三、实验内容1、单极性SPWM逆变电路仿真
(完整)单相正弦波PWM逆变电路
图3-1单极性SPWM逆变电路仿真模型
图3—2单极性SPWM控制信号仿真模型
参数设计:阻感负载,R=1Ω,L=2mH,直流电源取300V,控制电路中载波的频率为1000HZ,幅值为1V,调制波的频率为50HZ,,幅值为0.5V,即调制比0。5,载波比为20.
运行后可得仿真结果,输出交流电压、交流电流和直流电流的波形如图所示,对输出的交流电压、交流电流进行FFT谐波分析,可得频谱图如图所示。
(完整)单相正弦波PWM逆变电路
图3-3单极性SPWM逆变电路m=0。5时的仿真波形图
图3—4单极性SPWM逆变电路m=0。5时输出电压的谐波分析图
图3—5单极性SPWM逆变
电路m=0。5时输出电流的谐波分析图
基波幅值约为150。3V,满足基波电压幅值与直流电压的关系式:U1m=mUd=0。5*300=150V。单极性谐波分析当载波比为偶数时,不含偶次谐波.不再含有开关频率次即20次,19和21次谐
(完整)单相正弦波PWM逆变电路
波幅值为基波的73%左右,值得考虑的最低次谐波为17次,幅值为基波的9。51%,最高分析频率为3。5KHz时的THD达到123.61%。由于感性负载的滤波作用,负载上交流电流的THD为15.42%。
若将调制度设为0。8,则可以得到仿真波形,输出交流电压、交流电流和直流电流的波形如图所示,对输出的交流电压、交流电流进行FFT谐波分析,可得频谱图如图所示。
图3—6单极性SPWM逆变电路m=0.8时的仿真波形图
图3-7单极性SPWM逆变
电路m=0.8时输出电压的谐波分析图
(完整)单相正弦波PWM逆变电路
图3—8单极性SPWM逆变电路m=0.8时输出电流的谐波分析图
基波幅值约为240。8V,满足基波电压幅值与直流电压的关系式:U1m=mUd=0。8*300=240V。不再含有开关频率次即20次,19和21次谐波幅值有所降低,为基波的38%左右,但17次和23次谐波稍大,幅值为基波的18%,最高分析频率为3.5KHz时的THD达到76。04%.负载上交流电流的THD也降低为13。28%.
若将调制度设为1,则可以得到仿真波形,输出交流电压、交流电流和直流电流的波形如图所示,对输出的交流电压、交流电流进行FFT谐波分析,可得频谱图如图所示。
图3-9单极性SPWM逆变电路m=1时的仿真波形图
(完整)单相正弦波PWM逆变电路
图3—10单极性SPWM逆变电路m=1时输出电压的谐波分析图
图3-11单极性SPWM逆变电路m=1时输出电流的谐波分析图
基波幅值约为299。4V,满足基波电压幅值与直流电压的关系式:U1m=mUd=1*300=300V.不再含有开关频率次即20次,19和21次谐波幅值有所降低,为基波的17%左右,但17次和23次谐波稍大,幅值为基波的22%,最高分析频率为3.5KHz时的THD达到51。47%.负载上交流电流的THD也降低为12.42%。
调制度m仍保持1不变,改变载波比为40,使载波频率为2000Hz,则可以得到仿真波形,输出交流电压、交流电流和直流电流的波形如图所示,对输出的交流电压、交流电流进行FFT谐波分析,可得频谱图如图所示。
(完整)单相正弦波PWM逆变电路
图3—12单极性SPWM逆变电路m=1,p=40时的仿真波形图
图3-13单极性SPWM逆变电路m=1,p=40时输出电压的谐波分析图
图3-14单极性SPWM逆变电路m=1,p=40时输出电流的谐波分析图
19和21次谐波幅值为基波的17%左右,但17次和23次谐波幅值为基波的22%,最高分析频率为3.5KHz时的THD达到52。07%。负载上交流电流的THD降低为12。21%。
(完整)单相正弦波PWM逆变电路
分析:对比上面四个仿真的仿真波形及FFT分析结果可以看出,相对于第一个的结果,第二、三个仿真的结果波形中电压中心部分明显加宽,THD明显减小,负载电流波形更加光滑;而第四个仿真的结果波形中输出电压中心加宽更明显,负载电流的正弦度也更好了。由此可见调制深度m与载波比p对波形的影响很大,参数值越大,逆变输出效果越好。
2、双极性SPWM逆变电路仿真
图3—15双极性SPWM逆变电路仿真模型
图3—16双极性SPWM控制信号仿真模型
参数设计:阻感负载,R=1Ω,L=2mH,直流电源取300V,控制电路中载波的频率为1000HZ,幅值为1V,调制波的频率为50HZ,,幅值为0.5V,即调制比0。5,载波比为20.
运行后可得仿真结果,输出交流电压、交流电流和直流电流的波形如图所示,对输出的交流电压、交流电流进行FFT谐波分析,可得频谱图如图所示。
(完整)单相正弦波PWM逆变电路
图3—17双极性SPWM逆变电路m=0.5时的仿真波形图
图3-18双极性SPWM逆变电路m=0。5时输出电压的谐波分析图
图3—19双极性SPWM逆变电路m=0。5时输出电流的谐波分析图
基波幅值约为150.4V,满足基波电压幅值与直流电压的关系式:U1m=mUd=0.5*300=150V。双极性谐波分析当载波比为偶数时,不含奇次谐波。最严重的20次谐波分量达到基波2.12倍,
(完整)单相正弦波PWM逆变电路
值得考虑的最低次谐波为18次,幅值为基波的18。78%,最高分析频率为3.5KHz时的THD达到263.71%。由于感性负载的滤波作用,负载上交流电流的THD为27.99%。
若将调制度设为0。8,则可以得到仿真波形,输出交流电压、交流电流和直流电流的波形如图所示,对输出的交流电压、交流电流进行FFT谐波分析,可得频谱图如图所示。
图3—20双极性SPWM逆变电路m=0。8时的仿真波形图
图3—21双极性SPWM逆变电路m=0。8时输出电压的谐波分析图
(完整)单相正弦波PWM逆变电路
图3-22双极性SPWM逆变电路m=0。8时输出电流的谐波分析图
基波幅值约为238.4V,满足基波电压幅值与直流电压的关系式:U1m=mUd=0。8*300=240V。20次谐波明显降低,只有基波幅值的1.12倍,但18次谐波稍大,幅值为基波的29.75%,最高分析频率为3。5KHz时的THD降低为147。08%.负载上交流电流的THD也降低为19。45%。
若将调制度设为1,则可以得到仿真波形,输出交流电压、交流电流和直流电流的波形如图所示,对输出的交流电压、交流电流进行FFT谐波分析,可得频谱图如图所示。
图3—23双极性SPWM逆变电路m=1时的仿真波形图
(完整)单相正弦波PWM逆变电路
图3—24双极性SPWM逆变电路m=1时输出电压的谐波分析图
图3-25双极性SPWM逆变电路m=1时输出电流的谐波分析图
基波幅值约为300.1V,满足基波电压幅值与直流电压的关系式:U1m=mUd=1*300=300V。20次谐波明显降低,只有基波幅值的59.81%,但18次谐波稍大,幅值为基波的34。75%,最高分析频率为3.5KHz时的THD降低为99.73%。负载上交流电流的THD也降低为17。08%。
调制度m仍保持1不变,改变载波比为40,使载波频率为2000Hz,则可以得到仿真波形,输出交流电压、交流电流和直流电流的波形如图所示,对输出的交流电压、交流电流进行FFT谐波分析,可得频谱图如图所示.
(完整)单相正弦波PWM逆变电路
图3-26双极性SPWM逆变电路m=1,p=40时的仿真波形图
图3—27双极性SPWM逆变电路m=1,p=40时输出电压的谐波分析图
图3-28双极性SPWM逆变电路m=1,p=40时输出电压的谐波分析图
20次谐波是基波幅值的59.81%,18次谐波幅值为基波的34。75%,最高分析频率为3.5KHz时的THD降低为99。68%。负载上交流电流的THD降低为14。23%。
(完整)单相正弦波PWM逆变电路
分析:对比上面四个仿真的仿真波形及FFT分析结果可以看出,相对于第一个的结果,第二、三个仿真的结果波形中电压中心部分明显加宽,THD明显减小,负载电流波形更加光滑;而第四个仿真的结果波形中输出电压中心加宽更明显,负载电流的正弦度也更好了。由此可见调制深度m与载波比p对波形的影响很大,参数值越大,逆变输出效果越好。
同时,对比仿真图可以看出,在同样的参数条件下,单极性控制下的逆变输出波形要比双极性控制下的输出要好。