您好,欢迎来到九壹网。
搜索
您的当前位置:首页超大直径盾构水中进洞风险分析

超大直径盾构水中进洞风险分析

来源:九壹网
第5卷增刊2009年12月地下空间与工程学报Chinese Joumal of Underground Space and Engineering Vol. 5 Dec.2009 超大直径盾构水中进涧风险分析*李里,黄宏伟(同济大学土木工程学院地下建筑与工程系,上海摘2∞092) 要:盾构进洞是盾构施工的一道关键收尾工作,也是极易出现风险问题的阶段。上海长江隧道采用水中进洞方案,技术新颖但风险性大,依照上海长江隧道提供的进洞施工方案,采用模糊层次分析法及专家信心指数法,对其进行风险分析,确定了进洞施工过程中的风险点及其权重,并基于风险分析的结果提出了相应的风险规避措施。关键词:长江隧道;进洞;模糊层次分析;风险分析中图分类号:U455文献标识码:A文章编号:1673-0836(2∞9)增-1422-05 Risk Analysis on Arriving into Shaft of Super Large Diameter Shield Machine under Water LI Gang1 I HUANG Hong-wei1 ( Department 0/ Geotechnical Engineering, College 0/ Civil Engineering, Tongji University, Shanghai 2仪泊92,P. R. China) Abstract: Shield tunnel is developing towards 1缸gediameter which brings more risks during reception of shield. The reception of shield is very important in tunneling. ßased on the engineering project of Yangtze River Tunnel in Shanghai, the author analyses all kinds of risks we may meet during the construction by Fuzzy AHP and confidence index and provides corresponding strategies to avoid the risks by studying the critical construction steps of the recep-tion of shield. Keywords: Yangtze river tunnel; break through; F AHP; risk assessment 1 引言盾构进洞是极易出现风险问题的阶段,在进洞11. 125m,盾构进洞处最小顶覆土厚度仅为0.5倍直径,接收井临近长江人海口,地下水极其丰富,采用常规进洞方法易造成接收井拥塌,经多次专家会议讨论上海长江隧道指挥部决定采用水中进洞方案,主要步骤如图1所示。鉴于水中进洞的方法国内外使用较少,风险性大,因此对上海长江隧道水中进洞方案进行风险分析具有重大的工程意义。施工过程中,应确保盾构按照设计线路贯通,防止盾构在隧道贯通过程中出现拥塌,保持周围土体稳定,同时保证进洞段管片衬砌不渗水。盾构进洞施工环节多,工作量集中,各工种交叉施工频繁,设备、人员众多,工作凌乱,就以往工程案例来看盾构在进洞过程中多多少少都存在着许多问题[1-5]。上海长江隧道从浦东五号沟到长兴岛采用超大型φ15.2 上海长江隧道进洞方案上海长江隧道盾构进洞按井内灌水,盾构机直接切削地下连续墙的方案实施,在切削洞门阶段由43 m泥水平衡式盾构一次性掘进完成,盾构接收井位于长兴岛,接收井平面尺寸为49.0mx24m,设计洞门直径为16m,洞门中心标高为-隧道内部向外注浆,封墙洞门与盾构问间隙,按原施工组织设计二次封盾尾方式进行盾尾封墙。流* 收稿日期:2∞9-05-09(修改稿)作者简介:李里(1984-) ,男,同济大学在读硕士研究生,主要从事公路隧道风险、施工建设风险管理以及相关领域的科研工作。E-mail:gangzi840912@hotmail.com 2∞9年增刊表3李风险因子隶属向量里,等:超大直径盾构水中进洞风险分析1425 根据FAHP方法,计算各层次的风险等级。Table 3 Membership degree vector of risk factor 编号RC1 = (0.0207 ;0. 0240 ;0.0663 ;0. 0748 ;0. 0245) Rα= (0.0∞8;0.0022;0.0019;0.0019;0.0∞4) Rα=(0.0274;0.0654;0.0593;0.0431;0.0133) Rω=(0.0274;0.0654;0.0593;0.0431;0.0133) 风险因子隶属向量(0.∞,0.39,0.36,0.17,0.08) 2 3 4 5 6 7 8 9 10 11 (0.00,0.24,0.40,0.19,0.11) (0.∞,0.29,0.21,0.43,0.07) (0.∞,0.21,0.46,0.27,0.06) Rcs = (0.02∞;0.0351;0.0596;0.0747;0.0232) Rω=(0.0165;0.0292;0.0223;0.0175;0.0017) (0.09,0.27,0.14,0.33,0.17) (0.33,0.29,0.17,0.21,0.∞) (0.14,0.37,0.32,0.17,0.∞) RC7 = (0.0119 ;0. 0131 ;0.0233 ;0. 0495 ;0. 0024) Rω= (0.∞65;0.0149;0.0231;0.0284;0.∞48) Rω= (0.0∞0;0.0285;0.0346;0.0245;0.0078) (0.08,0.31,0.36,0.17,0.08) (0.15,0.16,0.39,0.19,0.11) (0.16,0.17,0.37,0.18,0.12) (0.17,0.17,0.36,0.17,0.13) (0.∞,0.18,0.19,0.63,0.∞) (0.15,0.15,0.40,0.30,0.∞) (0.13,0.14,0.21,0.52,0.∞) RclO = (0.∞80;0.0217;0.0345;0.0354;0.∞13) RCl1 = (0.0071 ;0.0205 ;0. 0359 ;0. 0362 ;0.∞∞) RCI2=(O.∞24;0.∞58;0.0113;0.0136;0.∞∞) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 (0.07,0.09,0.33,0.38,0.13) (0.10,0.11,0.32,0.34,0.13) (0.14,0.37,0.32,0.17,0.∞) RB1 = (0.0196 ;0. 0309 ;0. 0558; 0.0573 ;0. 0185) RB2 = (0.0292 ;0. 06 ;0. 0796 ;0. 0795 ;0. 0198) RB3 =(0.∞;0.0174;0.0291;0.0302;0.侧的RA = (0.0252 ;0.0590 ;0.0706 ;0.0708 ;0. 0168) 依据隶属度取大的原则得到如下结果,原水中进洞风险等级为四级,系统风险层中施工质量风险(0.14,0.37,0.23,0.17,0.09) (0.08,0.09,0.15,0.62,0.06) (0.07,0.09,0.33,0.38,0.13) (0.16,0.17,0.37,0.18,0.12) (0.14,0.37,0.23,0.17,0.ω) 等级为四级,施工技术风险等级为三级,施工管理风险等级为三级。整体施王方案可行,但需要采取相应的控制措施。(0.16,0.17,0.37,0.18,0.12) (0.14,0.37,0.23,0.17,0.09) (0.07,0.12,0.33,0.48,0.∞) 5.3 凤险规避依据风险因子重要性分析中得到的结果以及风险性分析中的结论,对原方案中的风险点进行风(0.∞,0.33,0.37,0.30,0.∞) (0.07,0.19,0.36,0.38,0.∞) 险规避,具体措施如下。(1)施工进洞前召开进洞施工专题会议,强化风险意思,加强施工安全管理;(2)进人加固区100m前对盾构设备进行全面(0.14,0.37,0.23,0.17,0.09) (0.08,0.31,0.36,0.25,0.∞) (0.07,0.09,0.33,0.51,0.∞) (0.08,0.31,0.36,0.25,0.∞) 检修,重点是泥水及注浆系统检修;(3)现场抽样检查洞门混凝土强度;5 上海长江隧道风险规,避(4)在盾构机头部完全进入加固区后,保证泥水循环正常运行的情况下,将切口水压逐步降低,直至盾构破洞的前两环,切口水压可逐步降低至15.1 风险因子重要性分析通过计算可以看到U20洞门密封失效、U27违章-1. 2bar; (5)加固区盾构推进速度调整为15口UD;作业、U18注浆压力过大、U14流砂及管涌、U17泥水压力过大、U23密封条未充分挤压、U22洞门混凝土强-20mm/ 度偏高、U7盾构机沉陷这八个风险因素的权重值较大,需要重点考虑,建议制定规避措施和事故预案以有效控制风险。其中U1洞门设计方案不当,U16盾构过大纠偏扰动、U19洞门凿除损坏、U12刀头(6)盾构进洞时,切口高程及平面需控制在­lOmm -+ lOmm,保证盾构顺利准确的进洞;(7)凿除洞门分三步,第一步凿除内排钢筋保护层,从上而下左右对称依次凿除。第二步割除内排钢筋。第三步按尺寸要求一次凿除到外排钢筋处。(8)此外针对U16盾构过大纠偏扰动、U12刀头过度磨损、民盾构工作室控制不当,U30触电伤亡,这6个风险因素也有着不可忽略的影响。5.2 风险性分析1426 地下空间与工程学报第5卷过度磨损等风险因素,监控室工作人员应密切观察刀盘力矩等盾构参数的变化情况,一旦发现有异常情况应立即停止推进,采取相应应急措施c6结4仓本文通过信心指数法及模糊层次分析得到上海长江隧道水中进洞的风险等级为四级,定量得到了各关键节点重要性排序及风险等级,并提出了相应的规避措施。在采用本文第5部分给出的风险规避措施后,经过计算分析上海长江隧道水中进洞的施工方案风险等级降低到三级。按照本文所提供的风险规避措施及时调整参数,上海长江隧道盾构机已于2008年顺利进洞,充分证明本文采用信心指数法及模糊层次分析进行风险评估是切实可行的,提出的风险规避措施是有效的。参考文献:[ 1 J 吴韬.大型盾构进出洞施工技术及加固土体受力机理分析[DJ.上海:同济大学,2006.(WU Tao. Re-盹searchon Cons悦tm归削cti必onTechnique and Mechanism of Re-inforced Soil for Departure and Reception of Lar吃geScale Shie1d [D叫J.铀Shan[2幻]冯卫星,杨开志.湾坞隧道右线进洞方案[川J].岩石力学与工程学报,2004,4(23):12ω-1211. (FENG Wei-xing, YANG Kai-zhi. Tunnel Starting Scheme of Right Line of Wanwu Tunnel [ J J. Chinese Journal of R∞k Mechanics and Engineering, 2∞4,4(23) :12ω-1 211. (in Chinese) ) [3J 韦良文,吴韬,张庆贺.大直径盾构隧道出洞段土体稳定性分析[J].低温建筑技术,2∞6,110(2):85 -86. (WEI Liang-wen, WU Tao, ZHANG Qing-he. Sta-bility Analysis of 50il Body of Shield Starting Shaft In Large -diameter Shield Tunneling [J J. Low Tempera-ture Architecture Technology, 2∞6,110 (2) : 85 -86. (in Chinese) ) [4J 赵峻,戴海蚊.盾构法隧道软土地层盾构进出洞施工技术[J].岩石力学与工程学报,2∞4,7(3) : 5147 -5152. (ZHAO Jun, DAl Hai-jiao. Shield Break -ln and Break -Out Techniques in So企Soilfor Shield Driven Tunnel [ J J. Chinese Journal of Rock Mechanics and Engineeri吨,2∞4,7(3):5147 -5152. (in Chinese)) [ 5 J Luise Vassie. Health and Safety Management in UK and Spanish SMEs: A Comparative Study. Journal of Safety Research,2仪泊,31(1):35-4. [6J 王影华,宋连天.模糊论方法学[MJ.北京:中国建筑工业出版社,1998.(WANG Cai-hua, SONG Lian-tian. Methodology of Fuzzy Theory [ M J. Beijing: China Ar-chitecture and Building Press, 1998. (in Chinese) ) [7J 宋飞,赵法锁.地下工程风险分析的层次分析法及MATLAB应用[J].地球科学与环境学报,2∞8,9(3): 292 -296. (SONG Fei, ZHAO Fa-suo. Applica-tion of Analytical Hierarchy Process and MATLAB Pro-gram for Risk Analysis of Underground Engineering[ J J . Journal of Earth Sciences and Environment, 2∞8,9 (3): 292 -296. (in Chinese)) [8J 陈寅,吴竹青,刘君健.基于模糊层次分析法的公路工程项目风险评价[J].长沙交通学院学报.2∞8,9(3):44 -48. (CHEN Yun, WU Zhu-qi吨,LIUJun-jian. Risk Evaluation of Highway Engineering Project Based on the Fuzzy -AHP [ J J. Journal of Chang Sha Communication University. 2∞8,9 (3) : 44 -48. (in Chinese) ) [9J 段秉乾,司春林.基于模糊层次分析法的产品创新风险评估模型[JJ.同济大学学报,2∞8,7(7):1∞2 -1 ∞5. (DUAN Bing-qian, SI Chun-lin. Comprehensive Risk Assessment Model of Complex Product Systems In-novation Based on Fuzzy AHP[JJ. Joumal of Tong Ji U-niversity. 2∞8,7(7):1∞2 -1005. (in Chinese)) [10J 陈龙,黄宏伟.软土盾构隧道施工期风险损失分析[JJ.地下空间与工程学报,2仪焰,2( 1 ) : 74 -78. (CHEN Long, HUANG Hong-wei. Risk Loss Analysis During Constmction of 50企50ilShield Tunnel[ J]. Chi-nese Journal of Underground Space and Engineering, 2α)6 ,2(1 ) :74 -78. (in Chinese)

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 91gzw.com 版权所有 湘ICP备2023023988号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务