§1函数
1. 解:(1) 要使sin4x2有意义,必须4x20,即使x2.所以定义域为[-2,2].
时,2(2)当x3且x11有意义;而要使x2有意义,必须x2,故函数
x4x3(1,3)、(3,). 的定义域为:[2,1)、(3)要使arccosln定义域为[xx1x10有意义,则使1ln1,即e.x10e,即 1010e10e10,10e]. e(4)要使tg(x1)有意义,则必有x12k,k0,1,2,.;即函数定义域为
xxR且xk1,k0,1,2,. 2(5)当x3时3x有意义;又当x0时arctg1有意义,故函数的定义域为: x(,0)、(0,3].
(6)当2kx(2k1)(k0,1,2)时sinx有意义;有要使16x2有意义,
[0,]. 必须有4x4.所以函数的定义域为:[4,]、2. f(3)2,f(2)1,f(0)2,f()2,f()23. 解:f[g(x)]121212.
x24x3,因此要使x24x3有意义;必须1x3,
即fg(x)的定义域为[1,3]。
1,4.解f[g(x)]0,1,e1,x0,1,ex1,0,x0, g[f(x)]ef(x)ex1,1,x0;xe,1,1,ex1,x1,。 x1,时f(sinx)有意义,5.当0sinx1故其定义域为[2k,(2k1)](k0,1,2).。
6.f(x1)2x1,x1,2x2x5,x1;2x3,x1, f(x1)2x2x5,x1;2x210,x1,故 f(x1)f(x1)x28,1x1,。
4x2,x1.7解:设f(x)ax2bxc,由f(x1)f(x)8x3a(x1)2b(x1)c(ax2
bxc)2axab,得2a8,ab3,即a4,b1,f(x)4x2xc.
8.ffxffxffxffx为奇函数 gfxgf2x4g xfgfx为偶函数
1x21x29.证:当x1时,xx,因此1;当x1时,41x22;所以对任意41x1xx(,),f(x)2,即f(x)有界。
10.解:(1)由yln(x2)1得ln(x2)y1,即x2ey1,xey12.
yln(x2)1的反函数为yex12.
2xyyx(2)由yx得2x,即xlog2,反函数为ylog2.
1y1y1x21x1,x1,(3)当x0时y1;x0时,y0.反函数为:y
3x,x0.11.解:(1)yu,usin(12x);yu,usinv,v12x. (2)y10,u(2x1);y10,uv,v2x1;;
u2u233yarctgu,utg(a2ex);(3)
22x2yarctgu,uv,vtg(ae);yarctgu,uv,2vtg(a2w),wex.
12.设证圆锥的高为h,底半径为R,体积为V,由立体几何学知:V又
利
用
两
212Rh. 3可
得
:
直角三角形相似
rR
r2h2r2hr2h2,R,V,h(2r,).
22h(h2r)h2r3(h2r)Rhhr§2 数列极限定义及性质
(1)nn3,a; (2)1. 解:(1)(错)例如xn1(对) (3)(对).
2n122.(1)证:2n11551
4n322(4n3)8nn12n1112n11任给〉0,取N[],当nN时,有.由定义:lim.
n4n32n4n32(2)证:
n1n1n1n1n1n,任给0,取N[12],当nN时,
n1n.lim(n1n)0.
n3.证:limxna,任给0,存在N0,当nN时,有xna,又xna
nxna(nN时),limxna.
n4.证:limxn存在,存在M0,有xnM(n1,2,).又nsinnxnMxn. 2nnn任给0,取N[M],当nN时,有asinxnxnMlimnsin0. 0,22nnnnn5.证:任给0, xn有界,存在M0,使得xnM(n1,2,).又limyn0,
存在N0,当nN时有yn
M,而xnynxnynMM.limxnyn0.
n数列极限运算法则及存在准则
1.解:(1)(对)
111,ynsinn,lim0,limsinn不存在,但limsinn0存在.
nnnnnn1111,vn,unvn(n1,2,),但lim2lim0. (3)(错)例如:un2nn1nnnn1(2)(错)例如:xnunvnv11vn2.证:lima0,limlim,有界,而vnnun由数列极限
nvnunuaununnnnvn的定义及性质和上节习题5可知limvn0。
n21234n2n1nn3.解:(1)lim3lim2.
n2n3n21n3123nn2nn3[()1](2)n3n13 (2)limlim. n(2)n13n1nn1233[()n11]334 (3)limn(n1n1)limnn222nn1n122limn2nn(1111)22nn1
1(2n1)n13(2n1)2 (4)limlim2 nn1n12nn2111111111 (5)lim(12)(12)(12)lim(1)(1)(1)(1)(1)(1)
nn2233nn23n132435n1n11n11lim()lim(). n223344n2nnn212n1n1n2 (6)lim(1)lim(1)(1)e.
nnnnn1n1n111)lim(1)(1)e.; (7)lim(1nnn1n1n11352n1352n1,则2S1. (8)记Sn23n2222222n2n131532n12n32n1Sn2SnSn1()(22)(n1n1)n2222222112n1111...n2n.limSn13.
n1222121111112n2n 4.证:{xn}单调增加,且xn 21212122211[1()n]221.{xn}单调增加有上界,故有极限.
1125.证xn,0 n2a,解得a12,a2(舍去),1limxn2. 2,x0,narctgnx0,x0, 6.解:lim2nnn,x0.27.解:lim1en1enxnx1,x0,0,x0, 1,x0. §3 函数极限的定义及性质 1.解:(1)任给0,存在M0,使当xM时,恒有f(x)2成立. (2)任给0,存在M0,使当xM时,恒有f(x)1成立. (3)任给0,存在0,使当0x2时,恒有f(x)1成立. (4)任给0,存在0,使当x2时,恒有f(x)4成立. 2.解:(1)任给0,取M12,当xM时, sinxx0sinxx1x成立.limsinx0; xx (2)x1132212.任给0,取M(1), 2x1222x12x12x12x11x112; , limx2x122x122x1当xM时,有 (3)(2x1)12x1.任给0,取2,当x10时,有(2x1) 12x-1.lim(2x1)1; x1 (4)x2x42x1x4x2x42 ,任给01取2,当0x4时,有x2.limx2; x4(2x1)1,而limf(x)lim00,limf(x)不存在,图略. 3.(3)可知:limx1x1x14证:limf(x)A0,由极限定义,取A,存在0,当0xx0时,有, xx02AAAAf(x)A,即:0Af(x)A,f(x)0.(0xx0). 2222 §5 函数极限运算法则 1.解:(1)D. (2)B. (3)D. (4)D (5)B. 2. 解:(1)lim(3x1)(8x1)x(5x2)100703011(3)70(8)30370830xxlim100. x21005(5)xx3x2x2(x1)1)lim. (2)lim(22x1x2x21(2x1)4x2x1(3)limxxxxxlim1111xxxx1. 11sinxxsinxx(4)limlim1. xxcosxx11cosxx(5)limx(x1x)limx2x1. x21x2x2x2x1(x1)(2x1)lim3. (6)limx1x1x1x1(7)lim(t112t11)lim. 22t11t1t21t3(8)limx1x1x12lim. x1x13x23x13x13.limx10limxaxx41a140,a4 32x1x1x25x4x34x2x4 limlim10,m10 x1x1x1x14.解:x0limf(x)limxsinx0x0120,limf(x)lim(x2x1)1.x0x0x limf(x)不存在..x21f(x)lim(x2x1)2,limf(x)lim2,limf(x)2. limx1x1x1x1x1x12 §6 极限存在准则 两个重要极限 1. 解:(1)nnn1n111n211nn1nn1,而limnnnn1, limnnn11,lim(nn1n2nn)1. n2111n2n2n(2222,而lim21; (2)2nnnnn2nnnnnn2lim21,原式1. nnnn1n1n2(1)nn3312(1)1n(3) ,而lim,lim. nnnn22222222(4)limxsinx1limxx1xsin1x1. t(5)令1xt,则lim(1x)secx1x2limt0tsint232limt02sint22. (6)lim(13tg2x)ctgx02x123tg2xlim(13tgx)e3. x0x34x1x24(7)lim()lim(1)xx3xx3x114e. x3xx411x2xxxxx)lim()()limlim(8)lim(2x1. xx1xx1x11x111xx(9)原式= limx0tanxsinxx31tanx1sinx 1tanxsinx1sinxsinx.cosx1sinx1cosx11limlimlim..2x0x32x0x3cosx2x0xx2cosx433sinln1sinln13xlimxxln13 (10)limxsinln1limxx1x3xxln1xx=limln1x33limlnx1xxxx.333 同理 limxsinln1x11 所以原极限=3-1=2. x§7 无穷小的比较 1. 解:(1)limx0xsinxx11,xsinx是x的阶无穷小(x0); 2x23x121162312lim(x1)1,x0时xx是x的阶无穷小;(2)lim; x0x02x123(3)limx0x3x3x53x1 lim(13x83x143)1,x0时原式是x的阶无穷小;x03(4)limtgxsinxsinx(1cosx)1lim,x0时原式是x的3阶无穷小; 33x0x02xxcosx1cosx2x2lim22; 2. 解:(1)limx0xsinxx0x3sinxx2cos(2)原式= limx02x1x3limsinxlim1xcos13 x022x0xx2x21cos3x(1cosx)(1cosxcos2x)23; lim3lim(3)limx0xsin2xx0x02x242x2x211tgxsinx)limlim220; (4)lim(x0sinxx0sinxtgxx0xtgxe2x12x(5)limlim2; x0ln(x1)x0xx231x2131; (6)limlimx0x0x2x23(7)limn(a1)limn(ennn1lnan1)limnnlna0; nx2a2x2x2ln1ln22a2aa1 (8)原式= limlimlimx0x0x0x2x2x2a23.解: lime3x10,limx0x01fxsin2x10,limfxsin2x0x0 1fxsin2x1fxsin2x1122limlimlimfx,limfx63xx0x0x0e13x3x01x1x(1x)(1x)~1x. 1x1时4.解:(1)lim1xlimx1x11x1x(1x)(1x)1(x2)2(1cosx)(2)limlim220.(1cosx)2为比sin2x高阶的无穷小; 2x0x0sinxx21x(1x)(13x3x2)323limlim(1xx)3.无穷小(3)lim32x113xx1x133(1x)(1xx)1x是13x的同阶无穷小. 因篇幅问题不能全部显示,请点此查看更多更全内容