您的当前位置:首页正文

Efficient glossy global illumination with interactive viewing

来源:九壹网
EfficientGlossyGlobalIllumination

withInteractiveViewing

MarcStamminger1,AnnetteScheel1,XavierGranier2,

¸oisSillion2FredericPerez-Cazorla3,GeorgeDrettakis2,Franc

1

Max-Planck-InstituteforComputerScience,Saarbr¨ucken,Germany

2iMAGIS-GRAVIR/IMAG-INRIA,Grenoble,France

3GGG,UniversityofGirona,Spain

Abstract

Theabilitytoperforminteractivewalkthroughsofglobalilluminationsolutionsincludingglossyeffectsisachal-lengingopenproblem.Inthispaperweovercomecertainlimitationsofpreviousapproaches.Wefirstintroduceanovel,memory-andcompute-efficientrepresentationofincomingillumination,inthecontextofahierarchicalra-dianceclusteringalgorithm.Wethenrepresentoutgoingradiancewithanadaptivehierarchicalbasis,inamannersuitableforinteractivedisplay.Usingappropriaterefine-mentanddisplaystrategies,weachievewalkthroughsofglossysolutionsatinteractiveratesfornon-trivialscenes.Inaddition,ourimplementationhasbeendevelopedtobeportableandeasilyadaptableasanextensiontoexisting,diffuse-only,hierarchicalradiositysystems.Wepresentresultsoftheimplementationofglossyglobalillumina-tionintwoindependentglobalilluminationsystems.Keywords:globalillumination,glossyreflection,inter-activeviewing

1Introduction

Real-worldscenescontainmaterialswithdifferentre-flectiveproperties,varyingfrommatte(diffuse)toshiny(glossyorspecular).Globalilluminationresearchhasmadegreatadvancesforthetreatmentofdiffuseenvi-ronmentsintherecentyears,inparticularwiththead-ventoftheHierarchicalRadiosity(HR)algorithm[7]andthesubsequentintroductionofclustering[18,15].Itisnowpossibletocomputeglobalilluminationsolu-tionsofcomplexdiffuseenvironmentsandperforminter-activewalkthroughs.Interactivityisachievedusingthepolygonalmodelwhichisappropriatelysubdividedintosub-polygonstocaptureshadowsandlightingvariations.Sincetheenvironmentsarediffuse,noupdatesareneces-saryateachframe,andthepolygonsaredrawnasis.Incontrast,scenescontainingglossysurfacescannotyetbetreatedinaninteractivecontext.Togenerateimageswithglossysurfaces,ray-tracingbasedapproachesaretypi-callyused,suchastheRADIANCEsystem[27]orpath-

tracingalgorithms(e.g.,[11,23]).Somefiniteelementapproacheshavebeenpresented,butcanonlytreattrivialscenes(e.g.,[13,1])orrequireasecond,ray-castingpasstogenerateanimage[3].Twoapproacheshavebeenpro-posedwhicharecapableofinteractiveviewing[16,25],buttheyarelimitedintheircapacitytotreatnon-trivialenvironmentsandreflectivebehaviours.

Wepresentanovelsolutionwhichallowsinteractiveviewingofgloballyilluminatedglossyscenes.Toreachthisgoal,weuseafiniteelementrepresentationofoutgo-ingradianceatsurfacesorclusters.Thisrepresentationisusedateachframetoevaluatetheradianceleavingaglossysurfaceandreachingtheeye,permittinginterac-tiveviewing.

AnovelrepresentationofincomingradianceintheformofastructurecalledIlluminationSamplesispre-sented,whichisefficientbothinmemoryandcomputa-tiontime.Thisstructurereplacesanexplicit(andcostly)finite-elementrepresentationofincomingradiancebysetsofrelevantpointsamples.

Furthermore,wedemonstratetheimportanceandben-efitsofusinganadaptivehierarchicalrepresentationofoutgoingradianceimprovingonbothcomputationtimeandmemoryconsumptioncomparedtopreviousap-proachessuchas[16].Ouralgorithmproduceshighqual-ityglossyglobalilluminationsolutionswhichcanbedi-rectlyrenderedforinteractivewalkthroughs,withouttheneedforexpensivesecond-passfinalgatherasin[3].2

PreviousWork

Mostpreviousworkinglossyilluminationhasbeencen-teredaroundray-tracing.Thesestartwithdistributedray-tracing[28,5]andtherenderingequation[9]inthelateeighties.AlargebodyofresearchensuedfocusingonMonte-Carlostochasticalgorithms.Thegoalofthisre-searchwastoreducethenoiseinthesolutions,introducedbythestochasticnatureoftheMonte-Carlomethods(e.g.[22,11,14]).Monte-Carloalgorithmsthatprovedtobeusefulinotherresearchareasweresuccessfullytrans-

ferredtotheglobalilluminationproblem[10,24].

Inparallel,severalmulti-passmethodshavebeende-velopedwhichcombinetheadvantagesofray-tracingandradiosity-stylecalculations[17];othershaveintegratedradiositycalculationsastochasticprocess[2].TheRA-DIANCEsystem[27],particletracing[12]andphoton-maps[8]arealsointerestingsincetheycollectsamplesofilluminationeitheronsurfacesorinaseparatestructure,andusearay-castortracetorenderthefinalimage.

“Pure”finiteelementapproachesforglossyillumina-tionhaveappearedintwomainflavours:three-pointap-proaches[1,13]andfinite-elementapproachesusingdi-rectionaldistributions[16,3].Weconcentrateonthelasttwomethodsinmoredetail,sincetheyareclosertoournewalgorithm.

2.1WaveletsandFinalGather

Christensenetal.[3]extendedthewaveletmethodswhichhavebeenusedforradiosity[29,6,4]toaradianceclusteringalgorithm.However,itstillsuffersfromsomecomputationallyexpensivestepswhichhinderinteractiveviewing.Patchesstorearadiancedistributionwhichisrepresentedusingafourdimensionalwaveletbasisac-countingforspatialanddirectionalvariations.Comput-ingthetransportcoefficientsinvolvesevaluatingasix-dimensionalintegralwhichiscomputationallyexpensive.Importancedrivenrefinementreducesthenumberofin-teractionsdrastically;butthesolutionbecomesviewde-pendentandconsequentlycannotbeusedforinteractiveviewing.

Higherorderwaveletbaseswerealsoinvestigated,whichprovideasparsertransportcoefficientmatrixanddeliversmootherrepresentations.However,theintegra-tionsaresocomplexthattheauthorsresortedtotheHaarbasiswithasmoothingfinalgatherstep,whichisverytimeconsumingandviewdependent.

2.2RadianceClustering

TheRadianceClusteringapproach(RC)developedbySillionetal.[16],usedsphericalharmonicstostoreex-itingradiantintensityIonthehierarchicalelementsofasubdivisionoftheoriginalscene.An“immediate-push”algorithmisused,which,duringthegatheroperationoflightacrosslinks,“pushes”thecontributionallthewaytotheleaves.Attheleaves,radiantintensityIisstoredasasphericalharmonicfunction;thenewcontributionisreflectedandaddedintothisfunction.

TheresultcanbevisualiseddirectlybysamplingthesphericalharmonicrepresentationsofIateachframe.Directvisualisation(i.e.withnoacceleration)wasper-formedforsimplescenes;sinceforeachframeradianceisevaluatedateachvertexorleafelement,frameratesarenotoptimal.Furthermore,sphericalharmonicsarea

non-hierarchicalrepresentation,andthenumberofcoef-ficientsusedisfixedinadvance.Asaresult,thereisnocontroloverthelevelofdetailrequiredtorepresentthedirectionallydependentglossyillumination.

Ournewalgorithmprovidessolutionstotheaboveproblemsandalsoreducesmemoryandtimeconsump-tion.Westartwithanimprovedrepresentationofin-comingradiance,whichavoidsthememoryoverheadandmultiplehierarchypassesofthe“immediate-push”so-lution.InparticularweintroduceIlluminationSampleswhichareanappropriatepointsamplesetrepresentationofincominglight.Wethenproceedwithanadaptivehi-erarchicalrepresentationofoutgoingradianceusingHaarwavelets,whichiswell-suitedtointeractiveviewing,andallowssmoothcontrolofthememory/qualitytradeoff.Thisavoidstheproblemsofnon-adaptiverepresentationswhichareeithernotsufficientlyaccurateortoomemory-consuming.Appropriatedirectionalrefinementandsim-pleheuristicsforacceleratedviewingarealsointroduced.3

TheIlluminationSamplesAlgorithm

ThegoalofthenewIlluminationSamplesalgorithmistoextendanexistingHierarchicalClusteringalgorithmtoalsohandlenon-diffusesurfaces.Inter-surfacelightprop-agationisthesamefordiffuseandnon-diffuseenviron-ments,withthedifferencethatinanon-diffusesetupdi-rectionalinformationaboutincidentlightmustbemain-tainedforafollowingglossyreflectionstep.

Asin[16],patchesandclustersareassumedtohavenospatialextent.Theystoreahierarchicaldirectionaldis-tributionforoutgoingradiancewhichwillbedescribedseparatelyinSection4.Incontrastto[3],ournewalgo-rithmdoesnotdifferentiatebetweenclustersandpatchesconcerningtherepresentationofexitantlight.

3.1BoundedPropagation

Ourapproachisbasedontheradiosityclusteringmethoddescribedin[20,21],whichcanhandleflatandcurvedsurfacesaswellasclustersinauniformmanner.Bound-ingboxesaroundtheobjectsareusedtoboundthesetofinteractingdirections.Withthisinformation,boundsontheformfactorandexitantradianceatthesenderarecomputed,deliveringminimumandmaximumvaluesforthereceivedradiosity.Thedifferenceisusedtodecidewhethertorefinealink.

Thisboundedradiosityapproachcanbeappliedtoradiancecomputationseasily,sincethepropagationoflight,i.e.thetransformationofexitanttoincidentlight,isindependentofmaterialproperties.Theonlydiffer-enceliesintheevaluationofboundsontheradianceofthesender,whichiseveneasierifwehaveadirectionaldistributionforthesender’sexitantradiance.However,sincethisexitantradiancerepresentationisonlyapproxi-

mate,theresultingboundsarenolongerconservative.3.2IncidentLight

Onewaytointegratethedirectionalinformationistoexplicitlycomputeafiniteelementrepresentationofit.In[3],eachincidentlightcontributioncomputedduringpropagationisprojectedseparatelyontoabasisforin-cominglight(forclusters).Thisisrathercostly(inmem-oryandtime)andresultsinsignificantblurringofinci-dentlight,whichcanexhibitverystrongvariations.

Analternativeistoreflectincidentlightcontributionsimmediatelyaftertheyhavebeencomputed[16],whiletheirdirectionofincidenceisstillknown.Thereflec-tionresponsesarethenprojectedinfiniteelementbasesseparately.Thismethodcircumventstheneedtostoretheincidentlight,butthestorageconsumptionisnotre-duced:tworepresentationsofexitantradianceareneededforthepush/pullphase.Inaddition,thismethodiscom-putationallyexpensive,becauseofthehighnumberofBRDFevaluations,andthemultiplehierarchytraversalsinvolvedintheimmediateprojection.

Ourproposedsolutionistocombinetheapproachesofincidentlightrepresentationandimmediatereflection.WeattachincidentlighttoareceivingpatchintheformofIlluminationSamples.LightpropagationiscomputedsimilarlytoHRbyrefininglinksuntileachlinkrepre-sentswhatamountstoconstantlightpower.Insteadofsimplysummingtheirradiancevaluesatthereceiver,anIlluminationSamplewiththedirectiontothesenderandthetransportedirradianceisaddedtothereceiverforeachlink.Attheendofthepropagationstep,theilluminationinthesceneisrepresentedasasetofpointsamples,dis-tributedoverthescenehierarchy.

3.3Push/PullandReflection

ApushstepasinHRisneededtocreateaconsistentrepresentationoftheincidentlightattheleaves,i.e.alllightreceivedbyinnernodesispropagatedtothechildrenbypassingitsIlluminationSamplesdownwards.After-wards,eachleafhasalargesetofIlluminationSamplesdescribingitsentireincidentlightfield.NotethatthenumberofhierarchytraversalsismuchsmallerthaninRadianceClustering[16],whereeachsampleispusheddownseparately.

Afterthepushstep,theincidentlighthastobere-flectedaccordingtotheobject’sBRDF.BecauseIllumi-nationSamplescorrespondtoDiracimpulses,thereflec-tionisanimpulseresponseoftheBRDF,i.e.itistheBRDFwithafixedincidentlightdirectionmultipliedbytheirradianceofthesample.ThecompletereflectionisthesumoftheimpulseresponsestoeachIlluminationSample.ThereforetheBRDFmustbeevaluatedonceforeachIlluminationSampletoobtainthereflectedradiance

inaparticulardirection.

Usinganadaptivedirectionaldistributiondescribedbelow,reflectedlightisprojectedontoanadaptive,hi-erarchicaldirectionalbasistoobtainthenewexitantlightforeachpatch.Theserepresentationsarethenaveragedbottom-uptoobtainthedistributionsforinnernodes.3.4Shooting

Withagatheringiterationscheme,thenumberofIllumi-nationSamplesandthusthetimeforpush/pullincreasesfromiterationtoiteration.Withashootingschemeinthespiritof[19]thiscanbeavoided.Thisrequiresanaddi-tionaldirectionalrepresentationofunshotradiance,butitalsoavoidsthestorageandreflectionofallIlluminationSamples.

3.5ErrorAnalysis

Notethatinourapproachpropagationandreflectionarecompletelydecoupled.Propagationcomputationdoesnotconsiderthereflectionpropertiesofthereceiver,whichwouldallowthecomputationofincidentlightatahighlyglossypatchmoreaccuratelythaninthediffusecase.Thespatialrefinementofthepatchesisdoneduringpropagation,whiletherefinementlevelofthedirectionaldistributionsischosenduringreflection.Thisdistinctiondoesnotimposeaproblemonconvergence,butitresultsinmemory/computationsavings.

IlluminationSamplescanbeinterpretedasDirac-peaksfromaparticulardirectiondescribingincidentlightandarethussomewhatsimilartothephotonsinthePho-tonMapapproachofJensenetal.[8].However,Photonmapsarenotdeterministicandtheirusageforlightingsimulationisverydifferentfromours.

Withrespecttoastandardnorm,withDirac-peaksnoconvergentrepresentationcanbeobtained.Ontheotherhand,theDirac-representationisonlyusedtocom-putethereflectionintegral.Fromanotherpointofview,thisrepresentationcanbeseenasintermediatedatainadelayednumericalintegration,whereeachIlluminationSampleisatemporarilystoredintegrationsample.SoaslongastheBRDFisnumericallyintegrable,thecom-putedreflectionwillconverge.4

AdaptiveRepresentationofOutgoingRadianceforInteractiveDisplay

Toproducethefinite-elementsolutionssuitableforinter-activedisplay,westoreoutgoinglightintheformofdi-rectionaldistributionsattachedtosurfacesorclusters.AsinRadianceClustering[16],objectsareassumedtohavenospatialextent.Insteadofthefourdimensionalradi-anceonlythe2Dradiantintensitydistributionisstoredwitheachobject.

4.1DirectionalRepresentations

Fortherepresentationofdirectionalradiantintensities,wehaveimplementedandexaminedtwooptions:First,auniformsubdivisionofthedirectionspace,whereeachdistributionisrepresentedbyafixednumberofcoeffi-cients(non-adaptivebasis)1.Second,weimplementedanadaptiverepresentationusingHaarWavelets.

Thenon-adaptivebasisismoreusefulforsmoothdis-tributions,becausealloperationsonthefixedsubdivisionbasisaresimpleandfast.TheadaptiveHaarbasisisbet-tersuitedforstronglyvaryingfunctions,becauseitcanusemorebasisfunctionsintheinterestingregionsandfewerinsmoothregions.However,operationssuchastheevaluationofthedistributionoradditionoftwodis-tributionsaremoreexpensive.

“Non-adaptive”Representation

Foranon-adaptivebasis,weuseauniformsubdivisionofthedirectionspace.Toaccomplishthistask,atetrahe-dronissubdivided.Wethusobtain4n1trianglesifthelevelofsubdivisonisn.Sincethenumberofverticesislowerthanthenumberoftriangles(thisis24n2),wedecidedtostore3floatsforRGBonlyatthevertices.

HaarRepresentation

FortheHaarrepresentation,thedomainofdirectionsisparameterizedbypointsonanoctahedron.Theverticesoftheoctahedronareselectedtolieonthemainaxes,soeachfacecorrespondstooneoctantofthedirectionaldomain.Simplesignconsiderationsofadirectiondeliverthecorrespondingoctahedronface.

Ahierarchyofbasisfunctionsisbuiltbyassigningafirstlevelbasisfunctiontoeachoftheeightfacesoftheoctahedron.Thesearethensubdividedhierarchicallyintheusualmanner.

Inordertoquicklycomputeanadaptiverepresentation,atop-downapproachwaschosen.Assumethatthefunc-tiontobeprojectedisf.Foreachofthefirsteightbasisfunctions,fissampledatthetrianglecornersandatitscenter.Iffisalmostconstantoverthetriangle,thesam-plevalueswillonlyvaryslightly.Forhighlyvaryingf,onecanexpectawiderangeoffunctionsamples.Thusthedifferencebetweenminimumandmaximumsampleisconsidered.Ifitistoolarge,thefourfinerbasisfunc-tionspartitioningthedomainareconsideredrecursively.Thistop-downapproachrunsintoproblemsiffhasasharppeakinbetweenthesamples.Wealleviatethisproblembyenforcingaminimumsubdivisionlevelinthehopethattheresultingsamplingisdenseenoughtonotmissanypeaks.

3

N/A

Figure1:Comparisonofthenon-adaptive(N/A)vs.Haar.

MaxTrianglesLevelN/AN/A3782K510s4

3127K

731s

theHaarbasisuseslessthanthreetimesasmuchmemoryforan“equivalent”improvementinquality.However,theHaarbasisalsotakesmoretime.Thereasonisthatarith-meticoperationsontheregularconstantsubdivisionareofcoursesimplerandfaster.

Thisexampledemonstratesthatforhighlyglossyscenes,smallhighlightscanonlybecapturedwiththeadaptivebasisoraveryfinenon-adaptivebasisrepre-sentation,whichinturnrequireslargeamountsofmem-ory.Moreimportantly,theuser,whohaslimitedmem-ory,canonlychangethequalityinlarge“quanta”,andoftenwillnotbeabletogetasatisfactoryresultbeforerunningoutofmemory.Adaptivebases,suchasHaar,alleviatethisproblem.However,theuniformityofthenon-adaptivebasisresultsinasmoother,moreregulardistribution,whichbecomesespeciallyvisibleduringin-teractiveviewing.5InteractiveDisplay

AfterthecomputationofaglobalilluminationsolutionusingIlluminationSamples,wehavearepresentationofoutgoingradiantintensity,storedinthedirectionaldistri-butionfunction.Ateachframeduringinteractivedisplay,weneedtoevaluateradianceforeveryglossyhierarchi-calleafelementinthedirectionoftheviewpoint.Thisimpliestworequirements:(i)subdivisionofthedirec-tionaldistributionsappropriatelysothatavisuallypleas-ingrepresentationofglossyeffectsisproducedand(ii)accelerationofthedisplayprocesstoavoidthecostoftheevaluationofradianceateachelementateveryframe.5.1RefinementIssuesforDisplay

Recallthatwehavedecoupleddirectionalsubdivision,intheformoftheHaar-baseddirectionaldistributionfunc-tions,andthespatialsubdivision,intheformofthe“tra-ditional”hierarchicalradiosityelementhierarchy.Todis-playthesolution,weinterpolateradianceintheviewdi-rectionbyevaluatingthedirectionaldistributiononeachelement.Ifsubdivisionindirectionspaceisperformedarbitrarily,thedifferenceinsubdivisionofthedirec-tionalfunctionbetweenneighbouringpatchesmaybetooabrupt.

Thisisthecaseforexampleifwecompareabsolutevaluedifferencesbetweenthecenterandtheverticesofthetrianglesofthedirectionalsubdivisiontodecidewhethertosubdivide.Theuseofrelative(percentage)differencesavoidsthisproblemsinceweapproximatetheformofthefunction,whichvariesmoreslowlyacrossneighbours.TheartifactsduetotheabsoluterefinementcanbeseeninFigure2.

Figure2:Artifactswhenusingthe“absolute”refiner(left),

whichareabsentwhenusingthe“relative”refiner(right).

5.2InteractiveRendering

Forefficientdisplayweseparateobjectsintotwolists,sothatdiffuseobjectscanberenderedonceandredisplayedinefficient,display-listmode.Theotherlist,ofglossyreflectors,isupdatedappropriatelyateachframeanddis-playedinimmediatemode.Theaccelarationachievedobviouslydependsonthepercentageofdiffusesurfacesinthescene.Forthescenestestedweachieveupdateratesvaryingfromafewframespersecondtoafewsecondsperframeformorecomplexscenes.

Toachievesmoothshadingforglossysurfaces,weaddafieldtothedatastructureassociatedwithverticesinthehierarchyofelements.Forplanarsurfaces,thisfieldisupdatedduringpush-pullinamannerslightlydifferenttothatofradiosity;i.e.foravertexbelongingtoaleafele-mentortoanedge,theradiantintensityissummedwiththeradiantintensitystoredatthevertex.Sinceradiantin-tensityisinWatts/sr(see[16]),atdisplaytimewedividebytheareaofthesurroundingelements.

Thespecialcaseofindexedface-setsistreatedsepa-rately.Indexedface-setsarecommonmodellingprimi-tives,andoftenresultfromthetesselationofcurvedob-jectssuchasspheresorcylinders.Theadvantageofsuchaprimitiveisthatverticesaresharedbetweenadjacentelements.Wecanthusavoidthestorageoftheadditionaldirectionaldistributionatthevertices.

Eachvertexstoresthelistofpolygonalelementswhichshareit.Itscoloristhentheaverageradiantintensityofthesepolygons(i.e.Ievaluatedatthecentersoftheele-mentsintheviewingdirection).Formoreefficientdis-play,weevaluatethiscoloroncepervertexforagivendirection.Also,werecomputethecoloronlyifthedirec-tionchanges“sufficiently”i.e.greaterthanauser-definedεthreshold.Thisallowsthecontrolofthequality/updateratetradeoff.

6ImplementationandResults

Onemajorgoalofourapproachwasthedevelopmentofasolutionwhichcanbeconsideredasimple“add-on”toanexistinghierarchicalradiositysystem.Weimplementedthealgorithmontwoverydifferentrenderingarchitec-tures,namelyBRIGHT(iMAGIS)andVISION(Uni-

versityofErlangen).

Wehavetestedourimplementationonseveraltestscenes,showninFigures3and6.ThescenesinFigure3wereusedfortheinteractiveviewingtestinBRIGHT.Thefirstsceneshowsthreelightsourcescoloredred,greenandblue,illuminatingaveryglossy,smallreflec-tor.Thisreflectorinturnindirectlyilluminatesadif-fusewall.Thesecondsceneisaglossysphereillumi-natedbyasmallsourceandaglossyfloor.Theseinturnproduceindirectglossyeffectsonthelowerpartofthesphereandthediffuseceiling.Finally,the“Simplesoda”sceneisasimplifiedversionofthe“SodaShoppe”scene.InBRIGHT,werequiretesselationofallobjectsinitially,whichresultsinahighnumberofinitialobjects;inVISION,objectsarenotinitiallytesselated.Thisex-plainsthelownumberofinitialobjectsinthecomplete“SodaShoppe”scene,usedforFigure6.

6.1RadianceClusteringvs.IlluminationSamplesInBRIGHTwehaveimplementedbothRadianceClus-tering(RC)andtheIlluminationSamples(IS)approach.WehavecomparedrunningtimeandmemoryusagefortheRCandISapproaches.Thethresholdvaluehasthesamemeaningforbothapproaches,sinceweareusinga“relative”refiner.Visualinspectionalsoshowsthattheresultingimagesareequivalentforthesameparametervalues.Alltimingsareona195MhzR10kSGIworksta-tion.

3Lig.3Lig.3Lig.3Lig.Sph.Soda

m/M1/31/31/41/51/31/3RC13866140684351012594435987203339794

ε0.50.10.50.50.50.5ΙΣ44.6σ44.2σ49.3σ58.6σ4167.1σ5207.6σ

50%51%48%44%34%27%

Ταβλε3:ΓαινινcomputationtimefromtheuseoftheIllumi-nationSamplesalgorithm.εistheaccuracythresholdandm/Marethemin/maxlevels.

3LightsSphereS.Soda

Figure3:Testscenesusingilluminationsamples.

6.2MemoryConsumption

InTable2weshowthememorystatisticsforthetestscenesused.Inparticularwelistthedifferentsceneswiththeεaccuracythreshold(seeSection4.1),andthecorre-spondingnumberofdirectionaldistributionbasisfunc-tionsusedforthesolutionbytheRadianceClustering(RC)andIlluminationSamples(IS)approach.Theright-mostcolumnshowsthepercentgainoftheilluminationsamplesapproach.

MemoryusageisclearlyreducedusingIlluminationSamplescomparedtotheRadianceClusteringapproachforallscenes.Thegainvariesfrom37%to41%inthebestcase.ThisismainlyduetothefactthatRadi-anceClusteringrequirestheadditionalintermediatedi-rectionaldistributionfunctionstobeabletocorrectlyper-

Forallscenestheilluminationsamplesapproachpro-videsaspeedupofatleast27%.Thisismainlyduetothereductioninthenumberofhierarchytraversals,andalsothereductioninthenumberoftrianglesusedtorepresentthedirectionaldistributionsasdiscussedabove.

Asexpectedandconfirmedbytheexperimentalre-sults,theIlluminationSamplesapproachreducesbothmemoryandcomputationtimewithrespecttoRadianceClustering.Theimagesproducedbybothapproachesareessentiallyindistinguishable.

6.4VisualQuality/Comparisons

WequalitativelycomparethevisualqualityoftheimagesofRadianceClusteringandIlluminationSampleswiththosefromapath-tracerortheRADIANCEsystem.Thepath-tracertestsarerenderedusinganin-houseimple-mentationofthenext-eventestimation[11].InFig.4and5weshowthereferencepath-tracerorRADIANCEim-agesandthecorrespondingIlluminationSamplesimagestogetherwiththecomputationtimesforthetestscenes.Thereareseveralinterestingobservationsthatwecaninferfromtheseexamples:

1)Inthecaseofthethreelightscene,RADIANCEruns

Reference

Radiance6537s

Radiance1303s

IlluminationSamples

5208s

Figure5:SimpleSodareferencesolution(path-tracerat

455x364resolution)comparedtoISsolution.

intosamplingproblems.Evenaftermorethananhourandahalfofcomputationitdoesnotconverge.Incon-trast,illuminationsamplesachievesasolutioninlessthanaminute,whichisinadditionviewablefromanydirec-tioninteractively2.

2)ThecomputationtimesofISareeitherlowerorinthesameorderofmagnitudeasthoseofthereferencesolutions.TheimportantthingtorememberisthattheISsolutionscanbeviewedinteractively,whiletherefer-ence(path-tracerorRadiance)requirethesameamountoftime(tensofminutesorevenhours)foreveryimage.3)Path-tracingimagesareverynoisy.The“smooth-shaded”solutionsproducedbyISdonotsufferfromthisproblem.Despitebeingapproximate,thesmooth-shadedimagesarethereforemuchbettersuitedtointeractiveap-plications,wherenoiseandflickeringareverydistracting.Wethusbelievethatourapproachhasgreatpromise,sinceitcanbeusedtogeneratelowtomoderatequalitysolutionsforglossyenvironments,aswellasproduceso-lutionssuitableforinteractiveviewing.

isanimportantsteptowardsinteractivewalkthroughsofgloballyilluminatedglossyscenes:(i)WeintroducedtheIlluminationSamplesalgorithmwhichrepresentsincom-inglightmoreaccuratelyandefficiently,bothinmemoryandcomputationtime.(ii)Wehaveusedanadaptivehi-erarchicalfinite-elementbasistostoreoutgoinglight,inamannersuitableforinteractiveviewing.Thisallowsfinecontrolofthememory/qualitytradeoff,whichwasnotpossibleinprevioussolutions.(iii)Thesealgorithmscanbeimplementedwithmarginaleffortoveranexist-inghierarchicalradiositysystem,byconfiningthemodi-ficationstoasmallnumberofphasesanddatastructures.(iv)Interactiveviewingoftheglossyglobalilluminationsolutionsisachievedbysuitablyrefiningthedirectionalrepresentationofoutgoinglightandacceleratingthedis-playprocess.

Oursolutionhoweverisstillquitememory-consumingrequiringintheorderoftensofMbytesforthesmallestscenesandhundredsofMbytesforthemorecomplex.Toremedytheseproblemsweneedtogeneralisethemulti-resolutionnatureofoursolution.Notablywewillintroduceamulti-resolutionrepresentationofoutgoinglight,whichwillallowsignificantsavingsinmemoryatthecostoflowervisualquality.Thisapproachwillre-quireanovelrepresentationaswellasanovelrefinementalgorithm.Thisrepresentationcanbeusedbothfortheactuallightingsimulationaswellasfordisplay.Acknowledgements

ThisresearchwasfundedbytheESPRITOpenLTRSIMULGEN(#25772)ThankstoCyrilSoler(iMAGIS)andIgnacioMartin(GGG)forcodinghelp,andtoBruceWalterforproofreading.iMAGISisajointprojectofCNRS/INRIA/UJF/INPG.

8References

[1]L.AupperleandP.Hanrahan.Ahierarchicalilluminationalgo-rithmforsurfaceswithglossyreflection.InComputerGraphics(SIGGRAPH’93),pages155–162,August1993.

[2]S.E.Chen,H.E.Rushmeier,G.Miller,andD.Turner.Aprogres-sivemulti-passmethodforglobalillumination.ComputerGraph-ics(SIGGRAPH’91),25(4):165–174,July1991.

[3]P.H.Christensen,D.Lischinski,E.Stollnitz,andD.H.Salesin.

Clusteringforglossyglobalillumination.ACMTrans.onGraph-ics,16(1):3–33,January1997.

[4]P.H.Christensen,E.J.Stollnitz,andD.H.Salesin.Globalillu-minationofglossyenvironmentsusingwaveletsandimportance.ACMTrans.onGraphics,15(1):37–71,January1996.

[5]R.L.Cook,T.Porter,andL.Carpenter.Distributedraytracing.

ComputerGraphics(SIGGRAPH’84),18(3):137–145,July1984.[6]S.J.Gortler,P.Schr¨oder,M.Cohen,andP.M.Hanrahan.Wavelet

radiosity.ComputerGraphics(SIGGRAPH’93),27:221–230,August1993.

[7]P.Hanrahan,D.Salzman,andL.Aupperle.Arapidhierarchi-calradiosityalgorithm.ComputerGraphics(SIGGRAPH’91),25(4):197–206,1991.

[8]H.WannJensen.Globalilluminationusingphotonmaps.In

XavierPueyoandPeterSchr¨oder,editors,RenderingTechniques’96(7thEGWorkshoponRendering),pages21–30.Springer,June1996.

[9]J.T.Kajiya.Therenderingequation.ComputerGraphics(SIG-GRAPH’86),20(4):143–150,August1986.

[10]A.Keller.Quasi-montecarloradiosity.InX.Pueyoand

P.Schr¨oder,editors,RenderingTechniques’96(7thEGWorkshoponRendering),pages101–110,Porto,June1996.Springer.

[11]E.Lafortune.MathematicalModelsandMonteCarloAlgorithms

forPhysicallyBasedRendering.PhDthesis,KatholiekeUniver-siteitLeuven,1996.

[12]S.N.PattanaikandS.P.Mudur.Computationofglobalillumi-nationbyMonteCarlosimulationoftheparticlemodeloflight.ThirdEGWorkshoponRendering,pages71–83,May1992.[13]P.Schr¨oderandP.Hanrahan.Waveletmethodsforradiance

computations.InPhotorealisticRenderingTechniques(5thEGWorkshoponRendering),pages303–311,Darmstadt,June1994.Springer.

[14]P.Shirley,C.Wang,andK.Zimmerman.Montecarlotechniques

fordirectlightingcalculations.ACMTrans.onGraphics,15(1):1–36,1996.

[15]F.X.Sillion.Aunifiedhierarchicalalgorithmforglobalillumina-tionwithscatteringvolumesandobjectclusters.IEEETrans.onVis.andComp.Graphics,1(3):240–254,September1995.

[16]F.X.Sillion,G.Drettakis,andC.Soler.Aclusteringalgorithm

forradiancecalculationingeneralenvironments.InRenderingTechniques’95(6thEGWorkshoponRendering),pages196–205.Springer,August1995.

[17]F.X.SillionandC.Puech.Ageneraltwo-passmethodintegrating

specularanddiffusereflection.ComputerGraphics(SIGGRAPH’89),23(3):335–344,July1989.

[18]B.Smits,J.Arvo,andD.Greenberg.Aclusteringalgorithmfor

radiosityincomplexenvironments.ComputerGraphics(SIG-GRAPH’94),pages435–442,July1994.

[19]M.Stamminger,H.Schirmacher,P.Slusallek,andH-P.Seidel.

Gettingridoflinksinhierarchicalradiosity.ComputerGraphicsForum(EUROGRAPHICS’98),17(3):165–174,September1998.[20]M.Stamminger,P.Slusallek,andH-P.Seidel.Boundedradiosity

–illuminationongeneralsurfacesandclusters.ComputerGraph-icsForum(EUROGRAPHICS’97),16(3):309–318,September1997.

[21]M.Stamminger,P.Slusallek,andH-P.Seidel.Boundedradios-ity–findinggoodboundsonclusteredlighttransport.Conf.Proc.ofPacificGraphics’98,1998.http://www9.informatik.uni-erlangen.de/eng/research/pub1998/.

[22]E.VeachandL.Guibas.Bidirectionalestimatorsforlighttrans-port.InPhotorealisticRenderingTechniques(5thEGWorkshoponRendering),pages145–167,Darmstadt,June1994.Springer.[23]E.VeachandL.J.Guibas.Optimallycombiningsamplingtech-niquesforMonteCarlorendering.ComputerGraphics(SIG-GRAPH’95),pages419–428,aug1995.

[24]E.VeachandL.J.Guibas.Metropolislighttransport.Computer

Graphics(SIGGRAPH’97),pages65–76,aug1997.

[25]B.Walter,G.Alppay,E.P.F.Lafortune,S.Fernandez,andD.P.

Greenberg.Fittingvirtuallightsfornon-diffusewalkthroughs.InT.Whitted,editor,SIGGRAPH’97,pages45–48,August1997.[26]G.Ward.Radiancewebsite.http://radsite.lbl.gov/radiance.

[27]G.J.Ward.TheRADIANCElightingsimulationandrendering

system.ComputerGraphics(SIGGRAPH’94),pages459–472,July1994.

[28]T.Whitted.Animprovedilluminationmodelforshadeddisplay.

CommunicationsoftheACM,23(6):343–349,June1980.

[29]H.R.Zatz.Galerkinradiosity:Ahigherordersolutionmethodfor

globalillumination.ComputerGraphics(SIGGRAPH’93),pages213–220,August1993.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top