您的当前位置:首页正文

七年级下册数学经典练习题

来源:九壹网
例1 如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数。

AE例2 如图AD平分∠CAE,∠B = 350°,∠DAE=600°,那么∠ACB等于多少?

例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不 相邻的一个内角的2倍,则这个三角形各角的度数为( )。 A.450、450、900 B.300、600、900

C.250、250、1300 D.360、720、720

例4 已知如图,求∠A+∠B+∠C+∠D+∠E+∠F的度

ABCDCDA12EB数。

BF

CED例5 如图,AB∥CD,EF分别与AB、CD交于G、H,MN⊥AB于G,∠CHG=1240,则∠EGM等于多少度?

CFHNDMAGEB例1 一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5•点,如果A1求坐标为(3,0),求点 A5•的坐标。

例2 如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为( ) A、(0,3) B、(2,3) C、(3,2) D、(3,0)

A 例2 B

C

例3 如图2,根据坐标平面内点的位置,写出以下各点的坐标: A( ),B( ),C( )。

例4 如图,面积为12cm2的△ABC向x轴正方向平移至△DEF的位置,相应的坐标如图所示(a,b为常数), (1)、求点D、E的坐标 (2)、求四边形ACED的面积.

例5 过两点A(3,4),B(-2,4)作直线AB,则直线AB( ) A、经过原点 B、平行于y轴 C、平行于x轴 D、以上说法都不对 例2 如图,结合图形作出了如下判断或推理:

①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;

②如图乙,如果AB∥CD,那么∠B=∠D; ③如图丙,如果∠ACD=∠CAB,那么AD∥BC;

④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是( )个.

(A)1 (B)2 (C)3 (D)4

例5 在直角坐标系中,已知A(—4,0)、B(1,0)、C(0,-2)三点.请按以下要求设计两种方案:作一条与轴不重合,与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的.分别在下面的两个坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标.

三、经典例题

例1 用加减消元法解方程组,

例2 如果

是同类项,则、的值是( )

A、=-3,=2 B、=2,=-3

C、=-2,=3 D、=3,=-2 例3 计算:

例4 王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。问王大伯一共获纯利多少元?

例5 已知关于x、y的二元一次方程组方程,求

例1 当x 时,代数代2—3x的值是正数。 例2 一元一次不等式组的

A.—2<x<<

例3 已知方程组

例4 某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)

解集是 ( )

3 B.—3<x<2 C.x-3 D.x<2 的解为负数,求k的取值范围.

的值。

的解满足二元一次

例5 某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.

(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。

(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。

例1 某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是( ) A.720,360 B.1000,500 C.1200,600 D.800,400

例2 某音乐行出售三种音乐CD ,即古典音乐、流行音乐、民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用( )

A.扇形统计图 B.折线统计图 C.条形统计图 D.以上都可

例3 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:

⑴已知最后一组(89。5-99.5)出现的频率为15 %,则这一次抽样调查的容量是________ .

⑵第三小组(69.5~79.5)的频数是_______,频率是________.

例4 如图,是一位护士统计一位病人的体温变化图:根据统计图回答下列问题:

⑴病人的最高体温是达多少? ⑵什么时间体温升得最快?

例5 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:

⑴已知最后一组(89.5~99。5)出现的频率为15 %,则这一次抽样调查的容量是________ .

⑵第三小组(69。5~79.5)的频数是_______,频率是________.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top