十字相乘法因式分解练习题
一、选择题
1.如果x2pxq(xa)(xb),那么p等于 ( )
A.ab B.a+b C.-ab D.-(a+b)
2.如果x2(ab)x5bx2x30,则b为 ( )
A.5 B.-6 C.-5 D.6
3.多项式x3xa可分解为(x-5)(x-b),则a,b的值分别为 ( ) A.10和-2 B.-10和2 C.10和2 D.-10和-2
4.不能用十字相乘法分解的是 ( )
A.xx2 B.3x10x3x C.4xx2 D.5x26xy8y2 5.分解结果等于(x+y-4)(2x+2y-5)的多项式是 ( )
A.2(xy)213(xy)20 B.(2x2y)213(xy)20 C.2(xy)213(xy)20 D.2(xy)29(xy)20
6.将下述多项式分解后,有相同因式x-1的多项式有 ( )
①x7x6; ②3x2x1; ③x5x6; ④4x5x9; ⑤15x23x8; ⑥x11x12 A.2个 B.3个 C.4个 D.5个 二、填空题
7.x3x10___ ______.
8.m5m6(m+a)(m+b). a=__ ________,b=____ __ ____. 9.2x5x3(x-3)(___ _______).
210.x_ ___2y(x-y)(_____ _____).
222222422222222211.a2na(_____)(________)2. m212.当k=______时,多项式3x7xk有一个因式为(________ __). 13.假设x-y=6,xy173223,则代数式xy2xyxy的值为_______ ___. 36三、解答题
14.把以下各式分解因式:
x47x26; x45x236; 4x465x2y216y4; a67a3b38b6; 6a45a34a2; 4a637a4b29a2b4.
.
精品文档
(x23)24x2; x2(x2)29; (3x22x1)2(2x23x3)2;
(2ab)214(2ab)48.
15.x+y=2,xy=a+4,x3y326,求a的值.
因式分解之十字相乘法专项练习题
(1) a2-7a+6; (2)8x2+6x-35; (3)18x2-21x+5; (4) 20-9y-20y2; (5)2x2+3x+1; (7)6x2-13x+6; (9)6x2-11x+3; (11)10x2-21x+2; (13)4n2+4n-15; (15)5x2-8x-13; (17)15x2+x-2; (19) 2(a+b) 2+(a+b)(a-b)-6(a-b) 2; .
(6)2y2+y-6; (8)3a2-7a-6; (10)4m2+8m+3; (12)8m2-22m+15; (14)6a2+a-35; (16)4x2+15x+9; (18)6y2+19y+10;
(20)7(x-1) 2+4(x-1)-20;
因篇幅问题不能全部显示,请点此查看更多更全内容