,1,2]andset-indexedmfamilies[15].Inthisnotewetoprovethat,whereastheknownrepresentationtheo-[ remsfordifferentclassesofpartiallyexchangeableprobabilitymeasureimplythatthe 1compactconvexsetofsuchmeasuresisaBauersimplex(thatis,itssubsetofextremevpointsisclosed),inthecaseofcube-exchangeabilityitisacopyofthePoulsensim-86plex(inwhichtheextremepointsaredense).Thisfollowsfromtheargumentsused2byGlasnerandWeiss’fortheircharacterizationin[9]ofproperty(T)intermsofthe2geometryofthesimplexofinvariantmeasuresforassociatedgeneralizedBernoulli.8actions.
08TheemergenceofthisPoulsensimplexsuggeststhat,ifarepresentationtheoremfortheseprocessesisavailableatall,itmusttakeaverydifferentformfromthecase:0vofset-indexedexchangeablefamilies.
iXraContents
1Introduction
2Theformofpreviousrepresentationtheoremsforexchangeablemeasures3Bauersimplicesfromexchangeability
3.1TheBauerpropertyfromrepresentability.................3.2TheBauerpropertyintheparticularcontextofhypergraphexchangeability4ThePoulsenpropertyforcube-exchangeablemeasures
1
246789
5Somefurtherquestions
5.1Furtheranalysisofcube-exchangeablemeasures.........5.2Thegeometryofsubsimplicesandrelationstopropertytesting.5.3Affinetransformationsoftheinfinite-dimensionaldiscretecube.5.4ThePoulsenpropertyforotherexchangeabilitycontexts....5.5Cube-exchangeabilityforfiner-grainedcubes..........
.........................
121214171818
1Introduction
SupposethatKisastandardBorelspacewithσ-algebraΣK,thatTisacountablyin-finitesetandΓagroupofpermutationsofTandthatµisaprobabilitymeasureonthe
T
(standardBorel)productmeasurablespace(KT,Σ⊗K).LetusalsoalwaysassumethatΓhasonlyinfiniteorbitsinT.ThenfollowingAldous[4]weshallwritethatµis(T,Γ)-exchangeableifitisinvariantunderthe(contravariant)coordinate-permutingactionτofΓonKTgivenbyγ
τ(ωt)t∈T:=(ωγ(t))t∈T,whichisclearlymeasurableandinvertible.WewritePrΓKTforthesetofallsuchex-changeableprobabilitymeasures.Weshallsometimesrefertotheindex-setactionΓTasanexchangeabilitycontext.
Theprototypicalexamplesofexchangeabilityarearguablythoseofhypergraphexchange-S
ability,forwhichT=k,thesetofallk-subsetsofacountablyinfinite‘vertexset’S,andΓ=Sym0(S),thegroupofallfinitely-supportedpermutationsofSactingonTbyvertex-permutations.Inthiscasewecaninterpretµasthelawofarandom‘colouring’ofthecompletek-uniformhypergraphonSbypointsfromthespaceKof‘colours’.Inthesimplestcasek=1(soT=S),theprecisestructureofallpossiblehypergraph-exchangeablemeasuresfollowsfromclassicaltheoremsofdeFinettiandHewitt&Sav-age(see,forexample,[11]).Morerecently,thecaseofmoregeneralkwasstudiedbyHoover[12,13],Aldous[1,2,4]andKallenberg[15],alongwithanumberoffurtherextensionsthatarestillcloselyrelatedtothishypergraph-colouringsetting,leadingtoamoreelaborateconceptionof‘exchangeabilitytheory’.Itturnsoutthatinthesecontextstootheexchangeableprobabilitymeasuresadmitamore-or-lesscompletestructuralde-scription,albeitinvolvingincreasinglycomplicatedingredientsaskincreases:theycanallberepresentedasimagesofcertainotherexchangeableprocesseswhoselawstakeaparticularsimpleform.Wereferthereaderto[6]forarecentsurveyoftheseresultsandtheirrelationstovariousquestionsingraphandhypergraphtheory,andtothesurvey[4]ofAldousforageneralintroductiontoabroaderrangeofexchangeabilitycontextsandto
2
therecentbookofKallenberg[17]forthemodernstateofthetheory.
Wewillnotrecountthedetailsoftheserepresentationtheoremshere.Rather,ourinterestliesinadifferentexchangeabilitycontext,proposedbyAldousasapossibleobjectoffurtherstudyinSection16of[4]:thatofcube-exchangeability.LetF2={0,1}bethefieldoftwoelements,andinthed-dimensionalvectorspaceFd2overF2writee1,e2,...,ed
⊕N
forthestandardbasis.NowtakeTtobethesetF2ofallstringsof0sand1swithonlyfinitelymanyofthelatter,andletΓbethegroupofpermutationsofTgeneratedbyfinitely-supportedpermutationsoftheunderlyingcopyofNtogetherwithall‘bit-flips’:
⊕NN
σi:F2→F⊕2:x→x+ei.Inthiscontext,givenanystandardBorelspaceKweshallcallaprobabilitymeasureµonKTcube-exchangeableifitisinvariantunderthecoordinate-permutingactionoftheabovegroupΓ.Notefollows:Tmaybewrittenasthethatwemaydescribethisgroupasn
increasingunionn≥1TnofthediscretecubesTn:=F2,andnow(bearinginmindourrestrictiontofinitely-supportedpermutationsofN)everymemberg∈ΓactuallymapsTnontoitselfforallsufficientlylargen.ItiseasytoseethatinthiscaseapermutationofTnisinducedbyamemberofΓifandonlyifitisanisometryofTnwhenthislatterisidentifiedwiththen-dimensionalHammingcube{0,1}n.ForthisreasonweshallrefertoΓasthegroupofisometriesoftheinfinite-dimensionaldiscretecubeanddenoteitby
N
IsomF⊕2.Notethat,asinthesettingofhypergraph-exchangeability,theactinggroupΓislocallyfinite(thatis,anyfinitecollectionofitselementsgeneratesafinitesubgroup);butunlikeinthatsettingmostelementsofthegroup(tobeprecise,allthatinvolveanontrivialtranslation)domoveinfinitelymanypointsofT.
Inviewofthesuccessofthebasictheoryofhypergraph-exchangeability,Aldousaskedin[4]whetherasimilarlyprecisestructuraldescriptionisavailablefortheclassofcube-exchangeableprobabilitymeasures.Inthisnotewewillprovidesomeevidencetosuggestthatsuchastructuraldescriptionmaynotbeavailableinthiscontext—atleastnotintheveryexplicitformfamiliarfromthehypergraphsetting—inthefollowing‘soft’sense.First,wenotethat,providedΓisamenable(asitcertainlyisinourexamples),thebasicrepresentationtheoremsforhypergraphexchangeablelawsfallintoacertainquitegeneralpattern,andthatthispatternhas,inparticular,theconsequencethatforacompactmetricKthesetofallextremepoints(thatis,ergodicmembers)ofPrΓKTformsaclosedsub-groupofthiscompactconvexsetinthevaguetopology;thatis,thisconvexsetisaBauersimplex.Ontheotherhand,wewillshowthatprovidedKisnotasingleton,thissetPrΓKTinthecaseofcube-exchangeabilityhastheverydifferentpropertyofbeingacopyofthePoulsensimplex:itsextremepointsformavaguelydensesubset.Thissuggeststhatanyrepresentationtheoremdescribingthisset,ifoneisavailable,musttakearatherdifferentformfromtheearlierset-indexedexamples.
3
Remarkonnotation
Ourbasiccombinatorialandmeasure-theoreticnotationiscompletelystandard.If(X,ρ)isametricspace,x,y∈Xandε>0,weshallsometimeswritex≈εyinplaceofρ(x,y)<εwhentheparticularmetricρisunderstood.Acknowledgements
MythanksgotoTerenceTaoandYehudaShalomforhelpfuldiscussions.
2Theformofpreviousrepresentationtheoremsforex-changeablemeasures
Inthissectionweintroduceageneraltemplateforakindofrepresentationtheoremforexchangeablelaws,whichinparticularcharacterizesthebasicrepresentationtheoremsfortheclusterofvariationsonhypergraph-exchangeability.
Thesetheoremsallfocusonrepresentinganarbitrary(T,Γ)-exchangeableprocessasanimage(inasuitablesense)ofanotherexchangeableprocess(possiblywithadifferentindexset)forwhichthedifferentrandomvariablesareallmutuallyindependent.Definition2.1(Ingredients).LetΓTbeanexchangeabilitycontextandKafixedcompactmetricspace.Byalistofrepresentationdataweunderstand:
•asequenceofauxiliaryindexsetsT1,T2,...eachendowedwithsomeactionΓTithathasonlyinfiniteorbits;
Ti
•adisjointsequenceofdependencymapsφi:T→<∞thatareΓ-covariant,inthatφi(γ(t))=γ(φi(t));•andafamilyofprobabilitykernels
κt:[0,1]×[0,1]φ1(t)×[0,1]φ2(t)×···K
γ
thatisΓ-covariant,inthatκγ(t)=κt◦(id[0,1]×τ1×···).
Giveningredientsasabove,wedenotebyκ(T)thekernel[0,1]×[0,1]T1×[0,1]T2×···KTgivenby
(T)
κ(x0,x1,...,·)=κt(x0,x1|φ1(t),...,·).
t∈T
4
Oftheconditionsonthedataintroducedabove,perhapstheleastintuitiveisthattheactionsΓTimaynothavefiniteorbits(althoughitcertainlyholdsinthecaseofhypergraphexchangeability);weshalllaterneedtoplaythisoffagainstthefinitenessofthesetsφi(t),anditdoesholdforthecaseofhypergraph-exchangeability.
NowandhenceforthwewilldenotebyµLLebesguemeasureontheunitinterval[0,1],
T1⊗T2⊗···T1T2
andbytheshorthandµ∗⊗theproductmeasureµL⊗µ⊗⊗µ⊗⊗···.LLLDefinition2.2(Representability).GivenanexchangeabilitycontextΓTandacompactmetricspaceK,weshallsaythata(T,Γ)-exchangeablelawµ∈PrKTisrepresentableifthereisalistofingredientsasabove,withonlythekernelsκtallowedtodependonµ
(T)T1T2
orK,suchthatµ=κ#(µL⊗µ⊗⊗µ⊗⊗···).LLIfanexchangeabilitycontext(T,Γ)issuchthatallexchangeablelawsonKTarerepre-sentableforanycompactmetricKthenweshallsaythat(T,Γ)alwaysadmitsrepresen-tation.
Wemuststressthatourchosendefinitionofrepresentabilityisnotcompletelycanon-ical:althoughweareguidedbytheclassicalrepresentationtheoremsforhypergraph-exchangeablelawsandtheirrelatives,theseleadingexamplesaresufficientlycloselyre-latedonetoanotherthatitisnotquiteclearwhichfeaturesoftheirrepresentationtheoremsweshouldtrytokeep,andwhichtodiscard,whenabstractingtoamoregeneraldefinition.Thechoicewehavemadeseemstobesimpleandnatural,andalsotoreflectmanyoftheusestowhichtheserepresentationtheoremsareput(see[17]),butcertainlyithasalsobeenselectedpartlybecauseitworksforwhatfollows.Analternativeformulationoftherepresentationtheoremforexchangeablearrayscanbegiveninsteadinterms,forexample,ofsequencesofauxiliarycompactmetricspacesZ0,Z1,Z2,...andindexsetsT1,T2,...withΓ-actionsα1,α2,...fromwhichallexchangeablelawsarethenobtainedaspushfor-T1
wardsofprobabilitymeasuresontheproductspaceZ0×Z1×···thatareinvariantundertheassociatedoverallcoordinate-permutingactionofΓandhavetheadditionalpropertythatthecoordinatesinZi+1areconditionallyindependentgiventhecoordinatesinev-eryZjforj≤i.Therepresentationtheoremforexchangeablearraysistreatedintheseterms,forexample,in[6],wherethischoiceisdictatedbytheusetowhichthattheoremisthenputinSection3of[7];however,theformalismofrepresentabilityextractedthiswayseemsmuchlessamenabletoourneeds,aswellasfurtherfromtheclassicaldescriptionsofAldousandKallenberg,andsowehavesettledfortheaboveinstead.
InourpresenttermsthemainRepresentationTheoremofAldous,HooverandKallenbergS
forhypergraph-exchangeablelawswithT:=kandΓ:=Sym0(S)withitscanonicalactionmaybewrittenasfollows.
Theorem2.3(RepresentationTheoremforhypergraph-exchangeablelaws).Ahypergraph-5
exchangeablelawµisrepresentableusingthedataTi:=Sfori≤kandTk+1=
tiS
Tk+2=...=triv.,thedependencymapsφi:t→ifort∈kandi≤kandφi≡∅ifi≥k+1,andsomedeterministicmapsκtthatdependontheparticularchoiceofµ.Althoughwehaveallowedarbitraryprobabilitykernelsκtinourpresentformalism,intheaboveconcreterepresentationtheorem(anditsrelativesinsuchworksas[2,15])theyarealldeterministicmaps.However,asimpletransferargumentshowsthatthisdifferenceispurelycosmetic.
Lemma2.4.A(T,Γ)-exchangeablelawisrepresentableifandonlyifitisrepresentableusingdeterministicmapsκt:[0,1]×[0,1]φ1(t)×[0,1]φ2(t)×···→K.
ProofClearlyrepresentabilityusingdeterministicmapsamountstoaspecialcaseofrepresentability,soweneedonlyprovethatanyrepresentablelawisrepresentableusingdeterministicmaps.However,ifwehavealistofingredientsthatrepresentsµwithkernelsκt,thenbythestandardTransferTheorem(Theorem6.10inKallenberg[16])wemayfinddeterministicmaps
θt:[0,1]×[0,1]×[0,1]φ1(t)×[0,1]φ2(t)×···→K
κt(x0,x1,...,·)=µL
y∈[0,1]:θt(y,x0,x1,...)∈·.
suchthat
Now,asisstandard,theLebesguespaces([0,1],µL)and([0,1]×[0,1],µL⊗µL)areisomorphic,sayviatheBorelmapξ:[0,1]→[0,1]2,andsonowdefining
κ˜t(x0,x1,...):=θt(ξ(x0),x1,...)
wecancheckatoncefromtheaboverelationsthatthesedeterministicmapsalsorepresent
theoriginallawµ.
3Bauersimplicesfromexchangeability
WewillnowprovethatifΓisamenableandtheexchangeabilitycontext(T,Γ)alwaysadmitsrepresentationthenitssimplicesPrΓKTofexchangeablelawsmustbeBauerforanyK.WewillalsogiveadirectdeductionofthisBauerpropertyintherepresentativeexampleofhypergraphexchangeabilitywithoutusingrepresentability,bothforcomplete-nessandbecauseitseemsinterestingtocomparethisdirectproofwithargumentstoprovethePoulsenpropertyinthecaseofcube-exchangeabilityinthenextsection.
6
3.1TheBauerpropertyfromrepresentability
Lemma3.1.IfΓisamenable,andifan(T,Γ)-exchangeableprobabilitymeasureµ∈PrΓKTisrepresentableatall,thenitisergodicifandonlyifitisrepresentablebykernelsκtnotdependingonthefirstcoordinate.
T1⊗T2⊗···
ProofFirstsupposethatµisergodic,andwriteitasκ#µ∗⊗forsomesuitableL
φ1(t)
familyκ.Nowdefinethefamilyκuofkernelsκu×[0,1]φ2(t)×···Kt:[0,1]×[0,1]byκut(x0,x1,...):=κt(u,x1,...)(thismakessenseandisunambiguousuptoequalityforalmosteveryu);clearlynoneofthesedependsonthefirstcoordinatein[0,1]×[0,1]φ1(t)×
(T)T1⊗T2⊗···
···,andalsoeach(κu)#µ∗⊗isanotherΓ-invariantprobabilityonKTsuchthatL
(T)
µ=
10
T1⊗T2⊗···
(κu)#µ∗⊗du.L
(T)
(T)
T1⊗T2⊗···
Bytheergodicityofµthisdecompositionmustbetrivial,andso(κu)#µ∗⊗=µLforalmost-everyu;hencealmostanyofthekernelfamiliesκuwillsuffice.
Nowsuppose,ontheotherhand,thateachκtdoesnotdependonthefirstcoordinatein[0,1]×[0,1]T1×···,andthatA,B⊆KTaretwoBorelfinite-dimensionalcylindersets,saydeterminedbythefinitesetsofcoordinatesI,Jrespectively.ThenbyourassumptionthatallorbitsofΓonTandonTiareinfiniteandthatΓisamenable,itfollowsthatforsomedensity-1subsetofF⊂Γwehaveφi(g(I))∩φi(J)=∅forallg∈F.However,thisimpliesthatκtandκshavenoargumentsincommonfort∈g(I)ands∈J,andsothesetsτg(A)andBmustbeindependentunderµ.Infactthisprovesnotonlyergodicity,butevenweakmixing,andwearedone.
Proposition3.2(RepresentabilityimpliesBauer).IfΓisamenableandtheexchangeabil-itycontext(T,Γ)alwaysadmitsrepresentationthenPrΓKTisaBauersimplexforanycompactmetricK.
ProofWeknowthatPrΓKTisacompactconvexsetandthatitsextremepointsarepreciselythosemembersthatcanberepresentedbysomecollectionofkernelsκtnotdependingonthefirstcoordinatein[0,1]×[0,1]φ1(t)×···;thusweneedonlyshowthatif
(T)T1⊗T2⊗···
µn=(κn)#µ∗⊗areavaguelyconvergentsequenceofsuchmeasuresthentheirL
limitµadmitsasimilarrepresentation.
T1⊗T2⊗···
However,foreachtthekernelκtdefinesajoiningoftheprobabilitymeasuresµ∗⊗L
and(πt)#µnontheproductspace[0,1]×[0,1]φ1(t)×···×Kunderwhichtheveryfirstcoordinateisindependentfromalltheothers(becauseκtdoesnotdependonthis
7
coordinate),andso,passingtoasubsequenceifnecessary,wemayassumethatthesejoiningsalsoconvergetosomefixedprobabilitymeasureλ∞,tonthisproductspace.Itisclearthatthisnewmeasurewillstillhaveprojectiononto[0,1]×[0,1]φ1(t)×···equaltoT1⊗T2⊗···µ∗⊗andwillstillenjoytheindependenceofthefirstcoordinatefromeverythingL
else,andsoifwenowdisintegratetheseλ∞,toverthatfirstprojectionwerecoverkernelsκ∞,tthatalsodonotdependontheveryfirstcoordinateandrepresentµ,asrequired.RemarkIdonotknowwhethertheassumptionofamenabilitycouldberemovedfromtheprecedingarguments.⊳
3.2TheBauerpropertyintheparticularcontextofhypergraphex-changeability
Beforemovingon,letusincludeasecondproofthattheclassicalhypergraph-exchangeabilitycontexthastheBauerpropertythatusesonlyaveryelementarypropertyenjoyedbythatcontext,ratherthantherepresentationtheorem.Thissubsectionisnotessentialtothemainthreadofthisnote,butisincludedmainlytoadvertisethequestionofwhethertheargumentthatitcontainscanbegeneralizedfurther.
Definition3.3(Distantmultipletransitivity).Weshallwritethatanexchangeabilitycon-text(T,Γ)isdistantlymultiplytransitive(DMT)ifforanyfiniteI,J⊂TthereissomesubsetE⊆Γofdensity1andsuchthatforanyγ1,γ2∈Ethereissomeξ∈Γwithξ↾I=idIandξ◦γ1↾J=γ2↾J.
ItisimmediatetocheckthatthehypergraphexchangeabilitycontextisDMT,andsothefollowingresultappliestothatcontextinparticular.
Proposition3.4(DMTimpliesBauer).IfΓisamenableand(T,Γ)isDMTthenithastheBauerproperty.
ProofWefollowcloselytheanalogousargumentofGlasnerandWeissin[9].SupposethatΓisamenable,that(T,Γ)isDMT,thatµ∈PrΓKTcanbevaguelyapproximatedbyergodicmeasures,andthatA∈ΣKTisinvariantwitha:=µ(A)∈[0,1].Foranyε>0thereareafinitesetJ⊂Tandacontinuousfunctionf:KJ→[0,1]suchthat1A−f◦πJL1(µ)<ε,andhenceKTf◦πJdµ≈εa.FromtheinvarianceofAitfollowsthatweactuallyhave1A−f◦πJ◦τγL1(µ)<εforanyγ∈Γ.
Now,since(T,Γ)isDMTandJisfinite,thereissomeE⊆Γwithasymptoticdensity1suchthatforanyγ1,γ2∈Ethereissomeξ∈Γsuchthatξ↾J=idJ,andsof◦πJ◦τξ=
8
f◦πJ,whereasξ◦γ1↾J=γ2↾Jandsof◦πJ◦τγ1◦τξ=f◦πJ◦τγ2.Letusnowfixsomerepresentativememberγ0∈E.
Next,sincef◦πJand(f◦πJ)·(f◦πJ◦τγ0)arecontinuous,byassumptionwecanalwaysfindsomeergodicµ′∈PrΓKTwith
f◦πJdµ′≈εf◦πJdµ
KT
KT
and
KT
(f◦πJ)·(f◦πJ◦τγ0)dµ′≈ε
KT
(f◦πJ)·(f◦πJ◦τγ0)dµ.
Letting(In)n≥1beaFølnersequenceinΓ,itfollowsfromtheergodicityofµ′that1
|IN|γ∈I
N
KT
(f◦πJ)·(f◦πJ◦τγ)dµ′≈ε
≈ε
KT
(f◦πJ)·(f◦πJ◦τγ0)dµ′
1A·1Adµ=µA=a.
KT
(f◦πJ)·(f◦πJ◦τγ0)dµ≈2ε
KT
Combiningtheseapproximationsshowsthata≈6εa2foranyε>0,andsoinfactwe
musthavea∈{0,1},andµmustitselfbeergodic.
4ThePoulsenpropertyforcube-exchangeablemeasures
Wewillnowshowthat,quiteunlikethecasesstudiedintheprevioustwosections,if(T,Γ)isthecube-exchangeabilitycontext(andKisnontrivial)thenPrΓKTisactuallythePoulsensimplex.ThisargumentisalsocloselymotivatedbythatofGlasnerandWeissin[9],wheretheyshowthatinthecaseoftheexchangeabilitycontext(Γ,RΓ)comprisingagroupΓanditsright-regularrepresentationonitself,thesimplexPrΓ{0,1}ΓofinvariantprobabilitymeasuresiseitherBauerorPoulsenpreciselyaccordingasΓhas
9
orfailsKazhdan’sproperty(T).Noconditionlikeproperty(T)willenterouranalysis—indeed,thegroupsofimmediateinteresttousarealllocallyfinite,hencetriviallyamenable—butwewillfollowcloselythebasicstepsoftheirconstruction.
Thereareessentiallytwoofthesesteps.WefirstshowthatincaseK={0,1}theparticu-δofanon-ergodicmemberofPrΓ{0,1}Tisvaguelyapproximablebylarexample1
21
membersthatarenotonlyergodic,butactuallyweaklymixing;andthenweusethisfactthroughtheconstructionofacertainjoiningtoshowthatquitegenerallywheneverµ1andµ2inPrΓKTareapproximablebyergodicmeasures,soistheiraverage1µ.We22
needtoensureweakmixinginthefirststepbecauseweshallneedtoensuretheergodicityofacertainproductinthesecond,butthismakeslittledifferencetotheotherdetailsoftheproofs.ItiseasytoseethatthisthenimpliesthePoulsenproperty.
N⊕N1
Lemma4.1.Let(T,Γ)=(F⊕2,IsomF2).ThenthemeasureisvaguelyapproximablebyweaklymixingmembersofPrΓ{0,1}T.
Γ
δ∈Pr{0,1}T12
ProofWeneedtoshowthatforanyε>0andN≥1thereissomestronglymixing
measureµ∈PrΓ{0,1}Tsuchthatboth
µ{ω∈{0,1}T:ω↾FN=0}≥2
1
2
−ε.
Therearemanypossiblewaystoconstructsuchaµ;thefollowingseemstobeoneofthe
simplest.Wespecifyµasthelawofthememberof{0,1}Toutputbythefollowingrandomprocedure.Foranyp∈[0,1]letνpbetheproductmeasureonFN=1}=p2withνp{z:zi
⊕N
foreveryi∈N;andforanyz=(zi)i∈N∈FNdefinex,z:=i∈Nxizi2andx∈F2
mod2(thissumbeingactuallyalwaysfinite).Nowletµbethelawofthecharacteristic
N
functionoftherandomsubset{x∈F⊕:x,z+η=0mod2}wherez∼νpforsome2
verysmallp>0andη∈F2ischosenindependentlyanduniformlyatrandom.
ItisclearthatthisµisΓ-invariantandstronglymixingprovidedp=0,butifpisverysmallthenforourchosenNwehaveνp{z:z1=z2=...=zN=0}≥1−ε,andconditionedontheevent{z:z1=z2=...=zN=0}wemusthavealso
1ifη=0(occurswithprob.1
=1{x∈FN
2:x,z+η=0mod2}),2whichprovesthedesiredvagueapproximationto
10
1
δ.21
N⊕N
Theorem4.2.Thecube-exchangeabilitycontext(T,Γ)=(F⊕2,IsomF2)hasthePoulsenproperty.
ProofLetKbeanycompactmetricspacecontainingatleasttwopoints.AsarguedbyGlasnerandWeissin[9],itsufficestoprovethatforanytwoergodicµ1,µ2∈PrΓKT,theiraverage1µcanbeapproximatedbyergodicmembersofPrΓKT;forthenit22
followsbyrepeatedapproximationthattheergodicprobabilitymeasuresmustbedenseintheirownconvexhull,butthisisthewholeofPrΓKT.
Thus,itisenoughtoshowthatforanyε>0andfinitelistofcontinuousfunctionsf1,f2,...,fm:KT→[0,1]thereissomeergodicµ∈PrΓKTsuchthat
1
fidµ2∀i≤m.fidµ≈2ε
2TTKKMoreover,bytheStone-WeierstrassTheoremwemayassumeeachfidependsonlyon
coordinatesinsomefixedfinitesubsetJ⊂T,andsomayfactorizeandrewriteitasfi◦πJ.
First,letuschooseµ0∈PrΓ{0,1}Tweaklymixingandsatisfyingµ0(A)≈ε1
T
δ(A)forallA⊆{0,1}dependingonlyoncoordinatesinJ;thisispossibleby12
Lemma4.1.Nowconsideranyergodiccube-exchangeablejoiningλofthetwomea-suresµ1andµ2ontheproductspace(K2)T(suchcanbeobtained,forexample,bytakinganyergodiccomponentofthesimpleproductµ1⊗µ2),andnowfromthisconstructtheproductµ0⊗λ,amemberofPrΓ({0,1}×K2)T.Sinceµ0isweaklymixing,thisproductisstillergodic.
WenowcompletetheproofbyspecifyingaΓ-equivariantmapψ:({0,1}×K2)T→KTwhoselawasaKT-valuedrandomvariableunderµ0⊗λwillbetheergodicapproxi-matingmeasurethatweseek:givenapoint(η,ω(1),ω(2))∈({0,1}×K2)T,wedefine
(1)(2)
ψ(η,ω(1),ω(2))ttobeωtifηt=0,andωtifηt=1.Letusalsowriteψ(1)andψ(2)fortheusualprojectionmaps({0,1}×K2)T→KTontothefirstandsecondcopiesofKTrespectively.
Itisclearthatthisψisequivariant,andthatitslawψ#(µ0⊗λ)must,likeµ0⊗λ,be
11
ergodic.Finally,
fi◦πJdψ#(µ0⊗λ)=fi◦πJ◦ψd(µ0⊗λ)T2TK({0,1}×K)=fi◦πJ◦ψd(µ0⊗λ)+fi◦πJ◦ψd(µ0⊗λ)
{η↾J=0}{η↾J=1}+fi◦πJ◦ψd(µ0⊗λ)
∁∁{η↾J=0}∩{η↾J=1}
≈εµ0{η↾J=0}·fi◦πJ◦ψ(1)dλ+µ0{η↾J=1}·fi◦πJ◦ψ(2)dλ
(K2)T(K2)T
1
fi◦πJdµ2,≈ε
2KTwherewehavededucedfromtheknownqualityofourapproximationµ0≈
µ0{η↾J=0},µ0{η↾J=1}≈ε
1
1
δ21
that
•Firstselectg0∈Uuniformlyatrandom;
◦
•Nowselectgi∈Uforeachi∈Nindependentlyatrandomwithlawν,andlet
N◦
gv:=g0+i∈Nvigiforallv=(vi)i∈N∈F⊕2.
TheSym0(N)-symmetry(‘hypergraph-exchangeability’)ofthislawµismanifest;inordertoguaranteefullcube-exchangeabilityitturnsouttobenecessaryandsufficientthatνsatisfythesymmetryconditionthatthetwomaps(g0,g1)→(g0,g0+g1)and(g0,g1)→(g0+g1,g0)havethesamelawundertheproductmeasureµU⊗ν0.
NoticethatwehavealreadymetoneoftheseAbeliangroupexamplesintheformofthemeasureµconstructedfromνpduringtheproofofLemma4.1.
Cube-exchangeablesystemsofthisform(or,moregenerally,factorsofsuchsystems)aresurelyratherspecial,buttheyfitintoaconsiderablymoregeneralframework,andthismayaffordsomegreaterpurchaseoverthegeneralcase.Letusapproachthisgeneralizationfromaratherdifferentdirection.
SinceUisanAbeliangroupwemaydescribeageneralpointofUF2usingaM¨obius
N⊕N
inversionformula:forany(gv)v∈F⊕N∈UF2thereareunique(uα)α∈(N)∈U(<∞)such
2<∞
that
N
viuα∀v∈F⊕gv=uα=2,i∈αα⊆v−1{1}α∈( omorphism,andthatitiscovariantforthecoordinate-permutingactionsofSym0(N)onthedomainandonthetarget.Itfollowsthatanyhypergraph-exchangeableµ∈PrSym0(N)UT N ispushedforwardbyΦtoahypergraph-exchangeablemeasureΦ#µonU(<∞),andindeedthatthisgivesanaffinehomeomorphismbetweenthesimplicesofhypergraph-exchangeablemeasures.However,thestrongerassumptionthatµbecube-exchangeableisthencon-vertedunderΦintoaratherlargersetofadditionalsymmetriesforΦ#µ,andthesearenotobviouslyeasiertodescribeexplicitlythantheoriginalcube-exchangeablestructureofµ.Indeed,ifµ∈PrΓKTforanarbitrarycompactmetricspaceKandtheone-dimensionalmarginals(πv)#µ∈PrK(whichmustallagree)areatomless,thenwecansimplychooseanynon-discretecompactAbeliangroupUandafunction(K,(π0)#µ)→(U,µU)thatdefinesameasure-algebra-isomorphismandobservethatapplyingthisfunctionpointwise ⊕N⊕N givesanisomorphismfromΓKF2toΓUF2,andsowithoutanyadditionalas-sumptionstheaboveexamplesofcube-exchangeablelawsonAbeliangroupslosenogen-eralityatall.However,wemightaskwhetherwecanfindaroutetoamoreinterestingrep-resentationtheoremthroughacannychoiceoftheisomorphism(K,(π0)#µ)→(U,µU), 13 NF⊕2 N (<→U∞)isactuallyahome-⊕N forwhichtheadditionalconstraintsonthejointlawof(uα)α∈(N)canthenbedescribed <∞ explicitly.Alittlemoregenerally,canwesomeUandsomecube-exchangeablemeasure ⊕N θonUF2ofanespeciallysimpleformsuchthatµisacoordinatewisefactorofθ,say ⊕N µ=(fF2)#θforsomeBorelf:U→K.Forexample,canwechooseaθunderwhichthesummandsintheM¨obiusinversionformulacorrespondingtosetsofdifferentsizesareindependent? Wewillnotoffersomuchhere,butmerelynotethatmorecanbesaidincertainsimplecases.Forexample,ifuα=0a.s.whenever|α|≥2,thentheabovelawsµmustbemeasuresofthekinddescribedinAldous’example,asmaybecheckedbyhandfromtherank-2caseofthehypergraph-exchangeabilityrepresentationtheoremappliedtoΦ#µ.Moregenerally,wecanfocusattentiononthesub-simplicesofcube-exchangeablelawsthatareconcentratedoncertainΓ-invariantclosedsubsetsofKT.Foreachr≥1letΩr ⊕N bethesubsetofthoseg∈UF2withthepropertythat‘allr-facessumtozero’: N g∈Ωr⇔gv=0foreachr-faceF⊆F⊕2. v∈F ThissuggestionismadebyAldousin[4](example16.20),wherehealsopointsoutthat somesuchrestrictedmeasuresalreadydefeatanyoverly-simpleapproachtoarepresenta-tiontheoremforcube-exchangeabilityusinggrouprandomwalks. ItiseasytocheckthatconcentrationonΩ2isequivalenttotheabovementionedconditionthatuα=0a.s.whenever|α|≥2.ItturnsoutthatinthespecialcaseU=F2thepoints ⊕N ofΩrhaveaparticularlysimpleexplicitdescription:inthiscase,identifyingUF2asthe N spaceoffunctionsF⊕→F2,anexplicitcalculationoftheM¨obiusinversiongivesat2 N oncethatafunctiong:F⊕→F2liesinΩrifandonlyifitisapolynomialofdegree2 atmostr.(NotethatforageneralfieldKitisfairlystraightforwardtoprovethatthosefunctionsf:Kd→Kthathavezerosumacrossanyaffinecopyofther-dimensionaldiscretecubeinKdmustbeapolynomialofdegreeatmostr,foranyunderlyingfieldK.However,underthepresentweakerassumptionofzero-sumsacrossonlyisometriccopiesofther-cubeinFd2,anditisnothardtofindexamplesshowingthattheimplicationofdegree-rpolynomialityfollowsonlyoverthesmallestfieldF2.) 5.2Thegeometryofsubsimplicesandrelationstopropertytesting ¯’-Theorem4.2hasconsequencesfortherelationsbetweenthevaguetopologyandthe‘d(orjoining)topology(consideredbyAldousinthecaseofhypergraphexchangeability 14 ¯-metricρonexchangeablein[3]andSection15of[4]).Thislatterisdefinedbythed probabilitymeasures,givenby ρ(µ,ν):= λ∈J(µ,ν) inf λ{(ω,η)∈KT×KT:ωv=ηv} forany(arbitrary)choiceofreferenceindexv∈T,whereJ(µ,ν)denotesthecollectionofalljoiningsofµandν:Γ-invariantprobabilitymeasuresonKT×KThavingfirstmarginalµandsecondmarginalν.Ifρ(µ,ν)issmallweshallwriteinformallythatµandνhaveanear-diagonaljoining. Thejoiningtopologyisclearlyatleastasstrongasthevaguetopology,andingeneralitisstrictlystronger(see[3],forexample).However,givenaΓ-invariantclosedsubsetΩ⊆KT,wecanconsiderthesubsimplexPrΓΩ⊆PrΓKTofexchangeablemeasuresconcentratedonΓ,andaskwhetherthetwodifferentneighbourhoodbasesofthissubsim-plexdefinedbythesetwotopologiesmightcoincide.Thisquestionismotivatedbythecaseofhypergraph-exchangeability,forwhichitcanbeprovedthatthesebasesdoalwayscoincide;thisfollows,inparticular,fromtherathermorepreciseresultsforsuchclosedsubsetscontainedin[7].However,bymakingreferencetothePoulsenproperty,wecanseethatthisisnotalwaysthecaseforcube-exchangeability. Proposition5.1.Ifanexchangeabilitycontext(T,Γ)hasthePoulsenpropertyandthesetwoneighbourhoodbasesaroundPrΓΩareequivalentthenPrΓΩmustalsobethePoulsensimplex. ProofIngeneral,ifµ1isergodicandisclosetoµ2inthevaguetopology,itneednotfollowthatµ1isclosetoanyoftheergodiccomponentsofµ2inthevaguetopology.However,ifinfactµ1isjoining-closetoµ2thenitdoesfollowsthatitisjoining-closetomanyoftheergodiccomponentsofµ2,byconsideringtheergodicdecompositionofthejoiningitself. Letthesituationbeasdescribed,andsupposethatµ∈PrΓΩ;wemustshowthatµisvaguelyapproximablebyextremepointsofPrΓΩ.SincePrΓΩisjustthesubsetofthosemembersofPrΓKTthatareconcentratedonΩ,itsextremepointsarestilljustitsergodicmembers. BythePoulsenpropertyofPrΓKT,weknowµcanbevaguelyapproximatedbyergodicmeasuresinthislargersimplex.Ontheotherhand,bytheassumedequivalenceofthetwoneighbourhoodbases,itfollowsthatprovidedtheseapproximatingmeasuresarecloseenoughtothesubsimplexPrΓΩforthevaguetopology,theyactuallyhavenear-diagonaljoiningswithmembersofthissmallersimplexPrΓΩ. However,ifµ1∈PrΓKTisergodicandλ∈PrΓ(KT×KT)isanear-diagonaljoiningofµ1tosomememberofPrΓΩ,thenthecomponentsoftheergodicdecompositionofλmust 15 (almostsurely)bejoiningsofµ1toergodicmeasuresthatarestillmembersofPrΓΩ,andinorderthatλbenear-diagonaltheseergodiccomponentsofλmustalsobenear-diagonalwithhighprobability.Itfollowsthatµ1mustactuallybejoining-close,andhencevaguelyclose,tosomeergodicmembersofPrΓΩ;andsinceµ1wasitselfvaguelyclosetoµ,wededucethatµmustbevaguelyapproximablebyextremepointsofPrΓΩ,asrequired.Wesuspectthattheaboveimplicationcannotbereversed(inthattherearealsoΩforwhichtheneighbourhoodbasesdonotcoincide,butforwhichPrΓΩisPoulsenanyway).Corollary5.2.ThesubsetΩ2⊆issuchthatthejoiningneighbourhoodbasisofthesimplexPrΓΩ2isstrictlystrongerthanthevagueneighbourhoodbasis. ProofBythepreviousproposition,itsufficestoarguethatPrΓΩ2isnotPoulsen;how-ever,asdiscussedintheprevioussubsection,themembersofPrΓΩ2arepreciselyAldous’randomwalkexamplesinthecaseU=F2,anditisnoweasytocheckfromthisthatthesimplexinquestionhassetofextremepointspreciselythemeasuresµconstructedfromνpfordifferentp>0fromtheproofofLemma4.1,togetherwithδ0andδ1,andthatthissetofextremepointshasonlytheoneadditionalnon-ergodicclusterpoint1δ21(indeed,thatlemmaitselfguaranteesthatthismustbeclusterpoint;itistheargumentofTheorem4.2thatthennecessarilytakesusoutsidePrΓΩ2,andsodoesnotapplytothissub-simplex).Thus,PrΓΩ2cannotbePoulsen. Inthesettingofhypergraphexchangeability,itturnsoutthatthereisacloserelation-shipbetweenpropertiesofthesub-simplexPrTΩandoftheconditionsonapointofKTneededtoguaranteemembershipofΩ.Inaddition,itturnsoutthatthislattermembershipconditioncanbeidentifiedsimplywithsomehereditarypropertyofK-colouringsoffinitehypergraphs(precisely,sothatapointofKTliesinΩifandonlyifwhenregardedasaK-colouredhypergraphallofitsfiniteinducedcolouredsub-hypergraphshavethathereditaryproperty).Fromthisvantagepoint,asuitableanalysisofthissimplexcanbeconvertedintoaproofthatallsuchpropertiesare‘efficientlytestable’(followingessentiallyatrans-lationofolder,purelycombinatorialargumentstothateffect;see,inparticular,AlonandShapira[5]andR¨odlandSchacht[18]).Weshallnotenterintothesenotionsfurtherhere,butreferthereadertothecompleteaccountin[7]. Itseemsclearthatasimilarnotionofefficienttestabilitycanbeformulatedinthesettingofdiscretecubesandtheirisometries:ingeneral,wewouldwritethatapropertyPofallsubsetsoffacesofthefinitediscretecubesFN2istestableifforanyε>0therearesomeN(ε)≥J(ε)≥1andδ(ε)>0suchthat,ifN≥N(ε)andE⊆FN2,andifweknowthataJ(ε)-faceFofFN2chosenuniformlyatrandomhasprobabilityatleast1−δ(ε)of ′′N havingF∩E∈P,thenthereissomeE′⊆FN2havingE∈Pand|E∆E|<ε2.AlthoughwearenotawareofarigorousrelationshipbetweenthequestionofProposi-16 N F⊕2F2 tion5.1andtestability,byanalogywiththeresultsof[7]wesuspectfromthatPropositionthatthepropertyΩ2isnottestable;andinfactadirectre-writeoftheparticularinfinitaryproofswehavegiveninfinitarytermsinahigh-dimensionalcubeFN2showsthatthisisso;weomitthedetails. 5.3Affinetransformationsoftheinfinite-dimensionaldiscretecube Wehavealreadydiscussedcube-exchangeabilityasastrengtheningoftheconditionofhypergraph-exchangeabilitytreatedbyclassicalexchangeabilitytheory.However,itmay N beworthrecallingthatanevenstrongerexchangeabilitycontextonT=F⊕hasalso2 appearedimplicitlyinanumberofrecentworks,withΓthegroupofallaffinetransforma-tionsofT. Inparticular,thissettingcloselyrelatestoseveralquestionsofcurrentinterestinarithmeticcombinatoricsconcerningthecountingofaffinecopiesofvariouspatterns(suchasfinite-dimensionalcubes)insubsetsofFN2forlargeN.Thesequestionsoftencorrespondnat-⊕N N urallytodescriptionsofprobabilitymeasureson{0,1}F2thatareAffF⊕2-invariantviaasuitablecorrespondenceprinciple,analogoustothewell-knownFurstenbergcorrespon-denceprinciplerelatingsubsetsofZtomeasure-preservingZ-actions(see,forexample,Furstenberg’sbook[8]).Closely-relatedtothislineofresearchistheinvestigationofthe‘Gowers-inverseconjecture’ofGreenandTaointhecaseofthevectorspacesFN2,whicharephrasedintermsofcorrelationsofindividualC-valuedfunctionsonFN2withfunc-tionsofcertainspecialforms.However,thisconjecturehasrecentlybeenshowntofailingeneralinthissettinginthepaper[10]ofGreenandTao,andsosomemorecomplicatedkindsofingredientseemtoberequiredforsuchastructuretheorem. Inourmoreinfinitaryset-up,wesuspectthatinthepresenceofthisratherstrongersym-metryamuchmoredetailedanalysisofthestructureoftheexchangeablemeasuresispos-sible,andthatsuchananalysiswillprobablyrelyonmoreergodic-theoretictools(suchasthosedevelopedfortheprooforconvergenceandexpressionofthelimitofnonconven-tionalergodicaveragesinthecaseofZ-systems;see,inparticular,theworksofHost&Kra[14]andZiegler[?]);however,wehavenotinvestigatedthispossibilityfurther.WealsodirectthereadertoSubsection4.7of[6]foraveryinformaldiscussionofthedifferentapproachestotheextractionofstructuralinformationforinvariantmeasuresinthestudyofexchangeability,ontheonehand,andergodictheoryontheother. 17 5.4ThePoulsenpropertyforotherexchangeabilitycontexts WesuspectthattheconclusionofTheorem4.2holdsmuchmoregenerally:thatforanamenablegroupΓitisonlyinthepresenceofsomeveryspecialexchangeabilitycontext(suchasthosethatareDMT)thatthePoulsenpropertyfails. Isitpossibletoformulateamoregeneralconditionunderwhichanexchangeabilitycon-texthasthePoulsenpropertythatwillsubsumeTheorem4.2?Ontheotherhand,istheresomeconditionrelatedtothatofbeingDMTthatisactuallyequivalenttotheBauerprop-erty(possiblyonlyforamenableΓ)?CanthesimplexPrΓKTeverbeneitherBauernorPoulsen? 5.5Cube-exchangeabilityforfiner-grainedcubes Wesuspectthattheresultsofthispaperextendtotheanalogousdefinitionofexchange-abilityonthefiner-grainedcubes(Z/mZ)⊕Nform>2(indeed,thesituationthereissurelyevenmorewild,ifanything),butitisnotclearwhethertheseexhibitanyadditionalnewphenomena. References [1]D.J.Aldous.Representationsforpartiallyexchangeablearraysofrandomvariables. J.MultivariateAnal.,11(4):581–598,1981.[2]D.J.Aldous.Onexchangeabilityandconditionalindependence.InExchangeability inprobabilityandstatistics(Rome,1981),pages165–170.North-Holland,Amster-dam,1982.¯-topologies.InExchangeabilityinprob-[3]D.J.Aldous.Partialexchangeabilityandd abilityandstatistics(Rome,1981),pages23–38.North-Holland,Amsterdam,1982.´[4]D.J.Aldous.Exchangeabilityandrelatedtopics.InEcoled’´et´edeprobabilit´es deSaint-Flour,XIII—1983,volume1117ofLectureNotesinMath.,pages1–198.Springer,Berlin,1985.[5]N.AlonandA.Shapira.ACharacterizationofthe(natural)GraphProperties TestablewithOne-SidedError.preprint,availableonlineat http://www.math.tau.ac.il/˜nogaa/PDFS/heredit2.pdf. 18 [6]T.Austin.Onexchangeablerandomvariablesandthestatisticsoflargegraphsand hypergraphs.ProbabilitySurveys,(5):80–145,2008.[7]T.AustinandT.Tao.Onthetestabilityandrepairofhereditaryhypergraphproper-ties.preprint,availableonlineatarXiv.org:0801.2179,2008.[8]H.Furstenberg.ErgodicbehaviourofdiagonalmeasuresandatheoremofSzemer´edi onarithmeticprogressions.J.d’AnalyseMath.,31:204–256,1977.[9]E.GlasnerandB.Weiss.Kazhdan’spropertyTandthegeometryofthecollection ofinvariantmeasures.GeometricandFunctionalAnalysis,7:917–935,1997.[10]B.J.GreenandT.Tao.Thedistributionsofpolynomialsoverfinitefields,withappli-cationstothegowersnorms.preprint,availableonlineatarXiv.org:0711.3191,2007.[11]E.HewittandL.J.Savage.SymmetricmeasuresonCartesianproducts.Trans.Amer. Math.Soc.,80:470–501,1955.[12]D.N.Hoover.Relationsonprobabilityspacesandarraysofrandomvariables.1979.[13]D.N.Hoover.Row-columnsexchangeabilityandageneralizedmodelforexchange-ability.InExchangeabilityinprobabilityandstatistics(Rome,1981),pages281–291,Amsterdam,1982.North-Holland.[14]B.HostandB.Kra.Nonconventionalergodicaveragesandnilmanifolds.Ann.Math., 161(1):397–488,2005.[15]O.Kallenberg.Symmetriesonrandomarraysandset-indexedprocesses.J.Theoret. Probab.,5(4):727–765,1992.[16]O.Kallenberg.Foundationsofmodernprobability.ProbabilityanditsApplications (NewYork).Springer-Verlag,NewYork,secondedition,2002.[17]O.Kallenberg.Probabilisticsymmetriesandinvarianceprinciples.Probabilityand itsApplications(NewYork).Springer,NewYork,2005.[18]V.R¨odlandM.Schacht.Generalizationsoftheremovallemma.preprint,available onlineat http://www.informatik.hu-berlin.de/ ˜schacht/pub/preprints/gen_removal.pdf. 19 DEPARTMENTOFMATHEMATICS UNIVERSITYOFCALIFORNIAATLOSANGELESLOSANGELES,CA90095-1555,USA Email:timaustin@math.ucla.edu Web:http://www.math.ucla.edu/˜timaustin 20 因篇幅问题不能全部显示,请点此查看更多更全内容