(1)如果为整式,其定义域为实数集R.
(2)若是分式,则其定义域是使分母不等于0的实数的集合.(3)若是偶次根式,则其定义域是使根号内的式子大于或等于0的实数的集合.(4)x0的定义域是{x∈R∣x≠0}.
(5)若是由几部分的数学式子构成,那么函数的定义域是使各部分都有意义的实数的集合,即交集.2、抽象函数的定义域(1)函数的定义域是指x的取值范围所组成的集合.(2)函数的定义域还是指x的取值范围而不是的取值范围.函数值域的求法(1)直接法:从自变量x的范围入手,逐步推出y=的取值范围.(2)换元法:运用代数或三角代换,将所给的函数转化为值域容易求出的另外一个函数,从而得到原函数的值域.(3)反解法:通过反解,用y表示x,再由x的取值范围,通过解不等式,得出y的取值范围.
因篇幅问题不能全部显示,请点此查看更多更全内容