奇函数和偶函数的定义:
奇函数:如果函数f(x)的定义域中任意x有f(—x)=—f(x),则函数f(x)称为奇函数。
偶数函数:如果函数f(x)的定义域中任意x有f(—x)=f(x),则函数f(x)称为偶数函数。
性质:
奇函数性质:
1、图象关于原点对称
2、满足f(—x)= — f(x)
3、关于原点对称的区间上单调性一致
4、如果奇函数在x=0上有定义,那么有f(0)=0
5、定义域关于原点对称(奇偶函数共有的)
偶函数性质:
1、图象关于y轴对称
2、满足f(—x)= f(x)
3、关于原点对称的区间上单调性相反
4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0
5、定义域关于原点对称(奇偶函数共有的)
常用运算方法:
奇函数±奇函数=奇函数;
偶函数±偶函数=偶函数;
奇函数×奇函数=偶函数;
偶函数×偶函数=偶函数;
奇函数×偶函数=奇函数。
证明方法:
设f(x),g(x)为奇函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函数加奇函数还是奇函数;
若f(x),g(x)为偶函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函数加偶函数还是偶函数。
因篇幅问题不能全部显示,请点此查看更多更全内容